博碩士論文 110624602 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:67 、訪客IP:3.142.40.43
姓名 哈阿里(Hassan Aleem)  查詢紙本館藏   畢業系所 應用地質研究所
論文名稱 台灣西南部二仁溪緯度一帶活躍變形的西部麓山帶的構造分析
(Structural analysis in the actively deforming Western Foothills at the latitude of Erhjen River, Southwestern Taiwan)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 台灣西南部二仁溪地是一個變形活躍且有抬升現象的動態區域,這些現象主要集中在幾個逆斷層的下盤。本研究旨在了解驅動這些現象的地質過程。地主要由晚中新世至早更新世的古亭坑泥岩(Gtk)組成,其厚度超過4000公尺。細顆粒的泥岩加上巨大厚度的條件下,在地底深處可能產生異常的壓力導致泥岩的塑性變形(頁岩構造)。本研究區域主要的斷層包括旗山斷層、龍船斷層、古亭坑斷層和小崗山斷層,這些斷層均向東傾。地球物理數據顯示,沿海平原存在著褶皺構造,如中洲背斜等。大地測量結果亦表明,二仁溪流域中游地區的擠壓速率約為每年30毫米。另外,干涉合成孔徑雷達(InSAR)、水準測量數據和全新世侵蝕速率的證據也支持該地區明顯抬升的說法。值得注意的是,高度變形的地方集中在古亭坑斷層下盤處。為了解構造抬升的原因,我們訂了幾個研究目標,首先,針對變形下盤上的二仁溪河階進行了放射性碳定年,以量化下切速率。而後,對變形區進行了全面的結構分析。此外,根據急折法(kink method)的概念構建立一個地質剖面,我們發現其下切速率約為每年18毫米和34毫米,揭示抬升速率十分快速。超微化石數據顯示其年齡為上新世(NN15)。由於古亭坑斷層沿斷層跡的上盤年齡並不同,因此我們利用較大範圍的岩層位態來定義超微化石的(NN15)年代位於古亭坑斷層其上盤。透過對古亭坑泥岩詳細的微化石層序分析,我們將其分為三個年代單元:中新世古亭坑層、上新世古亭坑層和更新世古亭坑層。在古亭坑斷層帶的野外調查中,發現一個明顯東南傾的剪切帶,其剪切面位態為080°/51S°。這條東南傾的剪切帶及斷層出現在泥質相,周遭為粉質相,表示有可能發生了數十公尺的位移,推測該斷層為橫切過一個西傾逆斷層的古亭坑斷層。除此之外,基於相似的超微化石年代,剖面繪製龍船斷層和古亭坑斷層來自同一個脫斷面,其深度在3-4公里處,而木柵斷層則從更深的滑脫面(約4.5公里)發育,將中新世古亭坑層推向地表,故上盤有來自較深部的長枝坑層(Mcc)。晚中新世的一個或多個正斷層導致中新世古亭坑層在“古亭坑盆地” 的中沉積,這可解釋為何古亭坑斷層以東的中新世古亭坑層厚度會較厚的原因。沿著龍船山???由北至南存在相同年代的淺海和深海相,支持了正斷層盆地的觀點。基於地層生長不對稱性的,斷層深度達5公里,中洲構造可用斷層相關褶皺 (fault-related fold) 來解釋。本研究中還提出深度為8-9公里處,存有大陸邊緣再活化結構,使得裂谷地層變形,且此構造可能仍然活躍中。此外,由於古亭坑斷層西側的古亭坑泥岩較厚,頁岩構造可能扮演著一定的角色,下盤因擠壓造成褶皺,可以解釋下盤的異常變形的現象。
摘要(英) The Erhjen River in southwestern Taiwan is a dynamic region characterized by active deformation and uplift clustered in the footwall of the several reverse faults. This study focuses on understanding the geological processes driving this phenomenon. The region predominantly comprises the Late Miocene to Early Pleistocene Gutingkeng Mudstone (Gtk), which exhibits an impressive thickness exceeding 4000 meters. The fine-grained composition and enormous thickness may trigger abnormal overpressure at depths, potentially resulting in the ductile deformation of the mudstone (shale tectonics). Major faults in the study area are the Chishan Fault, Lungchuan Fault, Gutingkeng Fault, and Hsiaokangshan Fault, which all dip eastward. Geophysical data reveal the presence of folded structures, such as the Chungchou Anticline in the Coastal Plain. Geodetic measurements indicate that the midstream of the Erhjen River experiences compression at a rate of approximately 30 mm/yr. Additional evidence from InSAR, leveling data, and Holocene incision rates support significant uplift in the region. Notably, the high deformation concentrates along the footwall side of the mapped Gutingkeng Fault. To understand the structures responsible for this pronounced uplift, several research objectives were pursued. Radiocarbon dating of the Erhjen River terraces in the deforming footwall was carried out to quantify incision rates. A comprehensive structural analysis was undertaken in the highly deforming area using bedding and shear zone orientations and nannofossil data. Additionally, we constructed a geological cross-section using the kink method. We found that incision rates from the terraces located along the deforming area, T1a and T2a are 19 mm/yr and 34 mm/yr, respectively, indicating a rapid uplift rate. Our nannofossil age from terrace T2a revealed a Pliocene age (NN15). The age of hanging wall of Gutingkeng Fault is not similar along the fault trace, therefore we utilized broader scale bedding attitude to define that the nannofossil age of Pliocene (NN15) is located on the footwall side of the Gutingkeng Fault. Additionally, using published nannofossil data in the Gutingkeng Mudstone, we classify it into three age units: The Miocene Gtk, Pliocene Gtk, and Pleistocene Gtk. Field observations in the Gutingkeng Fault zone unveiled a prominent southeast dipping shear zone with its shear plane oriented 080°/51S°. This southeast dipping shear zone/ fault exhibited muddier facies adjacent to silty facies and might have undergone a displacement of tens of meters. It is proposed that this fault might be the Gutingkeng Fault which cross-cuts a west-dipping reverse fault. Furthermore, our cross-section revealed that the Lungchuan Fault and Gutingkeng Fault lie on the same detachment at a depth of ~4 km. This interpretation is based on the similar nannofossil age of the strata on the immediate hanging wall of both the faults. Furthermore, the Mucha Fault detaches from a depth of ~4.5 km, thrusting Miocene Gtk to surface and having Changchihkeng Formation (Mcc) of Middle-Late Miocene on its hanging wall. Greater thickness of the Miocene Gtk to the east of Gutingkeng Fault can be explained by the presence of a normal fault/faults in the Late Miocene that led to the thicker deposition of Miocene Gtk in a basin we called as ‘’Gutingkeng Basin’’. The presence of shallow and deep marine facies of the same age along the Lungchuan Ridge from north to south support the idea of normal-fault basin. ChungChou structure can be interpreted as a fault-propagation fold based on the asymmetry of the growth strata and the fault goes as deeper as 5 km. Furthermore, we propose the presence of a continental margin reactivated structure at a depth of 8-9 km that deforms the post rift strata and the foreland sequence and is probably active. Additionally, owing to the thicker Gutingkeng Mudstone to the west of Gutingkeng Fault, the phenomenon of shale tectonics might also be playing a role and the footwall might be folded in response to compression that could explain the anomalous footwall deformation.
關鍵字(中) ★ 下盤抬升
★ 下切速率
★ 野外結構分析
★ 超微地層學
★ 地質剖面
★ 頁岩構造
★ 基底構造
關鍵字(英) ★ Footwall uplift
★ Incision rates
★ field structural analysis
★ nannostratigraphy
★ geological cross-section
★ basement structure
★ shale tectonics
論文目次 Abstract vi
Acknowledgments x
Table of Contents xi
List of Figures xiii
List of Tables xvii
Chapter 1: Introduction 1
1.1 Research Background 1
1.2 Geodynamic Setting of Taiwan 8
1.3 Geological setting of southwestern Taiwan 14
1.4 Nannostratigraphy in southwestern Taiwan 16
1.5 History of deformation in southwestern Taiwan 17
1.6 Active tectonics and deformation mechanisms in southwestern Taiwan 19
1.7 Holocene deformation in the Erhjen River 30
1.8 Objectives of this study 36
Chapter 2: Gutingkeng Fault Zone Investigation 37
2.1 Methodology of incision rate quantification 37
2.1.1 Quantifying Incision Rate for terrace T1a 40
2.1.2 Quantifying Incision Rate for terrace T2a 43
2.1.3 Incision rate results 45
2.2 Field surveying and Structural Analysis 49
2.2.1 Bedding orientations and fault zone at the Pig Farm outcrop 51
2.2.2 Finding of the structural analysis 57
2.3 Nannostratigraphy in Southwestern Taiwan 58
2.3.1 Background 58
2.3.2 Results from previous studies in Erhjen River 59
2.3.3 Our contribution to the nannofossil archive 65
2.3.4 Gutingkeng Fault trace: Bedding orientations, & nannostratigraphy 69
Chapter 3: Subsurface Geology 71
3.1 Method for drawing geological cross-section 71
3.2 Data used for constraining geological cross-section 72
3.3 Surface data collection and extrapolation to the section-line 77
3.4 Results from geological cross-section EE’ 82
3.4.1 Area between the Chishan Fault and Gutingkeng Fault 82
3.4.2 Area to the west of the Gutingkeng Fault 88
3.4.3 Deeper structure deforming post rift strata 89
3.4.4 Insights on shale tectonics 90
Chapter 4: Discussion and Recommendations 92
4.1 The Gutingkeng Fault zone and deformation patterns 92
4.2 Late Miocene normal fault bounded basins 93
4.3 Mud Volcanoes along the Gutingkeng Fault 95
4.4 Limitations of the methods used in this study 97
4.5 Recommendation for future work 98
Chapter 5: Conclusions 99
References 100
Appendices 110
參考文獻 Anderson, R. S., & Burbank, D. W. (2011). Tectonic Geomorphology. John Wiley & Sons.
Angelier, J., Lee, JC, Chu, HT, Hu, JC, Lu, CY, Chan, YC, & Yi-Ben, T. (2001). The Chichi earthquake (1999) and its place in the Taiwan orogen. Proceedings of the Academy of Sciences-Series IIA-Earth and Planetary Science, 333 (1), 5-21.
Beaussier, S., & Ott, R. (2017). The Coastal Range. PhD Excursion, 42.
Bennett, E. R., Youngson, J. H., Jackson, J. A., Norris, R. J., Raisbeck, G. M., Yiou, F., & Fielding, E. (2005). Growth of South Rough Ridge, Central Otago, New Zealand: Using in situ cosmogenic isotopes and geomorphology to study an active, blind reverse fault. Journal of Geophysical Research: Solid Earth, 110(B2).
Benton, M. J., & Harper, D. A. (2020). Introduction to paleobiology and the fossil record. John Wiley & Sons.
Bertrand, E. A., Unsworth, M. J., Chiang, C. W., Chen, C. S., Chen, C. C., Wu, F. T., & Hill, G. J. (2012). Magnetotelluric imaging beneath the Taiwan orogen: An arc‐continent collision. Journal of Geophysical Research: Solid Earth, 117(B1).
Biete, C., Alvarez‐Marron, J., Brown, D., & Kuo‐Chen, H. (2018). The structure of southwest Taiwan: The development of a fold‐and‐thrust belt on a margins outer shelf and slope. Tectonics, 37(7), 1973-1993.
Bonilla, M. G. (1975). A review of recently active faults in Taiwan.
Brown, D., Alvarez‐Marron, J., Biete, C., Kuo‐Chen, H., Camanni, G., & Ho, C. W. (2017). How the structural architecture of the Eurasian continental margin affects the structure, seismicity, and topography of the south central Taiwan fold‐and‐thrust belt. Tectonics, 36(7), 1275-1294.
Bull, W. B. (1991). Geomorphic responses to climatic change.
Chang, H. C., Sung, Q. C., Chen, C. H., Chen, L., & Chen, Y. C. (2005). The relationship between the mud volcano actives and fault movements along the Chishan Fault, southern Taiwan. West Pac Earth Sci, 5, 73-96.
Chang, C. P., Angelier, J., & Huang, C. Y. (2009). Evolution of subductions indicated by mélanges in Taiwan. In Subduction zone geodynamics (pp. 207-225). Springer Berlin Heidelberg.
Chang, L. S. (1967). A biostratigraphic study of the Tertiary in the Coastal Range, eastern Taiwan, based on smaller foraminifera (I. Southern Part). In Proc. Geol. Soc. China (Vol. 10, pp. 64-76).
Chen, Y. G. (1993). Sea-level change and neotectonics in southern part of Taiwan region since Late Pleistocene. Unpublished Ph. D. Dissertation, National Taiwan University (in Chinese, with English abstract).
Chen, C. H., Shyu, J. B. H., Willett, S. D., & Chen, C. Y. (2023). Structural control on drainage pattern development of the western Taiwan orogenic wedge. Earth Surface Processes and Landforms. 48(9), 1830-1844.
Chen, C. S., Unsworth, M. J., Chiang, C. W., Bertrand, E., & Wu, F. T. (2011). Subducted and Exhumed Crust beneath Taiwan Imaged by Magnetotelluric Data. In New Frontiers in Tectonic Research-General Problems, Sedimentary Basins and Island Arcs. IntechOpen.
Chen, C. T., Chan, Y. C., Lo, C. H., Malavieille, J., Lu, C. Y., Tang, J. T., & Lee, Y. H. (2018). Basal accretion, a major mechanism for mountain building in Taiwan revealed in rock thermal history. Journal of Asian Earth Sciences, 152, 80-90.
Chen, P. H., Huang, C. Y., Tsai, L. P. (1977). A study of the late Neogene marine sediments of the Chishan area, Taiwan: paleomagnetic stratigraphy, biostratigraphy, and paleoclimate. Memoir of the Geological Society of China, Special Issue of the Geological Society of China, 2, 169-190.
Cheng, S. N., & Yeh, Y. T. (1989). Catalog of the Earthquakes in Taiwan from 1604 to 1988. Institute of Earth Sciences, Academia Sinica.
Chi, W-R. (1979). A biostratigraphic study of the Late Neogene sediments in the Kaohsiung area based on calcareous nannofossils.
Chi, W. R. (1981). Biostratigraphy and comparative study of the nannofossil in mudstone areas of Tainan. Journal of Petroleum, 29, 47-65.
Chiang, S. C. (1971). Seismic study of the Chaochou structure, Pingtung, Taiwan. Petrol. Geol. Taiwan, 8, 281-294.
Ching, K. E., Rau, R. J., Lee, J. C., & Hu, J. C. (2007). Contemporary deformation of tectonic escape in SW Taiwan from GPS observations, 1995–2005. Earth and Planetary Science Letters, 262(3-4), 601-619.
Ching, K. E., Gourley, J. R., Lee, Y. H., Hsu, S. C., Chen, K. H., & Chen, C. L. (2016). Rapid deformation rates due to development of diapiric anticline in southwestern Taiwan from geodetic observations. Tectonophysics, 692, 241-251.
Covey, M. (1986). The evolution of foreland basins to steady state: evidence from the western Taiwan foreland basin. Foreland basins, 77-90.
Doo, W. B., Hsu, S. K., Lo, C. L., Chen, S. C., Tsai, C. H., Lin, J. Y., & Ma, Y. F. (2015). Gravity anomalies of the active mud diapirs off southwest Taiwan. Geophysical Supplements to the Monthly Notices of the Royal Astronomical Society, 203(3), 2089-2098.
Erickson, S. G. (1993). Sedimentary loading, lithospheric flexure, and subduction initiation at passive margins. Geology, 21(2), 125-128.
Gong, S. Y., Lee, T. Y., Wu, J. C., Wang, S. W., & Yang, K. M. (1996). Possible links between the development of Plio-Pleistocene coral reef limestones and thrust migration in southwestern Taiwan. Journal of the Geological Society of China, 39(2), 151-166.
Gong, S. Y., Wang, S. W., & Lee, T. Y. (1998). Pleistocene coral reefs associated with claystones, southwestern Taiwan. Coral Reefs, 17, 215-222.
Gourley, J. R., Lee, Y., & Ching, K. (2012, December). Vertical fault mapping within the Gutingkeng Formation of southern Taiwan: implications for sub-aerial mud diapir tectonics. In AGU Fall Meeting Abstracts (Vol. 2012, pp. T53B-2699).
Ho, C. S. (1986). A synthesis of the geologic evolution of Taiwan. Tectonophysics, 125(1-3), 1-16.
Ho, C. S. (1988). An introduction to the geology of Taiwan, explanatory text of the geologic map of Taiwan. Central Geological Survey, 15, 151-152.
Horng, C. S. (2014). Age of the Tananwan formation in northern Taiwan: a reexamination of the magnetostratigraphy and calcareous nannofossil biostratigraphy. TAO: Terrestrial, Atmospheric and Oceanic Sciences, 25(2), 137.
Horng, C. S., & Shea, K. S. (1994). Study of nannofossil biostratigraphy in the eastern part of the Erhjen-chi section, southwestern Taiwan. Special Publication of Centre Geological Survey, 8, 181-204.
Horng-Yue, C., Jian-Cheng, L., Tung, H., Yu, S. B., Hsu, Y. J., & Lee, H. (2012). Determination of vertical velocity field of southernmost longitudinal valley in eastern Taiwan: A joint analysis of leveling and GPS measurements. TAO: Terrestrial, Atmospheric and Oceanic Sciences, 23(4), 355.
Hovius, N., Stark, C. P., Hao-Tsu, C., & Jiun-Chuan, L. (2000). Supply and removal of sediment in a landslide-dominated mountain belt: Central Range, Taiwan. The Journal of Geology, 108(1), 73-89.
Howard, A. D. (1994). A detachment‐limited model of drainage basin evolution. Water resources research, 30(7), 2261-2285.
Hsiao, P. T. (1970). Seismic study of the area between the Coastal Plain and the foothills, Chiayi, Taiwan: Petroleum Geology of Taiwan. 8, 249-263.
Hsieh, M. L., & Knuepfer, P. L. (2001). Middle–late Holocene river terraces in the Erhjen River Basin, southwestern Taiwan—implications of river response to climate change and active tectonic uplift. Geomorphology, 38(3-4), 337-372.
Hsieh, S. H. (1972). Subsurface geology and gravity anomalies of the Tainan and Chungchou structures of the Coastal Plain of southwestern Taiwan. Petrol. Geol. Taiwan, 10, 323-338.
Hsu, Y. J., Yu, S. B., Simons, M., Kuo, L. C., & Chen, H. Y. (2009). Interseismic crustal deformation in the Taiwan plate boundary zone revealed by GPS observations, seismicity, and earthquake focal mechanisms. Tectonophysics, 479(1-2), 4-18.
Huang, C. Y., Yen, Y., Zhao, Q., & Lin, C. T. (2012). Cenozoic stratigraphy of Taiwan: Window into rifting, stratigraphy and paleoceanography of South China Sea. Chinese Science Bulletin, 57, 3130-3149.
Huang, C. Y., Yuan, P. B., & Tsao, S. J. (2006). Temporal and spatial records of active arc-continent collision in Taiwan: A synthesis. Geological Society of America Bulletin, 118(3-4), 274-288.
Huang, M. H., Tung, H., Fielding, E. J., Huang, H. H., Liang, C., Huang, C., & Hu, J. C. (2016). Multiple fault slip triggered above the 2016 Mw 6.4 Meinong earthquake in Taiwan. Geophysical Research Letters, 43(14), 7459-7467.
Hudec, M. R., & Soto, J. I. (2021). Piercement mechanisms for mobile shales. Basin Research, 33(5), 2862-2882.
Hughes, N. C., Myrow, P. M., Ghazi, S., McKenzie, N. R., Stockli, D. F., & DiPietro, J. A. (2019). Cambrian geology of the Salt Range of Pakistan: Linking the Himalayan margin to the Indian craton. GSA Bulletin, 131(7-8), 1095-1114.
Janssens–Coron, E., Pouliot, J., Moulin, B., & Rivera, A. (2010). An experimentation of expert systems applied to 3D geological models construction. Developments in 3D Geo-Information Sciences, 71-91.
Jian, P. R., Hung, S. H., Meng, L., & Sun, D. (2017). Rupture characteristics of the 2016 Meinong earthquake revealed by the back projection and directivity analysis of teleseismic broadband waveforms. Geophysical Research Letters, 44(8), 3545-3553.
Kopf, A. J. (2002). Significance of mud volcanism. Reviews of geophysics, 40(2), 2-1.
Kuo-Chen, H., Chen, K. X., Wei-Fang, S., Chun-Wei, H., Yuan-Hsi, L., Guan, Z. K., ... & Wen-Yen, C. (2017). 3D Vs ambient noise tomography of the 2016 M w 6.4 Meinong earthquake source region in Taiwan. TAO: Terrestrial, Atmospheric and Oceanic Sciences, 28(5), 6.
Lacombe, O., Angelier, J., Mouthereau, F., Chu, HT, Deffontaines, B., Lee, JC, & Siame, L. (2004). The Liuchiu Hsu island offshore SW Taiwan: tectonic versus diapiric anticline development and comparisons with onshore structures. Geoscience Proceedings, 336 (9), 815-825.
Lacombe, O., Mouthereau, F., Deffontaines, B., Angelier, J., Chu, H. T., & Lee, C. T. (1999). Geometry and Quaternary kinematics of fold‐and‐thrust units of southwestern Taiwan. Tectonics, 18(6), 1198-1223.
Le Béon, M., Huang, M. H., Suppe, J., Huang, S. T., Pathier, E., Huang, W. J., & Hu, J. C. (2017). Shallow geological structures triggered during the Mw 6.4 Meinong earthquake, southwestern Taiwan. Terr. Atmos. Ocean. Sci, 28(5), 663-681.
Lee, Y. H., Byrne, T., Wang, W. H., Lo, W., Rau, R. J., & Lu, H. Y. (2015). Simultaneous mountain building in the Taiwan orogenic belt. Geology, 43(5), 451-454.
Lee, Y. W., Chen, Y. G., & Liu, T. K. (1994). Preliminary study of river terraces correlation and their neotectonic significance along the Erhjen-chi, southern Taiwan. In Prog. Abs. 1996 Annual Meeting Geol. Soc. China, 612–616.
Lin, D. S. (1991). Lithofacies and the sedimentary environment evolution of the Plio-Pleistocene series in the southwestern Taiwan foothills region. In M S. thesis (p. 93). National Taiwan University.
Lin, A. T., & Watts, A. B. (2002). Origin of the West Taiwan basin by orogenic loading and flexure of a rifted continental margin. Journal of Geophysical Research: Solid Earth, 107(B9), ETG-2.
Lin, A. T., Liu, C. S., Lin, C. C., Schnurle, P., Chen, G. Y., Liao, W. Z., & Wu, M. S. (2008). Tectonic features associated with the overriding of an accretionary wedge on top of a rifted continental margin: an example from Taiwan. Marine Geology, 255(3-4), 186-203.
Lin, A. T., Watts, A. B., & Hesselbo, S. P. (2003). Cenozoic stratigraphy and subsidence history of the South China Sea margin in the Taiwan region. Basin Research, 15(4), 453-478.
Lin, S. C., & Kuo, B. Y. (2016). Dynamics of the opposite‐verging subduction zones in the Taiwan region: Insights from numerical models. Journal of Geophysical Research: Solid Earth, 121(3), 2174-2192.
Liu, C. S., Schnurle, P., Wang, Y., San-Hsiung, C., Song-Chuen, C., & Hsiuan, T. H. (2006). Distribution and characters of gas hydrate offshore of southwestern Taiwan. TAO: Terrestrial, Atmospheric and Oceanic Sciences, 17(4), 615.
Lo, Y. T., Ching, K. E., Yen, H. Y., & Chen, S. C. (2023). Bouguer gravity anomalies and the three-dimensional density structure of a thick mudstone area: A case study of southwestern Taiwan. Tectonophysics, 848, 229730.
Malavieille, J., Lallemand, S. E., Dominguez, S., Deschamps, A., Lu, C. Y., Liu, C. S., & Crew, A. S. (2002). Arc-continent collision in Taiwan: New marine observations and tectonic evolution. Special Papers-Geological Society of America, 187-211.
Martini, E. (1970). Standard Palaeogene calcareous nannoplankton zonation. Nature, 226, 560-561.
Martini, E. (1971). Standard Tertiary and Quaternary calcareous nannoplankton zonation. In Proceedings Second Planktonic Conference, Rome (pp. 739-785).
Meere, P. A., Mulchrone, K. F., & Timmerman, M. (2013). Shear folding in low-grade metasedimentary rocks: Reverse shear along cleavage at a high angle to the maximum compressive stress. Geology, 41(8), 879-882.
Mouthereau, F., Lacombe, O., Deffontaines, B., Angelier, J., & Brusset, S. (2001). Deformation history of the southwestern Taiwan foreland thrust belt: insights from tectono-sedimentary analyses and balanced cross-sections. Tectonophysics, 333(1-2), 293-322.
Nagel, S., Castelltort, S., Wetzel, A., Willett, S. D., Mouthereau, F., & Lin, A. T. (2013). Sedimentology and foreland basin paleogeography during Taiwan arc continent collision. Journal of Asian Earth Sciences, 62, 180-204.
Oinomikado, T. (1955). Micropalaeontological Investigation of the Chishan Standard Section, near Tainan, Taiwan, China. Chinese Petroleum Company Palaeontology Laboratory Report, 7-10.
Okaya, D., Stern, T., & Davey, F. (Eds.). (2013). A continental plate boundary: tectonics at South Island, New Zealand. John Wiley & Sons.
Pathier, E., Fruneau, B., Doin, M. P., Liao, Y. T., Hu, J. C., & Champenois, J. (2014, November). What are the tectonic structures accommodating the present‐day tectonic deformation in South‐Western Taiwan? A new interpretation from ALOS‐1 InSAR and GPS interseismic measurements. In Geodynamics and Environment in East‐Asia. 7th France‐Taiwan Earth Sciences Symposium, Hualien, Taiwan.
Rau, R. J., Wen, Y. Y., Ching, K. E., Hsieh, M. C., Lo, Y. T., Chiu, C. Y., & Hashimoto, M. (2022). Origin of coseismic anelastic deformation during the 2016 Mw 6.4 Meinong Earthquake, Taiwan. Tectonophysics, 836, 229428.
Raup, D. M., & Stanley, S. M. (1978). Paleoecology. Principles of Paleontology. Second Edition, Freeman WH & Co, San Francisco, 231-302.
Reimer, P. J., Austin, W. E., Bard, E., Bayliss, A., Blackwell, P. G., Ramsey, C. B., ... & Talamo, S. (2020). The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon, 62(4), 725-757.
Scott, A. C., & Damblon, F. (2010). Charcoal: Taphonomy and significance in geology, botany and archaeology. Palaeogeography, Palaeoclimatology, Palaeoecology, 291(1-2), 1-10.
Shaw, J. H., Connors, C., & Suppe, J. (2005). Seismic interpretation of contractional fault-related folds.
Shyu, J. B. H., Chen, C. F., & Wu, Y. M. (2016). Seismotectonic characteristics of the northernmost Longitudinal Valley, eastern Taiwan: Structural development of a vanishing suture. Tectonophysics, 692, 295-308.
Shih, T. T. (1967). A survey of the active mud volcanoes in Taiwan and a study of their types and the character of the mud. Petrol. Geol. Taiwan, 5, 259-311.
Shyu, J. B. H., Sieh, K., Chen, Y. G., & Liu, C. S. (2005). Neotectonic architecture of Taiwan and its implications for future large earthquakes. Journal of Geophysical Research: Solid Earth, 110(B8).
Sibuet, J. C., Hsu, S. K., Le Pichon, X., Le Formal, J. P., Reed, D., Moore, G., & Liu, C. S. (2002). East Asia plate tectonics since 15 Ma: constraints from the Taiwan region. Tectonophysics, 344(1-2), 103-134.
Sklar, L. S., & Dietrich, W. E. (2001). Sediment and rock strength controls on river incision into bedrock. Geology, 29(12), 1087-1090.
Soto, J. I., & Hudec, M. R. (2023). Mud volcanoes guided by thrusting in compressional settings. Geology.
Soto, J. I., Heidari, M., & Hudec, M. R. (2021). Proposal for a mechanical model of mobile shales. Scientific Reports, 11(1), 1-11.
Soto, J. I., Hudec, M. R., Mondol, N. H., & Heidari, M. (2021). Shale transformations and physical properties—Implications for seismic expression of mobile shales. Earth-Science Reviews, 220, 103746.
Sun, S.-C., & Liu, C.-S. (1989). Mud diapirs and submarine channel deposits in offshore Kaohsiung-Heugchun, Southwest Taiwan. Petroleum Geology of Taiwan, (28), 1-14.
Sun, C. H., Chang, S. C., Kuo, C. L., Wu, J. C., Shao, P. H., & Oung, J. N. (2010). Origins of Taiwan’s mud volcanoes: Evidence from geochemistry. Journal of Asian Earth Sciences, 37(2), 105-116.
Sung, Q. C., Chang, H. C., Liu, H. C., & Chen, Y. C. (2010). Mud volcanoes along the Chishan fault in Southwestern Taiwan: A release bend model. Geomorphology, 118(1-2), 188-198.
Suppe, J. O. H. N. (1980). Imbricated structure of western foothills belt, south-central Tai-wan. Petro. Geol. Taiwan, 17, 1-16.
Suppe, J. (1981). Mechanics of mountain building and metamorphism in Taiwan. Mem. Geol. Soc. China, 4(6), 67-89.
Suppe, J. (1983). Geometry and kinematics of fault-bend folding. American Journal of science, 283(7), 684-721.
Suppe, J., & Chang, Y. L. (1983). Kink Method Applied to Structural Interpretation of Seismic Sections, Western Taiwan. Petroleum Geology of Taiwan, 19, 29-49.
Suppe, J. (2014). Fluid overpressures and strength of the sedimentary upper crust. Journal of Structural Geology, 69, 481-492.
Taloor, A. K., Joshi, L. M., Kotlia, B. S., Alam, A., Kothyari, G. C., Kandregula, R. S., & Dumka, R. K. (2021). Tectonic imprints of landscape evolution in the Bhilangana and Mandakini basin, Garhwal Himalaya, India: a geospatial approach. Quaternary International, 575, 21-36.
Teng, L. S. (1987). Stratigraphic records of the late Cenozoic Penglai orogeny of Taiwan. Yánjiū bàogào-Guólì Táiwān dàxué. Lǐxuéyuàn dìzhìxué xì, (25), 205-224.
Teng, L. S. (1990). Geotectonic evolution of late Cenozoic arc-continent collision in Taiwan. Tectonophysics, 183(1-4), 57-76.
Teng, L. S., Chen, W. S., Wang, Y., Song, S. R., & Lo, H. J. (1988). Toward a comprehensive stratigraphic system of the Coastal Range, eastern Taiwan. Acta Geologica Taiwanica, 26, 19-36.
Teng, L. S., Wang, Y., Tang, C. H., Huang, C. Y., Huang, T. C., Yu, M. S., & Ke, A. (1991). Tectonic aspects of the Paleogene depositional basin of northern Taiwan: Proceedings of the Geological Society of China, v. 34.
Tian, Z. X., Yan, Y., Huang, C. Y., Zhang, X. C., Liu, H. Q., Yu, M. M., & Dilek, Y. (2019). Geochemistry and geochronology of the accreted mafic rocks from the Hengchun Peninsula, southern Taiwan: Origin and tectonic implications. Journal of Geophysical Research: Solid Earth, 124(3), 2469-2491.
Tsukahara, K., & Takada, Y. (2018). Aseismic fold growth in southwestern Taiwan detected by InSAR and GNSS. Earth, Planets and Space, 70, 1-7.
Wang, Y., Lin, Y. N., Ota, Y., Chung, L. H., Shyu, J. B. H., Chiang, H. W., & Shen, C. C. (2022). Mud Diapir or Fault‐Related Fold? On the Development of an Active Mud‐Cored Anticline Offshore Southwestern Taiwan. Tectonics, 41(9), e2022TC007234.
Wang, Y., Lin, Y. N., Ota, Y., Chung, L. H., Shyu, J. B. H., Chiang, H. W., & Shen, C. C. (2022). Mud Diapir or Fault‐Related Fold? On the Development of an Active Mud‐Cored Anticline Offshore Southwestern Taiwan. Tectonics, 41(9), e2022TC007234.
Yang, C. C., Liu, M. Y., Wu, H. F., & Luo, C. R. (2022). Biostratigraphic and Geological Changes of Nanofossils on the Fault Surface During the Volcanic Mudflow Era in the Guanmiao District from Tainan to Kaohsiung and Its Significance. International Journal of Innovative Application on Social Science and Engineering Technology, 3(2), 29-29.
Yu, S. B., Chen, H. Y., & Kuo, L. C. (1997). Velocity field of GPS stations in the Taiwan area. Tectonophysics, 274(1-3), 41-59.
Yu, H. S., & Chou, Y. W. (2001). Characteristics and development of the flexural forebulge and basal unconformity of Western Taiwan Foreland Basin. Tectonophysics, 333(1-2), 277-291.
Yeh, G. H., Yang, T. F., Chen, J. C., Chen, Y. G., & Song, S. R. (2005). Fluid geochemistry of mud volcanoes in Taiwan. Mud Volcanoes, Geodynamics and Seismicity, 227-237.
1陳文山,松多信尚,石瑞銓,楊志成,游能悌,朱耀國,陳志壕,林啟文,劉桓吉,盧詩丁,劉彥求,林燕慧,陳柏村 (2010) 台灣西部平原區隱伏在全新世沉積層下的新期構造-以小崗山斷層為例。經濟部中央地質調查所特刊,第廿四號,第 75-91頁。
2楊天南,許景翔,楊志成,李珀儂,劉名周 (2018) 台灣西南部麓山帶上中新統-更新統鈣質超微化石生物地層研究。中華民國地質學會與中華民國地球物理學會107 年年會暨學術研討會,壁報P-029。
3李元希, 石瑞銓 (2018) 地震地質與地變動潛勢分析:斷層帶地下構造調查研究(2/4)。經濟部中央地質調查所特刊,委辦計畫編號:97-5226902000-03-03。
指導教授 波玫琳​(Maryline Le Beon) 審核日期 2023-8-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明