博碩士論文 108323101 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:41 、訪客IP:3.143.203.56
姓名 張銘鳳(Ming-Feng Chang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 以粉末冶金及熱壓擠製方式製作石墨-鋁基複合材料之研究
(Study on Graphite-Aluminum Matrix Composites Fabricated by Powder Metallurgy and Hot Extrusion)
相關論文
★ 使用實驗計劃法求得印刷電路板微鑽針最佳鑽孔參數★ 滾針軸承保持架用材料之電鍍氫脆研究
★ 強制氧化及熱機處理對鎂合金AZ91D固相回收製程之研究★ 滾針軸承保持架圓角修正之有限元素分析
★ 透過乾式蝕刻製作新型鍺全包覆式閘極電晶體元件★ 窗型球柵陣列構裝翹曲及熱應力分析
★ 冷軋延對ZK60擠製材的拉伸與疲勞性質之影響★ 熱引伸輔助超塑成形製作機翼整流罩之設計及分析
★ 超塑性鋁合金5083用於機翼前緣整流罩之研究★ 輕合金輪圈疲勞測試與分析
★ 滾針軸承保持架之有限元分析★ 鎂合金之晶粒細化與超塑性研究
★ 平板式固態氧化物燃料電池穩態熱應力分析★ 固態氧化物燃料電池連接板電漿鍍膜特性研究
★ 7XXX系鋁合金添加Sc之顯微組織與機械性質研究★ 高延性鎂合金之特性及成形性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 摘要
本研究是運用粉末冶金的方式製作石墨-鋁基複合材料,希望透過此方式來改善複合材料的均勻性,並運用熱壓擠製加工來提升複合材料的材料性質。另外,將此複合材料製作成水產氫(water electrolysis)電極,以探討這些電極之電解效果。
本實驗以標準差 σ 來評估複合材料組織的均勻性。實驗顯示三組複合材料的 σ 值變動均很小,表示以此方式製作複合材料是可行的。材料經熱壓擠製後,四種以粉末製作的試棒其抗拉強度比鋁鑄錠試棒大約增加26.6~ 27.8%。
實驗材料 Alp、Alp-1%G 及 Alp-0.5%Gf,其導電度分別為 61、
58.9 及 61.1 IACS(International Annealed Copper Standard),
顯示本實驗方式是有助於改善複材導電度下降的問題。在10wt.% KOH 鹼性電解液中,電解電壓 3.88V,以收集 100cc 氫氣為電解時間。結果顯示石墨-鋁基複材電極均比純鋁電極有較佳的產氫的效果。然而,使用 10wt.% HNO3 酸性電解液中,四種電極材料在電解過程均產生鈍化現象,不具實用價值。
摘要(英) Abstract
This research is to make graphite-aluminum matrix
composites by powder metallurgy , hoping to improve the
uniformity of composites through this method, and use
extrusion processing to improve the material properties of
composites. In addition, these composite materials were
fabricated into water electrolysis electrodes, which were
investigated the electrolysis effect.
In this experiment, the standard deviation σ is used to
evaluate the uniformity of the composite structure.
Experiments show that the σ value of the three groups of
composite materials varies little, indicating that it is
feasible to make composite materials in this way. After hotextrusion, the tensile strength of the four test bars made of powder is approximately 26.6-27.8% higher than that of the aluminum ingot test one.
The experimental materials Al, Alp-1%G and Alp-0.5%Gf have
conductivity of 61,58.9 and 61.1 IACS (International
Annealed Copper Standard), show that this experimental
method is helpful to improve the problem of the decrease
of the conductivity of composite materials. In 10wt.% KOH
alkaline electrolyte, the electrolysis voltage is 3.88V,
and 100cc of hydrogen is collected as the electrolysis time.
The results show that the graphite-aluminum-based
composite electrodes have better hydrogen production
effect than pure aluminum electrodes. However, in the use
of 10wt.% HNO3 acid electrolyte, the four electrode
materials all produce passivation during the electrolysis
process, which is not practical.
關鍵字(中) ★ 粉末冶金
★ 熱壓擠製
★ 石墨-鋁基複合材料
★ 標準差
★ 電極
關鍵字(英) ★ powder metallurgy
★ hot extrusion
★ graphite-aluminum matrix composites
★ standard deviation
★ electrode
論文目次 目錄
摘 要......................................................i
Abstract..................................................ii
誌 謝.....................................................iv
目 錄.....................................................vi
圖目錄...................................................vii
表目錄..................................................viii
符號表....................................................ix
第一章 緒論................................................1
1.1 研究動機 ............................................. 1
1.2 研究目的 ............................................. 2
第二章 研究背景 .......................................... 4
2-1 鋁及鋁合金之簡介.......................................4
2-1-1 鋁金屬之特性.........................................4
2-1-2 鋁合金的分類.........................................5
2-2 石墨及石墨烯 ..........................................7
2-3 粉末冶金 ..............................................9
2-4 氫能..................................................12
2-5 電解水製氫之基本原理...................................14
2-6 極化作用 .............................................15
2-6-1 歐姆極 .............................................15
2-6-2 濃度極化............................................15
2-6-3 活性極化............................................16
2-7 電解質................................................17
2-8 電極..................................................18
2-9 電解水製氫材料之搜集...................................22
第三章 實驗設備與步驟......................................26
3-1 實驗設備..............................................26
3-2 實驗用品..............................................26
3-3 實驗步驟 ............................................ 27
第四章 結果與討論 ........................................ 32
4-1 粉末冶金法製作鋁-石墨複合材料均勻性之探討............... 32
4-2 鋁-石墨複合材料之機械性質............................. 35
4-3 鋁-石墨複合材料之電解特性............................. 38
第五章 結論.............................................. 42
參考文獻................................................. 44
附錄一 第二章 產氫電極材料參考篇名 ........................ 48
附錄二 第三章 實驗圖示.................................... 55
3-3 實驗步驟圖示 ........................................ 55
附錄三 第四章 實驗示意圖.................................. 56
附錄四 第四章 圖表....................................... 57
圖表 4-1 長條圖、標記線圖................................. 57
圖表 4-2 長條圖、標記線圖................................. 58
圖表 4-3 長條圖、標記線圖................................. 59
參考文獻 參考文獻
[1] A. I. Taub, “ Automotive Materials: Technology Trends
and Challenges in the 21st Century,” MRS Bulletin,
Vol.31,pp.336-343, 2006.
[2] 劉品君譯, 工程材料, 滄海書局, 2004.
[3] 楊宗勳, “擠壓鑄造法製作石墨顆粒-鋁基複合材料(A356/Gr)之研
究”, 國立交通大學材料科學與工程研究所碩士論文,1996.
[4] K. Mazloomi, N. B. Sulaiman, H. Moayedi, “Electrical
Efficiency of Electrolytic Hydrogen Production,”
International Journal of Electrochemical Science, Vol.7,
pp.3314-3326, 2012.
[5] N. Nagai, M. Takeuchi, T. Kimura, T. Oka, “Existence of
Optimum Space Between Electrodes on Hydrogen Production
by Water Electrolysis,”Int. J. Hydrogen Energy, Vol.28,
pp. 35-41, 2003.
[6] P. K. Dubey, A. S. K. Sinha, S. Talapatra, N. Koratkar,
P. M. Ajayan, O. N. Srivastava, “Hydrogen Generation by
Water Electrolysis Using Carbon Nanotube Anode,” Int. J.
Hydrogen Energy, Vol.35, pp.3945-3950, 2010.
[7] 吳柏勳,“以竹碳粉製作碳化矽/鋁複合材料之研究”,大同大學材料工程
研究所碩士論文,2008.
[8] B. P. Krishnan, M. K. Surappa and P. K. Rohatgi,” The
UPAL Process: a Direct Method of Preparing Cast
Aluminium AlloyGraphite Particle Composites “, Journal of
Material Science 16 ,1981, 1209-1216.
[9] J. E. Hatch, Aluminum: Properties and Physical
Metallurgy, ASM Metals Park, Ohio, 1984.
[10] Kaiser, Welding Kaiser Aluminum, 1st Ed., Kaiser
Aluminum & Chemical Scales, Inc., 1984.
[11] A. K. Vasudevan, R. D. Doherty, Aluminum Alloys-
Contemporary Research and Applications, Academic
Press, Inc. 1989.
[12] M. Wissler, "Graphite and carbon powders for
electrochemical applications," Journal of Power
Sources, Vol. 156, pp 142-150, 2006.
[13] A.K. Geim, K.S. Novoselov, The rise of graphene, Nature
Materials, 6 (2007).
[14] J.S. Bunch, Mechanical and electrical prperties of
graphene sheets, in, 2008.
[15] G. Jo, M. Choe, S. Lee, W. Park, Y.H. Kahng, T. Lee,
The application of graphene as electrodes in electrical
and optical devices, Nanotechnology, 23 (2012) 112001.
[16] 黃坤祥, 粉末冶金學, 中華民國粉末冶金協會.
[17] S. Dunn,“Hydrogen Futures: Toward a Sustainable Energy
System,”Int. J. Hydrogen Energy, Vol.27, pp.235-264,
2002.
[18] K. Mazloomi, N.B. Sulaiman,H. Moayedi,“Electrical
Efficiency of Electrolytic Hydrogen Production,”
International Journal of Electrochemical Science,
Vol.7,pp.3314-3326, 2012.
[19] 吳慶鴻,"磁場對水解產氫效率增益之機制研究”,國立中央大學機械
系,碩士論文,民國103年。
[20] B. E. Conway, G. Jerkiewiez, “Relation of Energies and
Coverages of Underpotential and Overpotential Deposited
H at Pt and Other Metals to the ‘Volcano Curve’ for
Cathodic H2 Evolution Kinetics,” Electrochimca Acta,
Vol.45,pp.4075-4083, 2000.
[21] 田中正三郎著;賴耿陽譯著,"應用電化學",復漢出版社印行,
1998.
[22] 董成祥,"電解水產氫之電解液流場效應分析",中央大學能源工程研
究所,碩士論文,民國97年7月。
[23] 蔡宗澤,"高溫高壓之電解水產氫效率分析",中央大學能源工程研究
所,碩士論文,民國98年6月。
[24] 熊楚強、王月主編, "電化學",新文京開發出版社股份有限公司,
2004。
[25] Svante August Arrhenius,“ Theory of ionic dissociation”
,Stockholm Universit , PhD thesis,1884.維基百科。
[26] M.Landstorfer,"On the dissociation degree of ionic
solutions considering solvation effects", Electroch-
emistry Communica-tions,Volume 92, July 2018, Pages
56-59.
[27] 何旻璟,"低碳鋼無電鍍鈀之研究",逢甲大學,碩士論文,民國100
年6月。
[28] 王箴,"英漢化工大辭典",中央圖書出版社,「電極」第132頁,
1994。
[29] 陳大為,‎蘇仕,‎蘇傑,"中學生化學高分的關鍵秘笈",「貝特力的一
生」第173頁,2013。
[30] 于淑君,"電化學電池",國立中正大學化學暨生物化學系,
2017.08.28修訂。
[31] 奧斯朋出版編輯群,"圖解化學辭典",遠見天下文化出版股份有限公
司,2019年12月26日,第二版,第一次。
[32] 湖南寧鄉吉唯信金屬粉體有限公司,球型鋁粉(未塗層的)"SEM"圖。
(http://www.hnjwx.com/product/qiuxinglvfen/youxian/
show_9.html)
[33] 快庫網,貝特瑞新材料集團股份有限公司,高性價比人造石墨"SEM"
圖。(https://www.batteryw.com/product/detail
productUuid=01f55bab-3610-462b-9fcd-519a18d156a0)。
[34] Porite TAIWAN CO.LTD.(Powder Metallurgy Specialist)
,supply as mate¬rial, processing ,testing ,SEM picture
,etc.
[35] 水的電解圖,“[94年學測自然]54-56為題組 在相同的溫度、壓力與
儀器的條件下,進行水的電解實驗(圖12)”,民國94年。
[36] 宋宛倫,“超音波應用對於電解水產氫氣阻現象影響之研究”,國立雲
林科技大學環境與安全衛生工程系,碩士論文,民國97年。
[37] 何旻璟,“低碳鋼無電鍍鈀之研究”,逢甲大學,材料科學與工程學
系,碩士論文,民國100年6月。
指導教授 李雄(Shyong Lee) 審核日期 2023-6-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明