參考文獻 |
REFERENCE
[1] T. Zhang and H. Yang, “High Efficiency Plants and Building Integrated Renewable Energy Systems,” Handb. Energy Effic. Build. A Life Cycle Approach, pp. 441–595, Jan. 2019, doi: 10.1016/B978-0-12-812817-6.00040-1.
[2] T. Yusaf et al., “Hydrogen Energy Demand Growth Prediction and Assessment (2021–2050) Using a System Thinking and System Dynamics Approach,” Appl. Sci., vol. 12, no. 2, Jan. 2022, doi: 10.3390/app12020781.
[3] L. Q. Le et al., “Proton-conducting ceramic fuel cells: Scale up and stack integration,” J. Power Sources, vol. 482, Jan. 2021, doi: 10.1016/j.jpowsour.2020.228868.
[4] C. Duan, J. Huang, N. Sullivan, and R. O’Hayre, “Proton-conducting oxides for energy conversion and storage,” Appl. Phys. Rev., vol. 7, no. 1, p. 011314, Mar. 2020, doi: 10.1063/1.5135319.
[5] J. Basbus et al., “Study of BaCe0.4Zr0.4Y0.2O3-δ/BaCe0.8Pr0.2O3-δ (BCZY/BCP) bilayer membrane for Protonic Conductor Solid Oxide Fuel Cells (PC-SOFC),” Int. J. Hydrogen Energy, vol. 45, no. 8, pp. 5481–5490, Feb. 2020, doi: 10.1016/j.ijhydene.2019.06.164.
[6] M. Chen, M. Zhou, Z. Liu, and J. Liu, “A comparative investigation on protonic ceramic fuel cell electrolytes BaZr0.8Y0.2O3-δ and BaZr0.1Ce0.7Y0.2O3-δ with NiO as sintering aid,” Ceram. Int., vol. 48, no. 12, pp. 17208–17216, Jun. 2022, doi: 10.1016/j.ceramint.2022.02.278.
[7] P. Kumar and O. Singh, “Thermoeconomic analysis of SOFC-GT-VARS-ORC combined power and cooling system,” Int. J. Hydrogen Energy, vol. 44, no. 50, pp. 27575–27586, Oct. 2019, doi: 10.1016/J.IJHYDENE.2019.08.198.
[8] L. van Biert, K. Visser, and P. V. Aravind, “A comparison of steam reforming concepts in solid oxide fuel cell systems,” Appl. Energy, vol. 264, p. 114748, Apr. 2020, doi: 10.1016/J.APENERGY.2020.114748.
[9] M. Powell, K. Meinhardt, V. Sprenkle, L. Chick, and G. McVay, “Demonstration of a highly efficient solid oxide fuel cell power system using adiabatic steam reforming and anode gas recirculation,” J. Power Sources, vol. 205, pp. 377–384, May 2012, doi: 10.1016/J.JPOWSOUR.2012.01.098.
[10] L. van Biert, M. Godjevac, K. Visser, and P. V. Aravind, “Dynamic modelling of a direct internal reforming solid oxide fuel cell stack based on single cell experiments,” Appl. Energy, vol. 250, pp. 976–990, Sep. 2019, doi: 10.1016/J.APENERGY.2019.05.053.
[11] M. Cho, Y. Kim, and H. Ho Song, “Solid oxide fuel cell–internal combustion engine hybrid system utilizing an internal combustion engine for anode off-gas recirculation, external reforming, and additional power generation,” Appl. Energy, vol. 328, p. 120146, Dec. 2022, doi: 10.1016/j.apenergy.2022.120146.
[12] M. T. Mehran et al., “Performance characteristics of a robust and compact propane-fueled 150 W-class SOFC power-generation system,” Int. J. Hydrogen Energy, vol. 44, no. 12, pp. 6160–6171, Mar. 2019, doi: 10.1016/J.IJHYDENE.2019.01.076.
[13] D. Saebea, A. Arpornwichanop, and Y. Patcharavorachot, “Thermodynamic analysis of a proton conducting SOFC integrated system fuelled by different renewable fuels,” Int. J. Hydrogen Energy, vol. 46, no. 20, pp. 11445–11457, Mar. 2021, doi: 10.1016/j.ijhydene.2020.07.264.
[14] P.-C. Cheng et al., “Carbon resistant Ni1-xCux-BCZY anode for methane-fed protonic ceramic fuel cell,” Int. J. Hydrogen Energy, vol. 48, no. 30, pp. 11455–11462, Apr. 2023, doi: 10.1016/j.ijhydene.2022.08.049.
[15] Y. Bu et al., “A highly efficient composite cathode for proton-conducting solid oxide fuel cells,” J. Power Sources, vol. 451, p. 227812, Mar. 2020, doi: 10.1016/j.jpowsour.2020.227812.
[16] M. Deng, J. Liu, X. Zhang, J. Li, and L. Fu, “Energy and Parameter Analysis of SOFC System for Hydrogen Production from Methane Steam Reforming,” J. Therm. Sci., vol. 31, no. 6, pp. 2088–2110, Nov. 2022, doi: 10.1007/s11630-022-1676-8.
[17] Sasmoko, S.-W. Lee, M. Bhavanari, W. Wijayanti, N. Osman, and C.-J. Tseng, “System analysis of a protonic ceramic fuel cell and gas turbine hybrid system with methanol reformer,” Int. J. Hydrogen Energy, vol. 48, no. 30, pp. 11421–11430, Apr. 2023, doi: 10.1016/j.ijhydene.2022.06.220.
[18] M. A. Emadi, N. Chitgar, O. A. Oyewunmi, and C. N. Markides, “Working-fluid selection and thermoeconomic optimisation of a combined cycle cogeneration dual-loop organic Rankine cycle (ORC) system for solid oxide fuel cell (SOFC) waste-heat recovery,” Appl. Energy, vol. 261, p. 114384, Mar. 2020, doi: 10.1016/j.apenergy.2019.114384.
[19] S. Sasmoko et al., “Thermodynamic Analysis of Three Internal Reforming Protonic Ceramic Fuel Cell-Gas Turbine Hybrid Systems,” Appl. Sci., vol. 12, no. 21, p. 11140, Nov. 2022, doi: 10.3390/app122111140.
[20] S. Ghorbani, M. H. Khoshgoftar-Manesh, M. Nourpour, and A. M. Blanco-Marigorta, “Exergoeconomic and exergoenvironmental analyses of an integrated SOFC-GT-ORC hybrid system,” Energy, vol. 206, p. 118151, Sep. 2020, doi: 10.1016/j.energy.2020.118151.
[21] T. Zhang, H. Zhao, H. Du, and H. Wang, “Thermodynamic performance study of a novel cogeneration system combining solid oxide fuel cell, gas turbine, organic Rankine cycle with compressed air energy storage,” Energy Convers. Manag., vol. 249, p. 114837, Dec. 2021, doi: 10.1016/j.enconman.2021.114837.
[22] A. Entezari, M. Bahari, A. Aslani, S. Ghahremani, and F. Pourfayaz, “Systematic analysis and multi-objective optimization of integrated power generation cycle for a thermal power plant using Genetic algorithm,” Energy Convers. Manag., vol. 241, p. 114309, Aug. 2021, doi: 10.1016/j.enconman.2021.114309.
[23] R. Zeng, B. Guo, X. Zhang, H. Li, and G. Zhang, “Study on thermodynamic performance of SOFC-CCHP system integrating ORC and double-effect ARC,” Energy Convers. Manag., vol. 242, p. 114326, Aug. 2021, doi: 10.1016/j.enconman.2021.114326.
[24] Z. Wang, H. Chen, R. Xia, F. Han, Y. Ji, and W. Cai, “Energy, exergy and economy (3E) investigation of a SOFC-GT-ORC waste heat recovery system for green power ships,” Therm. Sci. Eng. Prog., vol. 32, p. 101342, Jul. 2022, doi: 10.1016/j.tsep.2022.101342.
[25] P. Kumar, T. Choudhary, and M. Z. Ansari, “Thermodynamic assessment of a novel SOFC and intercooled GT integration with ORC: Energy and exergy analysis,” Therm. Sci. Eng. Prog., vol. 34, p. 101411, Sep. 2022, doi: 10.1016/j.tsep.2022.101411.
[26] A. Kasaeian, H. Hadavi, Y. Amirhaeri, and F. Pourfayaz, “Thermodynamic analysis of a wood chips-based cycle integrated with solid oxide fuel cell,” Renew. Energy, vol. 195, pp. 1174–1193, Aug. 2022, doi: 10.1016/j.renene.2022.06.101.
[27] M. H. Khoshgoftar Manesh, S. Ghorbani, and A. M. Blanco-Marigorta, “Optimal design and analysis of a combined freshwater-power generation system based on integrated solid oxide fuel cell-gas turbine-organic Rankine cycle-multi effect distillation system,” Appl. Therm. Eng., vol. 211, p. 118438, Jul. 2022, doi: 10.1016/j.applthermaleng.2022.118438.
[28] H. You, Y. Xiao, J. Han, A. Lysyakov, and D. Chen, “Thermodynamic, exergoeconomic and exergoenvironmental analyses and optimization of a solid oxide fuel cell-based trigeneration system,” Int. J. Hydrogen Energy, Apr. 2023, doi: 10.1016/j.ijhydene.2023.03.183.
[29] X. Wang, X. Lv, and Y. Weng, “Performance analysis of a biogas-fueled SOFC/GT hybrid system integrated with anode-combustor exhaust gas recirculation loops,” Energy, vol. 197, p. 117213, Apr. 2020, doi: 10.1016/j.energy.2020.117213.
[30] L. Barelli, G. Bidini, G. Cinti, and P. A. Ottaviano, “Solid oxide fuel cell systems in hydrogen-based energy storage applications: Performance assessment in case of anode recirculation,” J. Energy Storage, vol. 54, p. 105257, Oct. 2022, doi: 10.1016/j.est.2022.105257.
[31] J.-H. Zhang, L.-B. Lei, D. Liu, F.-Y. Zhao, M. Ni, and F. Chen, “Mathematical modeling of a proton-conducting solid oxide fuel cell with current leakage,” J. Power Sources, vol. 400, pp. 333–340, Oct. 2018, doi: 10.1016/j.jpowsour.2018.08.038.
[32] F. Dalena et al., “Steam Reforming of Bioethanol Using Metallic Catalysts on Zeolitic Supports: An Overview,” Catalysts, vol. 12, no. 6, p. 617, Jun. 2022, doi: 10.3390/catal12060617.
[33] J. A. Wrubel, J. Gifford, Z. Ma, H. Ding, D. Ding, and T. Zhu, “Modeling the performance and faradaic efficiency of solid oxide electrolysis cells using doped barium zirconate perovskite electrolytes,” Int. J. Hydrogen Energy, vol. 46, no. 21, pp. 11511–11522, Mar. 2021, doi: 10.1016/j.ijhydene.2021.01.043.
[34] D. Gostovic, J. R. Smith, D. P. Kundinger, K. S. Jones, and E. D. Wachsman, “Three-Dimensional Reconstruction of Porous LSCF Cathodes,” Electrochem. Solid-State Lett., vol. 10, no. 12, p. B214, 2007, doi: 10.1149/1.2794672.
[35] S. McAllister, J.-Y. Chen, and A. C. Fernandez-Pello, Fundamentals of Combustion Processes. New York, NY: Springer New York, 2011. doi: 10.1007/978-1-4419-7943-8.
[36] R. Rivero and M. Garfias, “Standard chemical exergy of elements updated,” Energy, vol. 31, no. 15, pp. 3310–3326, Dec. 2006, doi: 10.1016/j.energy.2006.03.020.
|