參考文獻 |
[1] Theis, C. V., “The relation between the lowering of the piezometric surface and the rate and duration of discharge of a well using ground‐water storage”, Eos, Transactions American Geophysical Union, 16(2), 519-524, 1935.
[2] Cooper, H. H., & Jacob, C. E., “A generalized graphical method for evaluating formation constants and summarizing well‐field history”, Eos, Transactions American Geophysical Union, 27(4), 526-534, 1946.
[3] Neuman, S. P., “Effect of partial penetration on flow in unconfined aquifers considering delayed gravity response”, Water resources re-search, 10(2), 303-312, 1974.
[4] Yeh, T. C. J., & Liu, S., “Hydraulic tomography: Development of a new aquifer test method”, Water Resources Research, 36(8), 2095-2105, 2000.
[5] Jim Yeh, T. C., “Stochastic modelling of groundwater flow and solute transport in aquifers”, Hydrological Processes, 6(4), 369-395, 1992.
[6] Rubin, Yorum, and Susan S. Hubbard, eds. Hydrogeophysics. Vol. 50. Springer Science & Business Media, 2006.
[7] Hvorslev, M. J., “Time lag and soil permeability in ground-water ob-servations”, 1951.
[8] Jim Yeh, T. C., “Stochastic modelling of groundwater flow and solute transport in aquifers”, Hydrological Processes, 6(4), 369-395, 1992.
[9] Yeh, T. C. J., “Scale issues of heterogeneity in vadose-zone hydrology”, Scale dependence and scale invariance in hydrology, 224-265, 1998.
[10] Butler, J. J., & Liu, W., “Pumping tests in nonuniform aquifers: The radially asymmetric case”, Water Resources Research, 29(2), 259-269, 1993.
[11] Wu, C. M., Yeh, T. C. J., Zhu, J., Lee, T. H., Hsu, N. S., Chen, C. H., & Sancho, A. F., “Traditional analysis of aquifer tests: Comparing apples to oranges?”, Water Resources Research, 41(9), 2005.
[12] Cooper, H. H., Bredehoeft, J. D., & Papadopulos, I. S., “Response of a finite‐diameter well to an instantaneous charge of water”, Water Re-sources Research, 3(1), 263-269, 1967.
[13] Bouwer, H., & Rice, R. C., “A slug test for determining hydraulic conductivity of unconfined aquifers with completely or partially pene-trating wells”, Water Resources Research, 12(3), 423-428, 1976.
[14] Dagan, G., “A note on packer, slug, and recovery tests in unconfined aquifers”, Water Resources Research, 14(5), 929-934, 1978.
[15] Binkhorst, G. K., & Robbins, G. A., “Conducting and interpreting slug tests in monitoring wells with partially submerged screens”, Ground-water, 36(2), 225-229, 1998.
[16] Hyder, Z., Butler, J. J., McElwee, C. D., & Liu, W., “Slug tests in par-tially penetrating wells”, Water Resources Research, 30(11), 2945-2957, 1994.
[17] Van der Kamp, G., “Determining aquifer transmissivity by means of well response tests: The underdamped case”, Water Resources Research, 12(1), 71-77, 1976.
[18] Kipp Jr, K. L., “Type curve analysis of inertial effects in the response of a well to a slug test”, Water Resources Research, 21(9), 1397-1408, 1985.
[19] Kabala, Z. J., Pinder, G. F., & Milly, P. C. D., “Analysis of well‐aquifer response to a slug test”, Water Resources Research, 21(9), 1433-1436, 1985.
[20] Springer, R. K., & Gelhar, L. W., “Characterization of large-scale aq-uifer heterogeneity in glacial outwash by analysis of slug tests with oscillatory response, Cape Cod, Massachusetts”, US Geological Survey Water–Resources Investigation Report, 91, 36-40, 1991.
[21] McElwee, C. D., James. J. Butler (Jr.), & Bohling, G. C., “Nonlinear Analysis of Slug Tests in Highly-permeable Aquifers Using a Hvorslev-type Approach”, Kansas Geological Survey, 1992.
[22] Butler Jr, J. J., The design, performance, and analysis of slug tests, Crc Press, 1997.
[23] Zurbuchen, B. R., Zlotnik, V. A., & Butler, J. J., “Dynamic interpreta-tion of slug tests in highly permeable aquifers”, Water Resources Re-search, 38(3), 2002.
[24] Butler, J. J., & Zhan, X., “Hydraulic tests in highly permeable aquifers”, Water Resources Research, 40(12), 2004.
[25] Chen, C. S., “An analytic data analysis method for oscillatory slug tests”, Groundwater, 44(4), 604-608, 2006.
[26] Chen, C. S., “An analytical method of analysing the oscillatory pressure head measured at any depth in a well casing”, Hydrological Processes: An International Journal, 22(8), 1119-1124, 2008.
[27] Butler Jr, J. J., Garnett, E. J., & Healey, J. M., “Analysis of slug tests in formations of high hydraulic conductivity”, Groundwater, 41(5), 620-631, 2003.
[28] Widdowson, M. A., Molz, F. J., & Melville, J. G., “An analysis tech-nique for multilevel and partially penetrating slug test data”, Ground-water, 28(6), 937-945, 1990.
[29] Melville, J. G., Molz, F. J., Güven, O., & Widdowson, M. A., “Multi-level slug tests with comparisons to tracer data”, Groundwater, 29(6), 897-907, 1991.
[30] Hinsby, K., Bjerg, P. L., Andersen, L. J., Skov, B., & Clausen, E. V., “A mini slug test method for determination of a local hydraulic conduc-tivity of an unconfined sandy aquifer”, Journal of Hydrology, 136(1-4), 87-106, 1992.
[31] Zlotnik, V. A., & McGuire, V. L., “Multi-level slug tests in highly permeable formations: 1. Modification of the Springer-Gelhar (SG) model”, Journal of Hydrology, 204(1-4), 271-282, 1998.
[32] Zlotnik, V. A., & Zurbuchen, B. R., “Field study of hydraulic con-ductivity in a heterogeneous aquifer: Comparison of single‐borehole measurements using different instruments”, Water Resources Research, 39(4), 2003.
[33] Sellwood, S. M., Healey, J. M., Birk, S., & Butler Jr, J. J., “Direct‐push hydrostratigraphic profiling: Coupling electrical logging and slug tests”, Groundwater, 43(1), 19-29, 2005.
[34] Zemansky, G. M., & McElwee, C. D., “High‐resolution slug testing”, Groundwater, 43(2), 222-230, 2005.
[35] Ross, H. C., & McElwee, C. D., “Multi-level slug tests to measure 3-D hydraulic conductivity distributions”, Natural Resources Research, 16(1), 67-79, 2007.
[36] 謝云珺,「多深度微水試驗之測試段長度對水力傳導係數影響」,碩士論文,國立中央大學,民國九十八年。
[37] Di Maio, Rosa, et al., "A three-dimensional hydrogeologi-cal-geophysical model of a multi-layered aquifer in the coastal alluvial plain of Sarno River (southern Italy).", Hydrogeology journal, 22, 3, 691, 2014.
[38] Yeh, W. W. G., “Review of parameter identification procedures in groundwater hydrology: The inverse problem”, Water Resources Re-search, 22(2), 95-108, 1986.
[39] McLaughlin, D., & Townley, L. R., “A reassessment of the ground-water inverse problem”, Water Resources Research, 32(5), 1131-1161, 1996.
[40] Kuiper, L. K., “A comparison of several methods for the solution of the inverse problem in two‐dimensional steady state groundwater flow modeling”, Water Resources Research, 22(5), 705-714, 1986.
[41] Zhou, H., Gómez-Hernández, J. J., & Li, L., “Inverse methods in hy-drogeology: Evolution and recent trends”, Advances in Water Re-sources, 63, 22-37, 2014.
[42] Berg, S. J., & Illman, W. A., “Comparison of hydraulic tomography with traditional methods at a highly heterogeneous site”, Groundwater, 53(1), 71-89, 2015.
[43] Illman, Walter A., Andrew J. Craig, and Xiaoyi Liu, "Practical issues in imaging hydraulic conductivity through hydraulic tomography.", Groundwater, 46.1, 120-132, 2008.
[44] Neuman, S. P., “Calibration of distributed parameter groundwater flow models viewed as a multiple‐objective decision process under uncer-tainty”, Water Resources Research, 9(4), 1006-1021, 1973.
[45] Sun N-Z. Inverse problems in groundwater modeling. Dordrecht: Kluwer Academic; 1994. 337p. ISBN 9048144353.
[46] Ponzini, G., & Lozej, A., “Identification of aquifer transmissivities: the comparison model method”, Water Resources Research, 18(3), 597-622, 1982.
[47] Kleinecke, D., “Use of linear programing for estimating geohydrologic parameters of groundwater basins”, Water Resources Research, 7(2), 367-374, 1971.
[48] Navarro, A., “A modified optimization method of estimating aquifer parameters”, Water Resources Research, 13(6), 935-939, 1977.
[49] Irsa, J., & Zhang, Y., “A direct method of parameter estimation for steady state flow in heterogeneous aquifers with unknown boundary conditions”, Water Resources Research, 48(9), 2012.
[50] Kitanidis, P. K., & VoMvoris, E. G., “A geostatistical approach to the inverse problem in groundwater modeling (steady state) and one‐dimensional simulations”, Water resources research, 19(3), 677-690, 1983.
[51] Carrera, J., & Neuman, S. P., “Estimation of aquifer parameters under transient and steady state conditions: 1. Maximum likelihood method incorporating prior information”, Water Resources Research, 22(2), 199-210, 1986.
[52] Medina, A., & Carrera, J., “Coupled estimation of flow and solute transport parameters”, Water Resources Research, 32(10), 3063-3076, 1996.
[53] Kitanidis, P. K., “On the geostatistical approach to the inverse problem”, Advances in Water Resources, 19(6), 333-342, 1996.
[54] De Marsily, G., Lavedan, G., Boucher, M., & Fasanino, G., “Interpre-tation of interference tests in a well field using geostatistical techniques to fit the permeability distribution in a reservoir model”, Geostatistics for natural resources characterization, Part, 2, 831-849, 1984.
[55] Rubin, Y., Chen, X., Murakami, H., & Hahn, M., “A Bayesian ap-proach for inverse modeling, data assimilation, and conditional simu-lation of spatial random fields”, Water Resources Research, 46(10), 2010.
[56] Gómez-Hernández, J. J., & Wen, X. H., “Probabilistic assessment of travel times in groundwater modeling”, Stochastic Hydrology and Hydraulics, 8(1), 19-55, 1994.
[57] Sahuquillo, A., Capilla, J. E., Gómez-Hernández, J. J., & Andreu, J., “Conditional simulation of transmissivity fields honoring piezometric data”, Hydraulic engineering software IV, fluid flow modeling, 2, 201-214, 1992.
[58] Gómez-Hernánez, J. J., Sahuquillo, A., & Capilla, J., “Stochastic sim-ulation of transmissivity fields conditional to both transmissivity and piezometric data—I. Theory”, Journal of Hydrology, 203(1-4), 162-174, 1997.
[59] Capilla, J., Gómez-Hernández, J. J., & Sahuquillo, A., “Stochastic simulation of transmissivity fields conditional to both transmissivity and piezometric data 2. Demonstration on a synthetic aquifer”, Journal of hydrology, 203(1-4), 175-188, 1997.
[60] Capilla, J. E., Gömez-Hernández, J. J., & Sahuquillo, A., “Stochastic simulation of transmissivity fields conditional to both transmissivity and piezometric head data—3. Application to the Culebra formation at the waste isolation pilot plan (WIPP), New Mexico, USA”, Journal of Hydrology, 207(3-4), 254-269, 1998.
[61] Journel, A. G., “Geostatistics for conditional simulation of ore bodies”, Economic Geology, 69(5), 673-687, 1974.
[62] Hernandez, A. F., Neuman, S. P., Guadagnini, A., & Carrera, J., “Conditioning mean steady state flow on hydraulic head and conduc-tivity through geostatistical inversion”, Stochastic Environmental Re-search and Risk Assessment, 17(5), 329-338, 2003.
[63] Hernandez, A. F., Neuman, S. P., Guadagnini, A., & Carrera, J., “In-verse stochastic moment analysis of steady state flow in randomly het-erogeneous media”, Water Resources Research, 42(5), 2006.
[64] Riva, M., Guadagnini, A., Neuman, S. P., Janetti, E. B., & Malama, B., “Inverse analysis of stochastic moment equations for transient flow in randomly heterogeneous media”, Advances in water resources, 32(10), 1495-1507, 2009.
[65] Riva, M., Panzeri, M., Guadagnini, A., & Neuman, S. P., “Role of model selection criteria in geostatistical inverse estimation of statistical data‐and model‐parameters”, Water Resources Research, 47(7), 2011.
[66] Hastings, W. K., “Monte Carlo sampling methods using Markov chains and their applications”, Biometrika, Volume 57, Issue 1, Pages 97–109, 1970
[67] Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E., “Equation of state calculations by fast computing machines”, The journal of chemical physics, 21(6), 1087-1092, 1953.
[68] Oliver, D. S., Cunha, L. B., & Reynolds, A. C., “Markov chain Monte Carlo methods for conditioning a permeability field to pressure data”, Mathematical Geology, 29(1), 61-91, 1997.
[69] Evensen, G., “Sequential data assimilation with a nonlinear quasi‐geostrophic model using Monte Carlo methods to forecast error statis-tics”, Journal of Geophysical Research: Oceans, 99(C5), 10143-10162, 1994.
[70] Burgers, G., Jan van Leeuwen, P., & Evensen, G., “Analysis scheme in the ensemble Kalman filter”, Monthly weather review, 126(6), 1719-1724, 1998.
[71] Kalman, R. E., “A new approach to linear filtering and prediction problems”, Journal of basic Engineering, 82(1), 35-45, 1960.
[72] Evensen, G., “The ensemble Kalman filter: Theoretical formulation and practical implementation”, Ocean dynamics, 53(4), 343-367, 2003.
[73] Bertino, L., Evensen, G., & Wackernagel, H., “Sequential data assimi-lation techniques in oceanography”, International Statistical Review, 71(2), 223-241, 2003.
[74] Chen, Y., & Zhang, D., “Data assimilation for transient flow in geologic formations via ensemble Kalman filter”, Advances in Water Resources, 29(8), 1107-1122, 2006.
[75] Houtekamer, P. L., & Mitchell, H. L., “A sequential ensemble Kalman filter for atmospheric data assimilation”, Monthly Weather Review, 129(1), 123-137, 2001.
[76] Moradkhani, H., Sorooshian, S., Gupta, H. V., & Houser, P. R., “Dual state–parameter estimation of hydrological models using ensemble Kalman filter”, Advances in water resources, 28(2), 135-147, 2005.
[77] Nowak, W., “Best unbiased ensemble linearization and the quasi‐linear Kalman ensemble generator”, Water Resources Research, 45(4), 2009..
[78] Wen, X. H., & Chen, W. H., “Real-time reservoir model updating using ensemble Kalman filter”, In SPE reservoir simulation symposium. So-ciety of Petroleum Engineers, 2005.
[79] Gottlieb, J., & Dietrich, P., “Identification of the permeability distribu-tion in soil by hydraulic tomography”, Inverse Problems, 11(2), 353, 1995.
[80] Butler, J. J., McElwee, C. D., & Bohling, G. C., “Pumping tests in networks of multilevel sampling wells: Motivation and methodology”, Water Resources Research, 35(11), 3553-3560, 1999.
[81] Vasco, D. W., Keers, H., & Karasaki, K., “Estimation of reservoir properties using transient pressure data: An asymptotic approach”, Water Resources Research, 36(12), 3447-3465, 2000.
[82] Yeh, T. C. J., & Liu, S., “Hydraulic tomography: Development of a new aquifer test method”, Water Resources Research, 36(8), 2095-2105, 2000.
[83] Liu, S., Yeh, T. C. J., & Gardiner, R., “Effectiveness of hydraulic to-mography: Sandbox experiments”, Water Resources Research, 38(4), 5-1, 2002.
[84] Bohling, G. C., Zhan, X., Butler Jr, J. J., & Zheng, L., “Steady shape analysis of tomographic pumping tests for characterization of aquifer heterogeneities”, Water Resources Research, 38(12), 60-1, 2002.
[85] McDermott, C. I., Sauter, M., & Liedl, R., “New experimental tech-niques for pneumatic tomographical determination of the flow and transport parameters of highly fractured porous rock samples”, Journal of Hydrology, 278(1-4), 51-63, 2003.
[86] Brauchler, R., Liedl, R., & Dietrich, P., “A travel time based hydraulic tomographic approach”, Water Resources Research, 39(12), 2003.
[87] Li, W., Nowak, W., & Cirpka, O. A., “Geostatistical inverse modeling of transient pumping tests using temporal moments of drawdown”, Water resources research, 41(8), 2005.
[88] Castagna, M., & Bellin, A., “A Bayesian approach for inversion of hydraulic tomographic data”, Water Resources Research, 45(4), 2009.
[89] Cardiff, M., & Barrash, W., “3‐D transient hydraulic tomography in unconfined aquifers with fast drainage response”, Water Resources Research, 47(12), 2011.
[90] Liu, X., & Kitanidis, P. K., “Large‐scale inverse modeling with an ap-plication in hydraulic tomography”, Water Resources Research, 47(2), 2011.
[91] Schöniger, A., Nowak, W., & Hendricks Franssen, H. J., “Parameter estimation by ensemble Kalman filters with transformed data: Approach and application to hydraulic tomography”, Water Resources Research, 48(4), 2012.
[92] Zhu, J., & Yeh, T. C. J., “Analysis of hydraulic tomography using temporal moments of drawdown recovery data”, Water Resources Re-search, 42(2), 2006.
[93] Hoeksema, R. J., & Kitanidis, P. K., “An application of the geostatis-tical approach to the inverse problem in two‐dimensional groundwater modeling”, Water Resources Research, 20(7), 1003-1020, 1984.
[94] Yeh, T. C. J., Jin, M., & Hanna, S., “An iterative stochastic inverse method: Conditional effective transmissivity and hydraulic head fields”, Water Resources Research, 32(1), 85-92, 1996.
[95] Yeh, T. C. J., Gutjahr, A. L., & Jin, M., “An iterative cokriging‐like technique for ground‐water flow modeling”, Groundwater, 33(1), 33-41, 1995.
[96] Zhang, J., & Yeh, T. C. J., “An iterative geostatistical inverse method for steady flow in the vadose zone”, Water Resources Research, 33(1), 63-71, 1997.
[97] Hughson, D. L., & Yeh, T. C. J., “A geostatistically based inverse model for three-dimensional variably saturated flow”, Stochastic Hy-drology and Hydraulics, 12(5), 285-298, 1998.
[98] Hughson, D. L., & Yeh, T. C. J., “An inverse model for three‐dimensional flow in variably saturated porous media”, Water Resources Research, 36(4), 829-839, 2000.
[99] Van Genuchten, M. T., “A closed-form equation for predicting the hy-draulic conductivity of unsaturated soils 1”, Soil science society of America journal, 44(5), 892-898, 1980.
[100] Zhu, J., & Yeh, T. C. J., “Characterization of aquifer heterogeneity us-ing transient hydraulic tomography”, Water Resources Research, 41(7), 2005.
[101] Illman, W. A., Craig, A. J., & Liu, X., “Practical issues in imaging hy-draulic conductivity through hydraulic tomography”, Groundwater, 46(1), 120-132, 2008.
[102] Liu, X., Illman, W. A., Craig, A. J., Zhu, J., & Yeh, T. C., “Laboratory sandbox validation of transient hydraulic tomography”, Water Re-sources Research, 43(5), 2007.
[103] Zhao, Z., Illman, W. A., & Berg, S. J., “On the importance of geolog-ical data for hydraulic tomography analysis: Laboratory sandbox study”, Journal of Hydrology, 542, 156-171, 2016.
[104] Illman, W. A., Liu, X., & Craig, A., “Steady-state hydraulic tomogra-phy in a laboratory aquifer with deterministic heterogeneity: Mul-ti-method and multiscale validation of hydraulic conductivity tomo-grams”, Journal of Hydrology, 341(3-4), 222-234, 2007.
[105] Illman, W. A., Zhu, J., Craig, A. J., & Yin, D., “Comparison of aquifer characterization approaches through steady state groundwater model validation: A controlled laboratory sandbox study”, Water Resources Research, 46(4), 2010.
[106] Illman, W. A., Berg, S. J., & Zhao, Z., “Should hydraulic tomography data be interpreted using geostatistical inverse modeling? A laboratory sandbox investigation”, Water Resources Research, 51(5), 3219-3237, 2015.
[107] Berg, S. J., & Illman, W. A., “Capturing aquifer heterogeneity: Com-parison of approaches through controlled sandbox experiments”, Water Resources Research, 47(9), 2011.
[108] Berg, S. J., & Illman, W. A., “Improved predictions of saturated and unsaturated zone drawdowns in a heterogeneous unconfined aquifer via transient hydraulic tomography: Laboratory sandbox experiments”, Journal of hydrology, 470, 172-183, 2012.
[109] Zhao, Z., Illman, W. A., Yeh, T. C. J., Berg, S. J., & Mao, D., “Valida-tion of hydraulic tomography in an unconfined aquifer: A controlled sandbox study”, Water Resources Research, 51(6), 4137-4155, 2015.
[110] Straface, S., Yeh, T. C., Zhu, J., Troisi, S., & Lee, C. H., “Sequential aquifer tests at a well field, Montalto Uffugo Scalo, Italy”, Water Re-sources Research, 43(7), 2007.
[111] Bohling, G. C., Butler, J. J., Zhan, X., & Knoll, M. D., “A field as-sessment of the value of steady shape hydraulic tomography for char-acterization of aquifer heterogeneities”, Water Resources Research, 43(5), 2007.
[112] Li, W., Englert, A., Cirpka, O. A., & Vereecken, H., “Three‐dimensional geostatistical inversion of flowmeter and pumping test data”, Groundwater, 46(2), 193-201, 2008.
[113] Cardiff, M., Barrash, W., Kitanidis, P. K., Malama, B., Revil, A., Straface, S., & Rizzo, E., “A potential‐based inversion of unconfined steady‐state hydraulic tomography”, Groundwater, 47(2), 259-270, 2009.
[114] Berg, S. J., & Illman, W. A., “Three‐dimensional transient hydraulic tomography in a highly heterogeneous glaciofluvial aquifer‐aquitard system”, Water Resources Research, 47(10), 2011.
[115] Berg, S. J., & Illman, W. A., “Field study of subsurface heterogeneity with steady‐state hydraulic tomography”, Groundwater, 51(1), 29-40, 2013.
[116] Brauchler, R., Hu, R., Dietrich, P., & Sauter, M., “A field assessment of high‐resolution aquifer characterization based on hydraulic travel time and hydraulic attenuation tomography”, Water Resources Research, 47(3), 2011.
[117] Huang, S. Y., Wen, J. C., Yeh, T. C. J., Lu, W., Juan, H. L., Tseng, C. M., ... & Chang, K. C., “Robustness of joint interpretation of sequential pumping tests: Numerical and field experiments”, Water Resources Research, 47(10), 2011.
[118] Cardiff, M., Barrash, W., & Kitanidis, P. K., “A field proof‐of‐concept of aquifer imaging using 3‐D transient hydraulic tomography with modular, temporarily‐emplaced equipment”, Water Resources Research, 48(5), 2012.
[119] Li, W., Englert, A., Cirpka, O. A., Vanderborght, J., & Vereecken, H., “Two‐dimensional characterization of hydraulic heterogeneity by mul-tiple pumping tests”, Water Resources Research, 43(4), 2007.
[120] 黃奕儒,「現地跨孔式抽水試驗推估異質性含水層水文地質特性」,國立中央大學,碩士論文,民國98年。
[121] Illman, W. A., Liu, X., Takeuchi, S., Yeh, T. C. J., Ando, K., & Sae-gusa, H., “Hydraulic tomography in fractured granite: Mizunami Un-derground Research site, Japan”, Water resources research, 45(1), 2009.
[122] Castagna, M., Becker, M. W., & Bellin, A., “Joint estimation of trans-missivity and storativity in a bedrock fracture”, Water Resources Re-search, 47(9), 2011.
[123] Cardiff, M., Barrash, W., & Kitanidis, P. K., “Hydraulic conductivity imaging from 3‐D transient hydraulic tomography at several pump-ing/observation densities”, Water Resources Research, 49(11), 7311-7326, 2013.
[124] Paradis, D., Gloaguen, E., Lefebvre, R., & Giroux, B., “A field proof-of-concept of tomographic slug tests in an anisotropic littoral aquifer”, Journal of Hydrology, 536, 61-73, 2016.
[125] Zha, Y., Yeh, T. C. J., Mao, D., Yang, J., & Lu, W., “Usefulness of flux measurements during hydraulic tomographic survey for mapping hy-draulic conductivity distribution in a fractured medium”, Advances in water resources, 71, 162-176, 2014.
[126] Tso, C. H. M., Zha, Y., Yeh, T. C. J., & Wen, J. C., “The relative im-portance of head, flux, and prior information in hydraulic tomography analysis”, Water Resources Research, 52(1), 3-20, 2016.
[127] Zhao, Z., & Illman, W. A., “On the importance of geological data for three-dimensional steady-state hydraulic tomography analysis at a highly heterogeneous aquifer-aquitard system”, Journal of Hydrology, 544, 640-657, 2007.
[128] Hao, Y., Yeh, T. C. J., Xiang, J., Illman, W. A., Ando, K., Hsu, K. C., & Lee, C. H., “Hydraulic tomography for detecting fracture zone connectivity”, Groundwater, 46(2), 183-192, 2008.
[129] Zhu, J., & Yeh, T. C. J., “Analysis of hydraulic tomography using temporal moments of drawdown recovery data”, Water Resources Re-search, 42(2), 2006.
[130] Vesselinov, V. V., Neuman, S. P., & Illman, W. A., “Three‐dimensional numerical inversion of pneumatic cross‐hole tests in unsaturated frac-tured tuff: 2. Equivalent parameters, high‐resolution stochastic imaging and scale effects”, Water Resources Research, 37(12), 3019-3041, 2001.
[131] Zha, Y., Yeh, T. C. J., Illman, W. A., Tanaka, T., Bruines, P., Onoe, H., & Saegusa, H., “What does hydraulic tomography tell us about frac-tured geological media? A field study and synthetic experiments”, Journal of Hydrology, 531, 17-30, 2015.
[132] Rojstaczer, S., “Determination of fluid flow properties from the re-sponse of water levels in wells to atmospheric loading”, Water Re-sources Research, 24(11), 1927-1938, 1988.
[133] Hsieh, P. A., Bredehoeft, J. D., & Rojstaczer, S. A., “Response of well aquifer systems to earth tides: Problem revisited”, Water Resources Research, 24(3), 468-472, 1988.
[134] Rojstaczer, S., & Riley, F. S., “Response of the water level in a well to earth tides and atmospheric loading under unconfined conditions”, Water Resources Research, 26(8), 1803-1817, 1990.
[135] Davis, E. E., Wang, K., Becker, K., & Thomson, R. E., “Formation‐scale hydraulic and mechanical properties of oceanic crust inferred from pore pressure response to periodic seafloor loading”, Journal of Geo-physical Research: Solid Earth, 105(B6), 13423-13435, 2000.
[136] Li, H., Li, G., Cheng, J., & Boufadel, M. C., “Tide‐induced head fluctuations in a confined aquifer with sediment covering its outlet at the sea floor”, Water Resources Research, 43(3), 2007.
[137] Jan, C. D., Chen, T. H., & Huang, H. M., “Analysis of rainfall-induced quick groundwater-level response by using a Kernel function”, Paddy and Water Environment, 11(1-4), 135-144, 2013.
[138] Lin, Y. B., Tan, Y. C., Yeh, T. C. J., Liu, C. W., & Chen, C. H., “A viscoelastic model for groundwater level changes in the Cho‐Shui River alluvial fan after the Chi‐Chi earthquake in Taiwan”, Water re-sources research, 40(4), 2004.
[139] Yeh, T. C. J., Lee, C. H., Hsu, K. C., Illman, W. A., Barrash, W., Cai, X., Daniels, J., Sudicky, E., Wan, L., Li, G., & Winter, C. L., “A view toward the future of subsurface characterization: CAT scanning groundwater basins”, Water Resources Research, 44(3), 2008.
[140] Yeh, T. C. J., Xiang, J., Suribhatla, R. M., Hsu, K. C., Lee, C. H., & Wen, J. C., “River stage tomography: A new approach for characteriz-ing groundwater basins”, Water resources research, 45(5), 2009.
[141] Wang, Y. L., Yeh, T. C. J., Wen, J. C., Huang, S. Y., Zha, Y., Tsai, J. P., Hao, Y. & Liang, Y., “Characterizing subsurface hydraulic heterogene-ity of alluvial fan using riverstage fluctuations”, Journal of Hydrology, 547, 650-663, 2017.
[142] 郭皇甫,「桃園台地群地形及土壤化育之研究」,國立彰化師範大學,碩士論文,民國102年。
[143] 何春蓀,台灣地質圖概論-台灣地質圖說明書,經濟部中央地質調查所,1986年。
[144] 塗明寬、陳文政,台灣地質說明書中壢圖幅,經濟部中央地質調查所,1990年。
[145] Fujita, Koji, et al., "Increase in fish production through bottom-up trophic linkage in coastal waters induced by nutrients supplied via submarine groundwater.", Frontiers in Environmental Science, 7, 82, 2019.
[146] Santos, Isaac R., et al.,"Submarine groundwater discharge impacts on coastal nutrient biogeochemistry.", Nature Reviews Earth & Environ-ment, 2.5, 307-323, 2021.
[147] Yu, Xuan, and Holly A. Michael., "Offshore pumping impacts onshore groundwater resources and land subsidence.", Geophysical Research Letters 46.5, 2553-2562, 2019.
[148] Werner, Adrian D., et al., "Seawater intrusion processes, investigation and management: recent advances and future challenges.", Advances in water resources, 51, 3-26, 2013.
[149] Chapuis, Robert P., Christian Bélanger, and Djaouida Chenaf., "Pumping test in a confined aquifer under tidal influence.", Ground-water, 44.2, 300-305, 2006.
[150] Meier, Peter M., Jesús Carrera, and Xavier Sánchez‐Vila, "An evalua-tion of Jacob′s method for the interpretation of pumping tests in het-erogeneous formations.", Water Resources Research, 34.5, 1011-1025, 1998.
[151] Sánchez‐Vila, Xavier, Peter M. Meier, and Jesús Carrera, "Pumping tests in heterogeneous aquifers: An analytical study of what can be obtained from their interpretation using Jacob′s method.", Water Re-sources Research 35.4, 943-952, 1999.
[152] Ni, Chuen-Fa, and Tian-Chyi Jim Yeh, "Stochastic inversion of pneumatic cross-hole tests and barometric pressure fluctuations in het-erogeneous unsaturated formations.", Advances in Water Resources, 31.12, 1708-1718, 2008.
[153] Schwartz, F. W. & Zhang, H., Fundamentals of ground water, John Wiley & Sons, 2002.
[154] 中興工程顧問股份有限公司,台灣地區地下水資源管理決策支援系統建置(2/4),經濟部水利署,民國91年。
[155] 黃安斌,李瑞庭,何彥德,黄信忠,邱永芳。「光纖光柵邊坡安全監測及預警」。技師期刊,59&60,48-61,2011。
[156] Kruseman, G. P., N. A. De Ridder, & J. M. Verweij, Analysis and evaluation of pumping test data, (Completely Revised). International Institute for Land Reclamation and Improvement, Netherlands, 1994. |