博碩士論文 110624008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:100 、訪客IP:18.119.137.175
姓名 許家毓(Chia-Yu Hsu)  查詢紙本館藏   畢業系所 應用地質研究所
論文名稱 以高解析度熱示蹤劑試驗解析沿海含水層分層地下水流場與熱傳輸特性
(High-Resolution heat tracer test to analysis groundwater flow field and heat transfer characteristic in the coastal aquifer)
相關論文
★ 延散效應對水岩交互作用反應波前的影響★ 序率譜方法制定異質性含水層水井捕集區
★ 跨孔式注氣試驗方法推估異質性非飽和層土壤氣體流動參數★ 現地跨孔式抽水試驗推估異質性含水層水文地質特性
★ iTOUGH2應用於實驗室尺度非飽和土壤參數之推估★ HYDRUS-1D模式應用於入滲試驗推估非飽和土壤特性參數
★ 沿海含水層異質性對海淡水交界面影響之不確定性分析★ 非拘限砂質海岸含水層中潮汐和沙灘坡度水文動力條件影響苯傳輸
★ 利用MODFLOW配合SUB套件推估雲林地區垂向平均長期地層下陷趨勢★ 高雄平原地區抽水引致汙染潛勢評估
★ 利用自然電位法監測淺層土壤入滲歷程★ 利用LiDAR點雲及影像資料決定露頭節理結合面之研究
★ 臺灣西部沿海海水入侵與地下水排出模擬分析★ 三氯乙烯地下水污染場址整治後期傳輸行為分析¬-應用開源FreeFEM++有限元素模式架構
★ 都會地區滯洪池增設礫石樁之入滲效益模擬與分析★ 利用數值模擬探討二氧化碳於異向性及異質性鹽水層之遷移行為
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 人類社會對於水資源的需求量持續增加,全球用水量增加的主要因城市擴張、農業活動增長、人口快速增長、經濟發展和生活水平提高,而地下水資源作為傳統水資源的替代來源,近年來更將沿海含水層補注至海洋之地下水視為潛在可用水資源來源,透過估算地下水通量及推估含水層參數,並討論沿海含水層之海淡水交互作用與潮汐變動特性,可提供地下水水資源管理之參考依據。本研究以中央大學TaiCOAST臨海工作站作為試驗區域,水文地質參數取得方法分為室內試驗與現地試驗,室內試驗為材料熱傳導試驗,測量飽和狀態下土壤材料熱傳導係數等參數,以此結果輔助辨識現地地質材料與地下水流通量。現地試驗為熱示蹤劑加熱試驗(單井加熱試驗)。針對井內垂直溫度分布進行高解析連續量測,利用地下水溫度變化、熱傳導係數與體積熱容量等參數,推估地下水通量並與現地鑽探岩心進行比對,以垂直剖面溫度變化圖評估地質分層及透水特徵區域。根據單井加熱試驗結果,其中高熱傳輸反應區段為深度17-19m、32-34m和42-47m,深度17-19m對應岩心材料為礫石夾砂土,深度32-34m對應岩心材料為礫石砂土互層,深度42-47m對應岩心材料為砂土黏土互層之砂土部分呈細砂狀;低熱傳輸反應區段為深度3-6m、6-11m和19-26m。根據地下水通量垂直分布圖,深度6-8m為低透水性區段,地下水通量約2.4m/day,此區段在加熱試驗中熱傳輸反應為相反。而深度19-26m處地下水通量約0.05 m/day,此區透水性應為較差,地下水流動速率較慢,與加熱試驗結果之熱傳輸反應相同。然加熱試驗結果可判釋潮汐對沿海含水層之影響,可證本研究區域受潮汐影響相當顯著,進一步探討沿海含水層潮汐變動特性之關係。
摘要(英) The increase in global water consumption is mainly owing to urbanization, growing agricultural activities, population growth, economic development, and improving living standards. Forcing the water resource authority concerned to seek new water resources to catch up with the gap of growing demand. Groundwater recharged from coastal aquifers to the ocean is a potential alternative water resource have drawn more attention in recent years. In this study, we aim to quantify the groundwater flux in coastal areas and the interaction between coastal aquifers and seawater intrusion and tidal variations, can provide valuable insights for groundwater resource management. The laboratory experiments include thermal analyzer to measure parameters such as the thermal conductivity of soil materials under saturated conditions, which help identify field geological materials and groundwater flux. The field tests involve heat tracer test (single-well). High-resolution continuous measurements of vertical temperature distribution in the wells are performed. According to the results of the heat tracer tests, the high thermal response zones are located at depths of 17-19m, 32-34m, and 42-47m. The depth range of 17-19m corresponds to gravel-sand mixture in the drilling core. The depth range of 32-34m corresponds to interbedded gravelly sand in the drilling core. The depth range of 42-47m corresponds to sand-silt mixture interbeds, with the sandy portion exhibiting a fine sand texture. The low thermal response zones are observed at depths of 3-6m, 6-11m, and 19-26m. The groundwater flux analysis revealed a low-permeability zone at 6-8m depth, with a flux of around 2.4m/day. Interestingly, heating tests exhibited contrasting heat transfer behavior in this zone. At depths of 19-26m, a slow groundwater flux of about 0.05 m/day and poor permeability aligned with the observed heat transfer reactions. However, the results clearly demonstrate the influence of tides on coastal aquifers, indicating a significant tidal effect in the study area. The relationship between tidal variations and the characteristics of coastal aquifers can be further explored.
關鍵字(中) ★ 沿海含水層
★ 單井加熱試驗
★ 地下水通量
關鍵字(英) ★ Coastal aquifer
★ Heat tracer method
★ Groundwater flux
論文目次 目錄
摘要 ii
Abstract iii
誌謝 v
圖目錄 viii
表目錄 xi
符號說明 xii
第一章 緒論 1
1-1 前言 1
1-2 研究目的 2
1-3 研究流程 2
第二章 文獻回顧 5
2-1 海岸地下水出流(Submarine groundwater discharge: SGD) 5
2-2 參數推估與示蹤劑試驗方法 7
2-3 分佈式光纖偵溫系統 10
第三章 試驗方法 15
3-1 研究場址 15
3-1-1 研究區域水文地質概況 17
3-1-2 地理位置及觀測井配置 15
3-2 室內試驗方法 20
3-2-1 材料熱傳導係數試驗 20
3-3 現地試驗 23
3-3-1 單井加熱試驗 23
3-4 地下水通量推估方法 27
第四章 結果與討論 34
4-1 單井加熱試驗結果 34
4-1-1 Test1試驗結果 36
4-1-2 Test2試驗結果 40
4-1-3 Test3試驗結果 45
4-1-4 Test4試驗結果 50
4-1-5 Test5試驗結果 55
4-1-6 加熱試驗結果討論 59
4-2 地下水流通量分析 61
4-2-1 擬合參數分析 61
4-2-2 擬合分析結果 62
第五章 結論與建議 67
5-1 結論 67
5-2 建議 68
參考文獻 70
參考文獻 參考文獻
[1] McDonald, Robert I., et al. “Urban growth, climate change, and freshwater availability.”, Proceedings of the National Academy of Sciences, 108(15), 6312-6317, 2011.
[2] 汪中和,「氣候暖化與台灣的水資源」,鑛冶:中國鑛冶工程學會會刊 59(2), 11-15頁,2015。
[3] Donovan, David J., et al. “Cost-benefit analysis of artificial recharge in Las Vegas Valley, Nevada.”, Journal of Water Resources Planning and Management, 128(5), 356-365, 2002.
[4] Khan, Shahbaz, et al. “Estimating potential costs and gains from an aquifer storage and recovery program in Australia.”, Agricultural water management, 95(4), 477-488, 2008.
[5] Niazi, Amir, et al. “A system dynamics model to conserve arid region water resources through aquifer storage and recovery in conjunction with a dam.” Water, 6(8), 2300-2321, 2014.
[6] Lluria, Mario R., Phillip M. Paski, and Gary G. Small. “Seasonal water storage and replenishment of a fractured granitic aquifer using ASR wells.”, Sustainable Water Resources Management, 4, 261-274, 2018.
[7] McCoy, C. A., and D. R. Corbett. “Review of submarine groundwater discharge (SGD) in coastal zones of the Southeast and Gulf Coast regions of the United States with management implications.”, Journal of environmental management, 90(1), 644-651, 2009.
[8] Pyne, R. David G. “Aquifer storage recovery: An ASR solution to saltwater intrusion at Hilton Head Island, South Carolina, USA.”, Environmental Earth Sciences, 73(12), 7851-7859, 2015.
[9] Guttman, Joseph, Ido Negev, and Genadi Rubin. “Design and testing of recharge wells in a coastal aquifer: summary of field scale pilot tests.”, Water, 9(1), 53, 2017.
[10] Zuurbier, Koen G., et al. “How subsurface water technologies (SWT) can provide robust, effective, and cost-efficient solutions for freshwater management in coastal zones.”, Water Resources Management, 31, 671-687, 2017
[11] Cable, Jaye E., and Jonathan B. Martin. “In situ evaluation of nearshore marine and fresh pore water transport into Flamengo Bay, Brazil.”, Estuarine, Coastal and Shelf Science, 76(3), 473-483, 2008.
[12] Martin, Jonathan B., et al. “Magnitudes of submarine groundwater discharge from marine and terrestrial sources: Indian River Lagoon, Florida.”, Water Resources Research, 43(5), 2007.
[13] McCoy, C. A., et al. “Hydrogeological characterization of southeast coastal plain aquifers and groundwater discharge to Onslow Bay, North Carolina (USA).”, Journal of Hydrology, 339(3-4), 159-171, 2007.
[14] Thompson, C., Leslie, S., and Roudrajit, M. “Hydrogeological modeling of submarine groundwater discharge on the continental shelf of Louisiana.” Journal of Geophysical Research: Oceans, 112(C3), 2007.
[15] Wilson, Alicia M. “Fresh and saline groundwater discharge to the ocean: A regional perspective.”, Water Resources Research, 41(2), 2005.
[16] Burnett, W. C., et al. “Quantifying submarine groundwater discharge in the coastal zone via multiple methods.”, Science of the total Environment, 367(2-3), 498-543, 2006.
[17] Yu, X., and Holly A. M. “Offshore pumping impacts onshore groundwater resources and land subsidence.”, Geophysical Research Letters, 46(5), 2553-2562, 2019.
[18] Moore, W. S. “Large groundwater inputs to coastal waters revealed by 226Ra enrichments.”, Nature, 380(6575), 612-614, 1996.
[19] Slomp, C. P., and Philippe, V. C. “Nutrient inputs to the coastal ocean through submarine groundwater discharge: controls and potential impact.”, Journal of Hydrology, 295(1-4), 64-86, 2004.
[20] Xin, Pei, et al. “Effects of wave forcing on a subterranean estuary.”, Water Resources Research, 46(12), 2010.
[21] Smith, A. J. “Mixed convection and density‐dependent seawater circulation in coastal aquifers.”, Water Resources Research, 40(8), 2004.
[22] Kaleris, V. “Submarine groundwater discharge: Effects of hydrogeology and of near shore surface water bodies.”, Journal of hydrology, 325(1-4), 96-117, 2006.
[23] Konikow, L. F., et al. “Seawater circulation in sediments driven by interactions between seabed topography and fluid density.”, Water Resources Research, 49(3), 1386-1399, 2013.
[24] Uchiyama, Y, et al. “Submarine groundwater discharge into the sea and associated nutrient transport in a sandy beach.”, Water Resources Research, 36(6), 1467-1479, 2000.
[25] Kohout, F. A. “A hypothesis concerning cyclic flow of salt water related to geothermal heating in the Floridan aquifer.” ,Transactions of the New York Academy of Sciences, 28(2), 249-271, 1965.
[26] Longuet, H, Michael, S. “Wave set-up, percolation and undertow in the surf zone.”, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 390(1799), 283-291, 1983.
[27] Anderson, J., William,P., and Ryan E. “Effect of interannual climate oscillations on rates of submarine groundwater discharge.”, Water Resources Research, 46(5), 2010.
[28] Li, H, et al. “Modelling tidal signals enhanced by a submarine spring in a coastal confined aquifer extending under the sea.”, Advances in Water Resources, 30(4), 1046-1052, 2007.
[29] Garcia, O, J, et al. “Radium isotopes as submarine groundwater discharge (SGD) tracers: Review and recommendations.”, Earth-Science Reviews, 220, 103681, 2021.
[30] Freeze, R. A. and Cherry, J. A. Groundwater., Prentice-Hall., New Jersey, 1979.
[31] Barwell, V. K., and Lee, D. R. “Determination of horizontal‐to‐vertical hydraulic conductivity ratios from seepage measurements on lake beds.”, Water Resources Research, 17(3), 565-570, 1981.
[32] Taniguchi, M. “Change in groundwater seepage rate into Lake Biwa, Japan.”, Jpn J Limnol, 56, 261–7, 1995.
[33] Burnett WC, et al. “Measurement and significance of the direct discharge of groundwater into the coastal zone.”, J Sea Res, 46(2), 109–16, 2001a.
[34] 林淇平、張俼瑍和倪春發,「建構與評估跨孔熱示蹤劑試驗模式解析現地尺度含水層流場特性」,土壤及地下水污染整治,7(2),81-112頁,2022。
[35] Jones, J. P., et al. “An assessment of the tracer‐based approach to quantifying groundwater contributions to streamflow.”, Water Resources Research, 42(2), 2006.
[36] Reilly, Thomas E., et al. “The use of simulation and multiple environmental tracers to quantify groundwater flow in a shallow aquifer.”, Water Resources Research, 30(2), 421-433, 1994.
[37] Jamin, P., et al. “Direct measurement of groundwater flux in aquifers within the discontinuous permafrost zone: an application of the finite volume point dilution method near Umiujaq (Nunavik, Canada).”, Hydrogeology Journal, 28(3), 869-885, 2020.
[38] Pehme, P. E., et al. “Enhanced detection of hydraulically active fractures by temperature profiling in lined heated bedrock boreholes.”, Journal of Hydrology, 484, 1-15, 2013.
[39] Kurylyk, B. L., et al. “Theory, tools, and multidisciplinary applications for tracing groundwater fluxes from temperature profiles.”, Wiley Interdisciplinary Reviews: Water, 6(1), e1329, 2019.
[40] Bakker, Mark., et al. “An active heat tracer experiment to determine groundwater velocities using fiber optic cables installed with direct push equipment.”, Water Resources Research, 51(4), 2760-2772, 2015.
[41] SiLiXA. https://silixa.com/technology/xt-dts/
[42] Rogers, A. “Distributed optical-fibre sensing.” Measurement Science and Technology, 10(8), R75, 1999.
[43] Bense, V. F., et al. “Distributed T emperature S ensing as a downhole tool in hydrogeology.”, Water Resources Research, 52(12), 9259-9273, 2016.
[44] Farahani, M. A., and Torsten, G. “Spontaneous Raman scattering in optical fibers with modulated probe light for distributed temperature Raman remote sensing.”, Journal of Lightwave Technology, 17(8), 1379, 1999.
[45] Hausner, M. B., et al. “Calibrating single-ended fiber-optic Raman spectra distributed temperature sensing data.”, Sensors, 11(11), 10859-10879, 2011.
[46] Tyler, S. W., et al. “Environmental temperature sensing using Raman spectra DTS fiber‐optic methods.”, Water Resources Research, 45(4), 2009.
[47] Suárez, F., et al. “Assessment of a vertical high-resolution distributed-temperature-sensing system in a shallow thermohaline environment.”, Hydrology and Earth System Sciences, 15(3), 1081-1093, 2011.
[48] Habel, W, R., et al. “Guideline for use of fibre optic sensors.”, No. REP_WORK., 2009.
[49] SEAFOM. “Measurement specification for distributed temperature sensing.”, Measurement Specification Working Group, SHAFOM-MSP-01, 2010.
[50] Smolen, J. J. “Distributed Temperature Sensing, A DTS Primer for Oil & Gas Production.”, EP2003, 5, 2003.
[51] Van D. G, Nick, et al. “Double-ended calibration of fiber-optic Raman spectra distributed temperature sensing data.”, Sensors, 12(5), 5471-5485, 2012.
[52] Ukil, A., Hubert, B., and Peter, K., “Distributed temperature sensing: Review of technology and applications.”, IEEE Sensors Journal, 12(5), 885-892, 2011.
[53] Simon, N., et al. “A comparison of different methods to estimate the effective spatial resolution of FO-DTS measurements achieved during sandbox experiments.”, Sensors, 20(2), 570, 2020.
[54] Selker, F., and John S. S. “Investigating water movement within and near wells using active point heating and fiber optic distributed temperature sensing.”, Sensors, 18(4), 1023, 2018.
[55] Banks, E. W., Margaret, A. S., and Peter, G. C. “Induced temperature gradients to examine groundwater flowpaths in open boreholes.”, Groundwater, 52(6), 943-951, 2014.
[56] Leaf, A. T., David, J. H, and Jean, M. B. “Active thermal tracer tests for improved hydrostratigraphic characterization.”, Groundwater, 50(5), 726-735, 2012.
[57] Liu, G., Knobbe, S and Butler Jr, J. J. “Resolving centimeter‐scale flows in aquifers and their hydrostratigraphic controls.”, Geophysical Research Letters, 40(6), 1098-1103, 2013.
[58] Anderson, M. P. “Heat as a ground water tracer.”, Groundwater, 43(6), 951-968, 2005.
[59] Maldaner, Carlos H., et al. “Groundwater Flow Quantification in Fractured Rock Boreholes Using Active Distributed Temperature Sensing Under Natural Gradient Conditions.”, Water Resources Research, 55(4), 3285-3306, 2019.
[60] 王昱,「桃園—新竹臺地區構造活動與地形特徵」,國立臺灣大學,碩士論文,民國92年。
[61] 諶凱英,「桃園台地群崖地形之研究」,國立中央大學,碩士論文,民國83年。
[62] 台灣省農業試驗所,「桃園縣土壤調查報告」,台灣省農業試驗所報告,第三十三號,民國65年。
[63] 黃祥慶,「桃園臺地群之礫石堆積層」,國立中央大學,碩士論文,民國84年。
[64] 沈志修,「自然樂活海好有你 : 桃園海岸生態保護白皮書」,初版,桃園市政府,民國106年。
[65] 尹章義,「新屋鄉志」,第一篇·地理篇,桃園縣新屋鄉公所,民國97年。
[66] Abramowitz, M., and Stegun, Irene A. “Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables.” National Bureau of Standards Applied Mathematics Series 55. Tenth Printing.”, 1972.
[67] Reiter, Marshall. “Using precision temperature logs to estimate horizontal and vertical groundwater flow components.”, Water Resources Research, 37(3), 663-674, 2001.
[68] Drury, M. J., A. M. Jessop, and T. J. Lewis. “The detection of groundwater flow by precise temperature measurements in boreholes.”, Geothermics, 13(3), 163-174, 1984.
[69] Trainer, F.W. “Temperature profiles in water wells as indicators of bedrock fractures. US Geol.”, Survey Prof. Paper, 1968.
[70] Stallman, R. W. “Steady one‐dimensional fluid flow in a semi‐infinite porous medium with sinusoidal surface temperature.”, Journal of geophysical Research, 70(12), 2821-2827, 1965.
[71] Kipp, Kenneth L. “HST3D: A computer code for simulation of heat and solute transport in three-dimensional ground-water flow systems.”, US Geological Survey, Vol. 86, No.4095, 1987.
[72] des Tombe, Bas F., et al. “Estimation of the variation in specific discharge over large depth using distributed temperature sensing (DTS) measurements of the heat pulse response.”, Water Resources Research, 55(1), 811-826, 2019.
[73] Kluitenberg, G. J., and A. W. Warrick. “Improved evaluation procedure for heat‐pulse soil water flux density method.”, Soil Science Society of America Journal, 65(2), 320-323, 2001.
[74] Veling, E. J. M., and C. Maas. “Hantush well function revisited.”, Journal of Hydrology, 393(3-4), 381-388, 2010.
[75] Ren, T., et al. “Determining soil water flux and pore water velocity by a heat pulse technique.”, Soil Science Society of America Journal, 64(2), 552-560, 2000.
[76] Hopmans, J. W., et al. “Indirect estimation of soil thermal properties and water flux using heat pulse probe measurements: Geometry and dispersion effects.”, Water Resources Research, 38(1), 7-1, 2002.
[77] Smith, Leslie, and David S. Chapman. “On the thermal effects of groundwater flow: 1. Regional scale systems.”, Journal of Geophysical Research: Solid Earth, 88(B1), 593-608, 1983.
[78] De Marsily, Ghislain. “Quantitative hydrogeology.”, 1986.
[79] Zubair, S. M., and M. Aslam Chaudhry. “Temperature solutions due to time-dependent moving-line-heat sources.”, Heat and Mass Transfer, 31(3), 185-189, 1996.
[80] Diao, Nairen, Qinyun Li, and Zhaohong Fang. “Heat transfer in ground heat exchangers with groundwater advection.”, International Journal of Thermal Sciences, 43(12), 1203-1211, 2004.
[81] Hantush, Madih Salih. “Analysis of data from pumping tests in leaky aquifers.”, Eos, Transactions American Geophysical Union, 37(6), 702-714, 1956.
[82] Hamdhan, Indra Noer, and Barry G. Clarke. “Determination of thermal conductivity of coarse and fine sand soils.”, Proceedings World Geothermal Congress, 2010, 2010.
[83] Dakin, J. P., et al. “Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector.”, Electronics letters, 13(21), 569-570, 1985.
指導教授 倪春發(Cheun-Fa Ni) 審核日期 2023-8-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明