參考文獻 |
[1]S. Mahapatra, D. Kumar, B. Singh, and P. K. Sachan, “Biofuels and their sources of production: A review on cleaner sustainable alternative against conventional fuel, in the framework of the food and energy nexus,” Energy Nexus, vol. 4, p. 100036, Dec. 2021, doi: 10.1016/j.nexus.2021.100036.
[2] A. R. Singh, S. K. Singh, and S. Jain, “A review on bioenergy and biofuel production,” in Materials Today: Proceedings, Elsevier Ltd, 2021, pp. 510–516. doi: 10.1016/j.matpr.2021.03.212.
[3] B. Amerit, J. M. Ntayi, M. Ngoma, H. Bashir, S. Echegu, and M. Nantongo, “Commercialization of biofuel products: A systematic literature review,” Renewable Energy Focus, vol. 44. Elsevier Ltd, pp. 223–236, Mar. 01, 2023. doi: 10.1016/j.ref.2022.12.008.
[4] B. Ashok, B. Saravanan, K. Nanthagopal, and A. K. Azad, “Investigation on the effect of butanol isomers with gasoline on spark ignition engine characteristics,” in Advanced Biofuels: Applications, Technologies and Environmental Sustainability, Elsevier, 2019, pp. 265–289. doi: 10.1016/B978-0-08-102791-2.00011-8.
[5] P. Nieuwenhuis and P. Wells, “Fuel cells and the hydrogen economy,” in The Automotive Industry and the Environment, Elsevier, 2003, pp. 87–99. doi: 10.1016/b978-1-85573-713-6.50010-x.
[6] A. C. Hansen, Q. Zhang, and P. W. L. Lyne, “Ethanol-diesel fuel blends - A review,” Bioresour Technol, vol. 96, no. 3, pp. 277–285, 2005, doi: 10.1016/j.biortech.2004.04.007.
[7] C. Jin, M. Yao, H. Liu, C. F. F. Lee, and J. Ji, “Progress in the production and application of n-butanol as a biofuel,” Renewable and Sustainable Energy Reviews, vol. 15, no. 8. Elsevier Ltd, pp. 4080–4106, 2011. doi: 10.1016/j.rser.2011.06.001.
[8] P. S. Veloo and F. N. Egolfopoulos, “Flame propagation of butanol isomers/air mixtures,” Proceedings of the Combustion Institute, vol. 33, no. 1, pp. 987–993, 2011, doi: 10.1016/j.proci.2010.06.163.
[9] A. Katoch, A. Alfazazi, S. M. Sarathy, and S. Kumar, “Experimental and numerical investigations on the laminar burning velocity of n-butanol + air mixtures at elevated temperatures,” Fuel, vol. 249, pp. 36–44, Aug. 2019, doi: 10.1016/j.fuel.2019.03.047.
[10] H. Zhao, J. Wang, X. Cai, H. Dai, and Z. Huang, “Turbulent burning velocity and its unified scaling of butanol isomers/air mixtures,” Fuel, vol. 306, Dec. 2021, doi: 10.1016/j.fuel.2021.121738.
[11] X. Gu, Z. Huang, S. Wu, and Q. Li, “Laminar burning velocities and flame instabilities of butanol isomers-air mixtures,” Combust Flame, vol. 157, no. 12, pp. 2318–2325, Dec. 2010, doi: 10.1016/j.combustflame.2010.07.003.
[12] T. Wallner, S. A. Miers, and S. McConnell, “A comparison of ethanol and butanol as oxygenates using a direct-injection, spark-ignition engine,” J Eng Gas Turbine Power, vol. 131, no. 3, May 2009, doi: 10.1115/1.3043810.
[13] T. G. Ambaye, M. Vaccari, A. Bonilla-Petriciolet, S. Prasad, E. D. van Hullebusch, and S. Rtimi, “Emerging technologies for biofuel production: A critical review on recent progress, challenges and perspectives,” Journal of Environmental Management, vol. 290. Academic Press, Jul. 15, 2021. doi: 10.1016/j.jenvman.2021.112627.
[14] I. Veza, M. F. Muhamad Said, and Z. A. Latiff, “Recent advances in butanol production by acetone-butanol-ethanol (ABE) fermentation,” Biomass and Bioenergy, vol. 144. Elsevier Ltd, Jan. 01, 2021. doi: 10.1016/j.biombioe.2020.105919.
[15] D. Cai et al., “Review of alternative technologies for acetone-butanol-ethanol separation: Principles, state-of-the-art, and development trends,” Separation and Purification Technology, vol. 298. Elsevier B.V., Oct. 01, 2022. doi: 10.1016/j.seppur.2022.121244.
[16] W. R. da S. Trindade and R. G. dos Santos, “Review on the characteristics of butanol, its production and use as fuel in internal combustion engines,” Renewable and Sustainable Energy Reviews, vol. 69. Elsevier Ltd, pp. 642–651, Mar. 01, 2017. doi: 10.1016/j.rser.2016.11.213.
[17] Stephen R. Turns, An Introduction to Combustion Concepts and Applications, Third.
[18] Á. L. De Bortoli, G. S. L. Andreis, and F. N. Pereira, “Models for Reactive Flows,” in Modeling and Simulation of Reactive Flows, Elsevier, 2015, pp. 73–122. doi: 10.1016/b978-0-12-802974-9.00005-2.
[19] G. E. Andrews and D. Bradley, “Determination of Burning Velocities: A Critical Review, 1972.
[20] F. Oppong, Z. Luo, X. Li, Y. Song, and C. Xu, “Intrinsic instability of different fuels spherically expanding flames: A review,” Fuel Processing Technology, vol. 234. Elsevier B.V., Sep. 01, 2022. doi: 10.1016/j.fuproc.2022.107325.
[21] A. P. Kelley and C. K. Law, “Nonlinear effects in the extraction of laminar flame speeds from expanding spherical flames,” Combust Flame, vol. 156, no. 9, pp. 1844–1851, Sep. 2009, doi: 10.1016/j.combustflame.2009.04.004.
[22] C. C. Liu, S. S. Shy, M. W. Peng, C. W. Chiu, and Y. C. Dong, “High-pressure burning velocities measurements for centrally-ignited premixed methane/air flames interacting with intense near-isotropic turbulence at constant Reynolds numbers,” Combust Flame, vol. 159, no. 8, pp. 2608–2619, Aug. 2012, doi: 10.1016/j.combustflame.2012.04.006.
[23] F. Wu and C. K. Law, “An experimental and mechanistic study on the laminar flame speed, Markstein length and flame chemistry of the butanol isomers,” Combust Flame, vol. 160, no. 12, pp. 2744–2756, Dec. 2013, doi: 10.1016/j.combustflame.2013.06.015.
[24] D. E. Winterbone and A. Turan, “Combustion and Flames,” in Advanced Thermodynamics for Engineers, Elsevier, 2015, pp. 323–344. doi: 10.1016/b978-0-444-63373-6.00015-0.
[25] R. J. Tabaczynski, “Turbulence and turbulent combustion in spark-ignition engines,” in Energy and Combustion Science, Elsevier, 1979, pp. 259–281. doi: 10.1016/b978-0-08-024780-9.50017-4.
[26] H. Tennekes and J. L. Lumley, A First Course in Turbulence. The Massachusetts Institute of Technology, 1972.
[27] Ali Cemal Benim and Khawar J. Syed, “Concepts Related to Combustion and Flow in Premix Burners,” in Flashback Mechanism in Lean Premixed Gas Turbine Combustion, 2015, pp. 5–18.
[28] D. S.-K. Ting, “Premixed Turbulent Flame Propagation,” in Basics of Engineering Turbulence, Elsevier, 2016, pp. 203–226. doi: 10.1016/b978-0-12-803970-0.00010-6.
[29] M. T. Nguyen, D. W. Yu, and S. S. Shy, “General correlations of high pressure turbulent burning velocities with the consideration of Lewis number effect,” Proceedings of the Combustion Institute, vol. 37, no. 2, pp. 2391–2398, 2019, doi: 10.1016/j.proci.2018.08.049.
[30] H. Kobayashi and H. Kawazoe, “Flame instability effects on the smallest wrinkling scale and burning velocity of high-pressure turbulent premixed flames,” 2000.
[31] S. Chaudhuri, F. Wu, D. Zhu, and C. K. Law, “Flame speed and self-similar propagation of expanding turbulent premixed flames,” Phys Rev Lett, vol. 108, no. 4, Jan. 2012, doi: 10.1103/PhysRevLett.108.044503.
[32] D. Bradley, A. K. C. Lau, and M. Lawes, “Flame stretch rate as a determinant of turbulent burning velocity ,” Phil. Trans. R. Soc. Lond. A , pp. 359–387, 1992.
[33] H. Kobayashi, Y. Kawabata, and K. Maruta, “Experimental study on general correlation of turbulent burning velocity at high pressure,” 1998.
[34] H. Kobayashi, K. Seyama, H. Hagiwara, and Y. Ogami, “Burning velocity correlation of methane/air turbulent premixed flames at high pressure and high temperature,” Proceedings of the Combustion Institute, vol. 30, no. 1, pp. 827–834, 2005, doi: 10.1016/j.proci.2004.08.098.
[35] D. Bradley, M. Lawes, and M. S. Mansour, “Correlation of turbulent burning velocities of ethanol-air, measured in a fan-stirred bomb up to 1.2MPa,” Combust Flame, vol. 158, no. 1, pp. 123–138, Jan. 2011, doi: 10.1016/j.combustflame.2010.08.001.
[36] R. G. Abdel-Gayed, D. Bradley, and M. Lawes, “Turbulent burning velocities : a general correlation in terms of straining rates,” Proc. R. Soc. Lond. A, vol. 414, pp. 389–413, 1987.
[37] S. S. Shy, C. C. Liu, J. Y. Lin, L. L. Chen, A. N. Lipatnikov, and S. I. Yang, “Correlations of high-pressure lean methane and syngas turbulent burning velocities: Effects of turbulent Reynolds, Damköhler, and Karlovitz numbers,” Proceedings of the Combustion Institute, vol. 35, no. 2, pp. 1509–1516, 2015, doi: 10.1016/j.proci.2014.07.026.
[38] M. T. Nguyen, D. Yu, C. Chen, and S. Shy, “General correlations of iso-octane turbulent burning velocities relevant to spark ignition engines,” Energies (Basel), vol. 12, no. 10, 2019, doi: 10.3390/en12101848.
[39] S. Yamada et al., “Measurements and simulations of ignition delay times and laminar flame speeds of nonane isomers,” Combust Flame, vol. 227, pp. 283–295, May 2021, doi: 10.1016/j.combustflame.2020.12.043.
[40] C. C. Liu, S. S. Shy, H. C. Chen, and M. W. Peng, “On interaction of centrally-ignited, outwardly-propagating premixed flames with fully-developed isotropic turbulence at elevated pressure,” Proceedings of the Combustion Institute, vol. 33, no. 1, pp. 1293–1299, 2011, doi: 10.1016/j.proci.2010.06.083.
[41] L. J. Jiang, S. S. Shy, W. Y. Li, H. M. Huang, and M. T. Nguyen, “High-temperature, high-pressure burning velocities of expanding turbulent premixed flames and their comparison with Bunsen-type flames,” Combust Flame, vol. 172, pp. 173–182, Oct. 2016, doi: 10.1016/j.combustflame.2016.07.021.
[42] D. Lapalme, R. Lemaire, and P. Seers, “Assessment of the method for calculating the Lewis number of H2/CO/CH4 mixtures and comparison with experimental results,” Int J Hydrogen Energy, vol. 42, no. 12, pp. 8314–8328, Mar. 2017, doi: 10.1016/j.ijhydene.2017.01.099.
[43] F. Dinkelacker, B. Manickam, and S. P. R. Muppala, “Modelling and simulation of lean premixed turbulent methane/hydrogen/air flames with an effective Lewis number approach,” Combust Flame, vol. 158, no. 9, pp. 1742–1749, Sep. 2011, doi: 10.1016/j.combustflame.2010.12.003.
[44] N. Bouvet, F. Halter, C. Chauveau, and Y. Yoon, “On the effective Lewis number formulations for lean hydrogen/hydrocarbon/ air mixtures,” Int J Hydrogen Energy, vol. 38, no. 14, pp. 5949–5960, May 2013, doi: 10.1016/j.ijhydene.2013.02.098.
[45] M. Lapuerta, J. P. Hernández, and J. R. Agudelo, “An equation for the estimation of alcohol-air diffusion coefficients for modelling evaporation losses in fuel systems,” Appl Therm Eng, vol. 73, no. 1, pp. 539–548, Dec. 2014, doi: 10.1016/j.applthermaleng.2014.08.009.
[46] C. Xu, W. Liu, B. Zhang, H. Liao, W. He, and L. Wei, “Experimental and numerical study on laminar premixed flame characteristics of 2-ethylfuran,” Combust Flame, vol. 234, Dec. 2021, doi: 10.1016/j.combustflame.2021.111631.
[47] J. Vancoillie, G. Sharpe, M. Lawes, and S. Verhelst, “The turbulent burning velocity of methanol-air mixtures,” Fuel, vol. 130, pp. 76–91, Aug. 2014, doi: 10.1016/j.fuel.2014.04.003.
[48] Radissa Dzaky Issafira and Shy Shen-qyang, “High pressure, high temperature laminar and turbulent burning velocities of a toluene gasoline surrogate blending with ethanol and their emissions measurements,” Master thesis, National Central University, 2021. |