博碩士論文 110624605 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:32 、訪客IP:3.143.4.239
姓名 阮玉清武(Nguyen Ngoc Thanh Vu)  查詢紙本館藏   畢業系所 應用地質研究所
論文名稱
(Spatiotemporal Variations of the Skeletal Specific Storage in Choushui River Aquifer System, Taiwan)
相關論文
★ 水文地質概念模型差異對污染傳輸模擬之影響★ 2016美濃地震引致嘉南平原與屏東平原地下水文特性變化研究
★ 台灣西南部因地下水開發與構造活動引致地層下陷之研究★ Evaluating Geological Model Uncertainty Caused by Data Sufficiency – Using Groundwater Flow and Land Subsidence Modeling as the Example
★ 序率熱–水–力全耦合模式在相依參數條件下之交互作用行為探討★ 整合河床出入滲試驗與數值模擬探討東港溪流域地下水與 河川交換量季節特徵
★ A Three-Step Time-Series Method for Assessing the Barometric Efficiency in the Donggang River Watershed, Taiwan★ Assessment of future climate change impacts on streamflow and groundwater by hydrological modeling in the Choushui River Alluvial Fan, Taiwan
★ 以水-力耦合模式探討不同複雜度地質模型對地層下陷模擬之影響—以雲林地區為例★ Investigation on the Influences of Various Complexity of Hydrogeological Models on Pore Water Pressure Buildup Triggered by Seismic Wave Propagation
★ 異質性水文地質模型於地下水數值模擬之應用——以臺北盆地為例★ 發展耦合HMC數值模式以探討地質模型複雜度對海水入侵與地層下陷的影響:以台灣屏東平原為例
★ 從資料到模型:了解異質性水文地質模型在地球水文學研究中的重要性★ 結合異質性地質模型與水-熱數值模式探討台灣宜蘭礁溪溫泉水資源管理
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-2-1以後開放)
摘要(中) 地層下陷是一個影響廣大的地質災害,包括可能引起水資源的枯竭與土地資源的流失、建築損壞和財物損失等。台灣的濁水溪沖積扇地區面臨嚴重地層下陷的問題,主要受到自然和人為因素引起的土體壓密所致。要深入瞭解含水層系統變形和孔隙水壓力之間的相關性,就得深入理解土水力學特性。本研究的目標是評估不同深度地層中骨架比儲水係數(skeletal specific storage coefficient, Ssk)的空間和時間變化,以了解地層下陷與地下水位變化之間的關係。研究中的儲水係數包括彈性骨架比儲水係數(Sske)和非彈性骨架比儲水係數(Sskv),這兩係數隱含地層下陷的壓縮速度和可壓縮性。研究中蒐集水利署提供的38口地下水井和31個分層式地層下陷監測井資料,以地下水位變化資料和累積土體壓縮資料,透過線性迴歸分析來推估兩儲水係數值。研究結果顯示,儲水係數隨季節有所變化,枯水期估計值一般較高,第一分層和第四分層的彈性骨架比儲水係數值範圍分別為9.30×10-6 ~ 1.15×10-4 m-1和8.60×10-6 ~ 8.50×10-5 m-1;而豐水期則相對較低,第一層和第四層的值範圍分別為1.00×10-5 ~ 6.68×10-5 m-1和8.10×10-6 ~ 5.00×10-5 m-1。此外,不同位置和地層中的儲水係數,受到區域土水力學特性變化而存在差異,特別是濁水溪沖積扇的扇央區域具有最高的儲水係數值,表示該區域比其他地區具有更容易壓密的特性。當含水層系統孔隙水壓下降時,該地區具有相當高的地層下陷潛勢。本研究展示了儲水係數在濁水溪沖積扇的時空變化特性,該成果可評估濁水溪沖積扇地區的地層下陷潛勢,並有助於該地區的地下水資源管理。

關鍵字:彈性骨架比儲水係數、非彈性骨架比儲水係數、地下水位變化、土體壓密、地層下陷潛勢、濁水溪沖積扇。
摘要(英) Land subsidence represents a significant geohazard with potential implications, including the depletion of water and land assets, structural damage, and financial disturbances. The Choushui River Alluvial Fan (CRAF) experiences issues of land subsidence largely attributed to soil compaction, influenced by both natural and human-made factors. A detailed comprehension of the hydro-mechanical characteristics that dictate the correlation between aquifer system deformation and pore water pressure is crucial. This research focuses on evaluating the spatial and temporal variations of skeletal storage parameters across multiple strata to understand the patterns of land subsidence linked to alterations in groundwater levels. Investigated storage parameters in this research encompass both elastic skeletal specific storage (Sske) and inelastic skeletal specific storage (Sskv), indicative of the pace and likelihood of land subsidence. Utilizing linear regression analysis, the storage parameters were deduced from fluctuations in groundwater levels and accumulated soil compression data, gathered from 38 groundwater wells and 31 multi-layer compaction wells, as provided by the Water Resources Agency, Taiwan. Findings reveal fluctuating skeletal specific storage values, with high estimations in the dry period and low estimations in the wet period. During the dry period, layers 1 and 4 have the highest values range from 9.30×10-6 ~ 1.15×10-4 m-1 and 8.60×10-6 ~ 8.50×10-5 m-1, respectively, while during the wet period, layers 1 and 4 have values range from 1.00×10-5 ~ 6.68×10-5 m-1 and 8.10×10-6 ~ 5.00×10-5 m-1, respectively. Additionally, spatial variations were observed, displaying differences in skeletal specific storage across various locations and geological strata, specifically that the central region of the CRAF has the highest storage values means that this area has a higher ability to absord and release water than other areas. This can be inferred that there is a high susceptibility of subsidence when the aquifer system is dehydrated. This research elucidates that hydro-mechanical parameters are subject to spatiotemporal changes, which can aid in assessing the potential for land subsidence in the CRAF, Taiwan.
Keywords: Elastic skeletal storage coefficient, Inelastic skeletal storage coefficient, Groundwater level variation, Soil compression, Land subsidence potential, Choushui River Alluvial Fan of Taiwan.
關鍵字(中) ★ 彈性骨架比儲水係數
★ 非彈性骨架比儲水係數
★ 地下水位變化
★ 土體壓 密
★ 地層下陷潛勢
★ 濁水溪沖積扇
關鍵字(英) ★ Elastic skeletal storage coefficient
★ Inelastic skeletal storage coefficient
★ Groundwater level variation
★ Soil compression
★ Land subsidence potential
★ Choushui River Alluvial Fan of Taiwan
論文目次 ABSTRACT.......................................................................................................... i
ACKNOWLEDGEMENT.................................................................................. iv
LIST OF CONTENTS......................................................................................... v
LIST OF FIGURES ...........................................................................................vii
LIST OF TABLES............................................................................................... x
LIST OF ABBREVIATIONS............................................................................. xi
LIST OF NOTATIONS.....................................................................................xii
INTRODUCTION...................................................................... 1
Literature Review ................................................................................... 1
Overview of Land subsidence induced by groundwater extraction . 1
Primary multi-layer compaction monitoring well techniques to
monitor land subsidence................................................................... 2
Land subsidence in the Choushui River Aluvial Fan....................... 4
Motivations and Objectives .................................................................... 6
Motivations....................................................................................... 6
Objectives......................................................................................... 7
Thesis structure ....................................................................................... 8
MATERIALS AND METHODS............................................. 10
Study area.............................................................................................. 10
Geographical location .................................................................... 10
Hydrogeological features ............................................................... 10
Datasets .......................................................................................... 14
Methodology......................................................................................... 16vi
Introduction of skeletal specific storage ........................................ 16
Estimation of skeletal specific storage in Choushui River Alluvial
Fan.................................................................................................. 20
Interpolation of skeletal specific storage in Choushui River
Alluvial Fan.................................................................................... 22
Evaluation of land subsidence potential in the Choushui River
Alluvial Fan.................................................................................... 23
RESULTS AND DISCUSSION .............................................. 24
Relationship between groundwater levels and land subsidence ........... 24
The average elastic skeletal specific storage ........................................ 27
The average inelastic skeletal specific storage ..................................... 34
Skeletal specific storage in dry and wet periods................................... 41
Evaluations of land subsidence potential.............................................. 51
CONCLUSIONS & SUGGESTIONS ..................................... 56
Conclusions........................................................................................... 56
Suggestions ........................................................................................... 57
REFERENCES .................................................................................................. 58
Appendix............................................................................................................ 61
參考文獻 Abidin, H. Z., Djaja, R., Darmawan, D., Hadi, S., Akbar, A., Rajiyowiryono, H.,
Sudibyo, Y., Meilano, I., Kasuma, M., & Kahar, J. (2001). Land subsidence of
Jakarta (Indonesia) and its geodetic monitoring system. Natural Hazards, 23,
365-387.
Chen, C.-H., Wang, C.-H., Hsu, Y.-J., Yu, S.-B., & Kuo, L.-C. (2010). Correlation
between groundwater level and altitude variations in land subsidence area of the
Choshuichi Alluvial Fan, Taiwan. Engineering Geology, 115(1-2), 122-131.
Galloway, D., & Burbey, T. (2011). Review: regional land subsidence accompanying
groundwater extraction. Hydrogeology 19: 1459–1486. Hydrogeology Journal.
Galloway, D. L., Jones, D. R., & Ingebritsen, S. E. (1999). Land subsidence in the
United States (Vol. 1182). Geological Survey (USGS).
Gambolati, G., & Teatini, P. (2015). Geomechanics of subsurface water withdrawal and
injection. Water Resources Research, 51(6), 3922-3955.
Ge, L., Ng, A. H.-M., Du, Z., Chen, H.-Y., & Li, X. (2017). Integrated space geodesy
for mapping land deformation over Choushui River Fluvial Plain, Taiwan.
International Journal of Remote Sensing, 38(22), 6319-6345.
Guzy, A., & Malinowska, A. A. (2020). State of the art and recent advancements in the
modelling of land subsidence induced by groundwater withdrawal. Water, 12(7),
2051.
Herrera-García, G., Ezquerro, P., Tomás, R., Béjar-Pizarro, M., López-Vinielles, J.,
Rossi, M., Mateos, R. M., Carreón-Freyre, D., Lambert, J., & Teatini, P. (2021).
Mapping the global threat of land subsidence. Science, 371(6524), 34-36.
Hsu, W.-C., Chang, H.-C., Chang, K.-T., Lin, E.-K., Liu, J.-K., & Liou, Y.-A. (2015).
Observing land subsidence and revealing the factors that influence it using a
multi-sensor approach in Yunlin County, Taiwan. Remote Sensing, 7(6), 8202-
8223.
Huang, M.-H., Bürgmann, R., & Hu, J.-C. (2016). Fifteen years of surface deformation
in Western Taiwan: Insight from SAR interferometry. Tectonophysics, 692, 252-
264.
Hung, W.-C., Chen, Y.-A., & Hwang, C. (2020). IoT technology and big data processing
for monitoring and analysing land subsidence in Central Taiwan. Proceedings of
the International Association of Hydrological Sciences, 382, 103-109.
Hung, W.-C., Hwang, C., Chang, C.-P., Yen, J.-Y., Liu, C.-H., & Yang, W.-H. (2010).
Monitoring severe aquifer-system compaction and land subsidence in Taiwan
using multiple sensors: Yunlin, the southern Choushui River Alluvial Fan.
Environmental Earth Sciences, 59, 1535-1548.
Hung, W.-C., Hwang, C., Chen, Y.-A., Chang, C.-P., Yen, J.-Y., Hooper, A., & Yang,
C.-Y. (2011). Surface deformation from persistent scatterers SAR interferometry
and fusion with leveling data: A case study over the Choushui River Alluvial
Fan, Taiwan. Remote Sensing of Environment, 115(4), 957-967.
Hung, W.-C., Hwang, C., Chen, Y.-A., Zhang, L., Chen, K.-H., Wei, S.-H., Huang, D.-
R., & Lin, S.-H. (2017). Land subsidence in Chiayi, Taiwan, from compaction
well, leveling and alos/palsar: Aquaculture-induced relative sea level rise.
Remote Sensing, 10(1), 40.59
Hung, W.-C., Hwang, C., Liou, J.-C., Lin, Y.-S., & Yang, H.-L. (2012). Modeling
aquifer-system compaction and predicting land subsidence in central Taiwan.
Engineering Geology, 147, 78-90.
Hung, W. C., Hwang, C., Sneed, M., Chen, Y. A., Chu, C. H., & Lin, S. H. (2021).
Measuring and interpreting multilayer aquifer‐system compactions for a
sustainable groundwater‐system development. Water Resources Research, 57(4),
e2020WR028194.
Hwang, C., Yang, Y., Kao, R., Han, J., Shum, C., Galloway, D., Sneed, M., Hung, W.,
Cheng, W., & Li, F. (2016). Time-varying land subsidence detected by radar
altimetry: California, Taiwan and north China. Sci Rep 6: 28160. In.
Ku, C.-Y., & Liu, C.-Y. (2023). Modeling of land subsidence using GIS-based artificial
neural network in Yunlin County, Taiwan. Scientific reports, 13(1), 4090.
Leake, S., & Galloway, D. L. (2007). MODFLOW ground-water model: User guide to
the subsidence and aquifer-system compaction package (SUB-WT) for watertable aquifers. US Geological Survey.
Leake, S. A., & Prudic, D. E. (1991). Documentation of a computer program to simulate
aquifer-system compaction using the modular finite-difference ground-water
flow model. US Government Printing Office.
Lohman, S. W. (1970). Definitions of selected ground-water terms: revisions and
conceptual refinements. US Government Printing Office.
Lu, C., Ni, C., Chang, C., Yen, J., & Hung, W. (2015). Combination with precise
leveling and PSInSAR observations to quantify pumping-induced land
subsidence in central Taiwan. Proceedings of the International Association of
Hydrological Sciences, 372(372), 77-82.
Mahmoudpour, M., Khamehchiyan, M., Nikudel, M. R., & Ghassemi, M. R. (2016).
Numerical simulation and prediction of regional land subsidence caused by
groundwater exploitation in the southwest plain of Tehran, Iran. Engineering
Geology, 201, 6-28.
Metzger, L. F., Ikehara, M. E., & Howle, J. F. (2002). Vertical-deformation, water-level,
microgravity, geodetic, water-chemistry, and flow-rate data collected during
injection, storage, and recovery tests at Lancaster, Antelope Valley, California,
September 1995 through September 1998 (Vol. 1). US Geological Survey.
Minderhoud, P. S., Erkens, G., Pham, V., Bui, V. T., Erban, L., Kooi, H., & Stouthamer,
E. (2017). Impacts of 25 years of groundwater extraction on subsidence in the
Mekong delta, Vietnam. Environmental research letters, 12(6), 064006.
Nguyen, M., Lin, Y. N., Tran, Q. C., Ni, C.-F., Chan, Y.-C., Tseng, K.-H., & Chang,
C.-P. (2022). Assessment of long-term ground subsidence and groundwater
depletion in Hanoi, Vietnam. Engineering Geology, 299, 106555.
Poland, J., Lofgren, B., & Riley, F. (1972). Glossary of selected terms useful in studies
of the mechanics of aquifer systems and land subsidence due to fluid withdrawal:
US Geol. Survey Water-Supply Paper, 2025(9).
Riley, F. S. (1984). Developments in borehole extensometry. Land subsidence.
Proceedings of the Third International Symposium on Land Subsidence, Venice,
Italy,60
Schumann, G. J.-P., Moller, D. K., & Mentgen, F. (2016). High-accuracy elevation data
at large scales from airborne single-pass SAR interferometry. Frontiers in Earth
Science, 3, 88.
Smith, R. G., Knight, R., Chen, J., Reeves, J., Zebker, H., Farr, T., & Liu, Z. (2017).
Estimating the permanent loss of groundwater storage in the southern San
Joaquin Valley, California. Water Resources Research, 53(3), 2133-2148.
Sneed, M. (2001). Hydraulic and mechanical properties affecting ground-water flow and
aquifer-system compaction. San Joaquin Valley, California: US Geological
Survey Open-File Report, 01-35.
Terzaghi, K. (1925). Principles of soil mechanics: Settlement and consolidation of clay.
Tsai, J.-P., Chen, Y.-W., Chang, L.-C., Kuo, Y.-M., Tu, Y.-H., & Pan, C.-C. (2015).
High recharge areas in the Choushui River alluvial fan (Taiwan) assessed from
recharge potential analysis and average storage variation indexes. Entropy, 17(4),
1558-1580.
Tung, H., & Hu, J.-C. (2012). Assessments of serious anthropogenic land subsidence in
Yunlin County of central Taiwan from 1996 to 1999 by Persistent Scatterers
InSAR. Tectonophysics, 578, 126-135.
Wang, S.-J., Lee, C.-H., Chen, J.-W., & Hsu, K.-C. (2015). Combining gray system and
poroelastic models to investigate subsidence problems in Tainan, Taiwan.
Environmental Earth Sciences, 73, 7237-7253.
Yang, Y.-J., Hwang, C., Hung, W.-C., Fuhrmann, T., Chen, Y.-A., & Wei, S.-H. (2019).
Surface deformation from Sentinel-1A InSAR: relation to seasonal groundwater
extraction and rainfall in Central Taiwan. Remote Sensing, 11(23), 2817.
Ye, S., Xue, Y., Wu, J., Yan, X., & Yu, J. (2016). Progression and mitigation of land
subsidence in China. Hydrogeology Journal, 24(3), 685.
Zhang, Y., Gong, H., Gu, Z., Wang, R., Li, X., & Zhao, W. J. H. J. (2014).
Characterization of land subsidence induced by groundwater withdrawals in the
plain of Beijing city, China. Hydrogeology Journal, 22(2), 39759
Hung, W.-C., Hwang, C., Liou, J.-C., Lin, Y.-S., & Yang, H.-L. (2012). Modeling
aquifer-system compaction and predicting land subsidence in central Taiwan.
Engineering Geology, 147, 78-90.
Hung, W. C., Hwang, C., Sneed, M., Chen, Y. A., Chu, C. H., & Lin, S. H. (2021).
Measuring and interpreting multilayer aquifer‐system compactions for a
sustainable groundwater‐system development. Water Resources Research, 57(4),
e2020WR028194.
Hwang, C., Yang, Y., Kao, R., Han, J., Shum, C., Galloway, D., Sneed, M., Hung, W.,
Cheng, W., & Li, F. (2016). Time-varying land subsidence detected by radar
altimetry: California, Taiwan and north China. Sci Rep 6: 28160. In.
Ku, C.-Y., & Liu, C.-Y. (2023). Modeling of land subsidence using GIS-based artificial
neural network in Yunlin County, Taiwan. Scientific reports, 13(1), 4090.
Leake, S., & Galloway, D. L. (2007). MODFLOW ground-water model: User guide to
the subsidence and aquifer-system compaction package (SUB-WT) for watertable aquifers. US Geological Survey.
Leake, S. A., & Prudic, D. E. (1991). Documentation of a computer program to simulate
aquifer-system compaction using the modular finite-difference ground-water
flow model. US Government Printing Office.
Lohman, S. W. (1970). Definitions of selected ground-water terms: revisions and
conceptual refinements. US Government Printing Office.
Lu, C., Ni, C., Chang, C., Yen, J., & Hung, W. (2015). Combination with precise
leveling and PSInSAR observations to quantify pumping-induced land
subsidence in central Taiwan. Proceedings of the International Association of
Hydrological Sciences, 372(372), 77-82.
Mahmoudpour, M., Khamehchiyan, M., Nikudel, M. R., & Ghassemi, M. R. (2016).
Numerical simulation and prediction of regional land subsidence caused by
groundwater exploitation in the southwest plain of Tehran, Iran. Engineering
Geology, 201, 6-28.
Metzger, L. F., Ikehara, M. E., & Howle, J. F. (2002). Vertical-deformation, water-level,
microgravity, geodetic, water-chemistry, and flow-rate data collected during
injection, storage, and recovery tests at Lancaster, Antelope Valley, California,
September 1995 through September 1998 (Vol. 1). US Geological Survey.
Minderhoud, P. S., Erkens, G., Pham, V., Bui, V. T., Erban, L., Kooi, H., & Stouthamer,
E. (2017). Impacts of 25 years of groundwater extraction on subsidence in the
Mekong delta, Vietnam. Environmental research letters, 12(6), 064006.
Nguyen, M., Lin, Y. N., Tran, Q. C., Ni, C.-F., Chan, Y.-C., Tseng, K.-H., & Chang,
C.-P. (2022). Assessment of long-term ground subsidence and groundwater
depletion in Hanoi, Vietnam. Engineering Geology, 299, 106555.
Poland, J., Lofgren, B., & Riley, F. (1972). Glossary of selected terms useful in studies
of the mechanics of aquifer systems and land subsidence due to fluid withdrawal:
US Geol. Survey Water-Supply Paper, 2025(9).
Riley, F. S. (1984). Developments in borehole extensometry. Land subsidence.
Proceedings of the Third International Symposium on Land Subsidence, Venice,
Italy,60
Schumann, G. J.-P., Moller, D. K., & Mentgen, F. (2016). High-accuracy elevation data
at large scales from airborne single-pass SAR interferometry. Frontiers in Earth
Science, 3, 88.
Smith, R. G., Knight, R., Chen, J., Reeves, J., Zebker, H., Farr, T., & Liu, Z. (2017).
Estimating the permanent loss of groundwater storage in the southern San
Joaquin Valley, California. Water Resources Research, 53(3), 2133-2148.
Sneed, M. (2001). Hydraulic and mechanical properties affecting ground-water flow and
aquifer-system compaction. San Joaquin Valley, California: US Geological
Survey Open-File Report, 01-35.
Terzaghi, K. (1925). Principles of soil mechanics: Settlement and consolidation of clay.
Tsai, J.-P., Chen, Y.-W., Chang, L.-C., Kuo, Y.-M., Tu, Y.-H., & Pan, C.-C. (2015).
High recharge areas in the Choushui River alluvial fan (Taiwan) assessed from
recharge potential analysis and average storage variation indexes. Entropy, 17(4),
1558-1580.
Tung, H., & Hu, J.-C. (2012). Assessments of serious anthropogenic land subsidence in
Yunlin County of central Taiwan from 1996 to 1999 by Persistent Scatterers
InSAR. Tectonophysics, 578, 126-135.
Wang, S.-J., Lee, C.-H., Chen, J.-W., & Hsu, K.-C. (2015). Combining gray system and
poroelastic models to investigate subsidence problems in Tainan, Taiwan.
Environmental Earth Sciences, 73, 7237-7253.
Yang, Y.-J., Hwang, C., Hung, W.-C., Fuhrmann, T., Chen, Y.-A., & Wei, S.-H. (2019).
Surface deformation from Sentinel-1A InSAR: relation to seasonal groundwater
extraction and rainfall in Central Taiwan. Remote Sensing, 11(23), 2817.
Ye, S., Xue, Y., Wu, J., Yan, X., & Yu, J. (2016). Progression and mitigation of land
subsidence in China. Hydrogeology Journal, 24(3), 685.
Zhang, Y., Gong, H., Gu, Z., Wang, R., Li, X., & Zhao, W. J. H. J. (2014).
Characterization of land subsidence induced by groundwater withdrawals in the
plain of Beijing city, China. Hydrogeology Journal, 22(2), 397.
指導教授 王士榮(Shih-Jung Wang) 審核日期 2024-1-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明