博碩士論文 110323095 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:107 、訪客IP:18.226.226.158
姓名 楊鈺琳(Yu-Lin Yang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 CMOS MEMS電容式磁感測器設計與應用
(DESIGN AND APPLICATION OF CMOS MEMS CAPACITIVE MAGNETIC SENSOR)
相關論文
★ 雙頻帶微型電磁式發電機之研製★ 經驗模態分解法之清醒與麻醉情形下的腦波特徵判別
★ CMOS-MEMS電容式加速度計之設計與製作★ 銅電鍍製程於微小結構製作之應用
★ 平面雙軸式磁通閘之分析與應用★ 低頻振動能量擷取器之設計
★ 聲波聚焦噴墨搭配菲涅爾透鏡之設計★ 微粒子於溶液中操控之模擬
★ 應用希爾伯特黃轉換以C語言環境開發腦機介面訊號處理★ 平面雙軸式磁通閘之製作與改良
★ 單一自由度微型電熱鑷子之設計與分析★ 加工液濁度檢測器之設計
★ Underwater Position Control of Particles★ 立體微型振動發電機之研製
★ 三維導電微成型技術開發應用於微機電系統之研究★ 用於電火花加工的油質感測器
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 此研究為三軸電容式磁力計之設計,採用 UMC 0.18 um CMOS 製程完成機械結構與讀取電路,藉由 MEMS 後製程產生懸浮結構,經由勞倫茲力和電磁力作用於晶片上產生結構位移,使其感測電容發生變化。勞倫茲力作動下 X、Y、Z 三軸靈敏度為 0.13 V/T、0.16 V/T 及 11.52 V/T,在電磁力作用下,Z 軸靈敏度為 0.01 V/T,而最小量測磁場為40 uT。
本設計在感測器上方加入導磁材料使出平面感測磁場增加,勞倫茲力也隨之增強,最終Z軸靈敏度增加約60%。
此感測器能當作電流感測器,通過導線周圍產生的磁場來判斷電流大小,以及利用勞倫茲力中磁場與電流角度關係進行關節角度量測,並期許後續開發更多應用。
摘要(英) This research is the design of a three-axis capacitive magnetometer, UMC 0.18 um CMOS process is used to complete the mechanical structure and readoutcircuits, and suspended structure was created by post-MEMS process. Structural displacement occurs on the chip through Lorentz force and electromagnetic force, which changes the sensing capacitance. Under the Lorentz force motion, the sensitivity of X, Y, and Z axis is 0.13 V/T, 0.16 V/T and 11.52 V/T. Under the electromagnetic force motion, the sensitivity of Z axis is 0.01 V/T, and the minimum measurement magnetic field is 40 uT.
This sensor can be used as a current sensor to measure the magnitude of the current through the magnetic field generated around the wire, and measure the joint angle through the relationship between the magnetic field and the current angle in the Lorentz force, and expect to develop more applications in the future.
關鍵字(中) ★ CMOS MEMS
★ 磁感測器
★ 勞倫茲力
★ 磁力計應用
關鍵字(英) ★ CMOS MEMS
★ magnetometer
★ Lorentz force
★ magnetometer applications
論文目次 目錄
摘要 I
ABSTRACT II
誌謝 III
目錄 IV
圖目錄 VII
表目錄 XII
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 1
1.3 磁感測器 2
1.4 文獻回顧 4
表1.1 各磁力感測器優缺點比較表 9
1.5 論文架構 10
第二章 工作原理與感測介紹 11
2.1 安培定律 11
2.2 勞倫茲力 12
2.3 振動模型 12
2.4 感測架構 16
第三章 元件設計結構與模擬 20
3.1 元件結構設計 20
3.2 模擬分析與結果 25
表3.1 元件共振頻率 28
表3.2 元件整體質量與各模態有效質量 28
第四章 結構製作流程與後製程 30
4.1 CMOS製程概述 30
4.2 MEMS後製程概述 31
4.3 PCB板製作 34
第五章 量測分析討論與應用環境 35
5.1測量環境 35
5.2微結構靜態量測 36
5.3動態輸出訊號量測 42
5.4最低量測磁場與討論 55
5.5加入導磁材料影響 56
5.6應用結果 57
第六章 結論與討論 60
表6.1 勞倫茲力磁感測器比較表 61
參考文獻 62
參考文獻 參考文獻
[1] A. L. Herrera-May, L. A. Aguilera-Cortés, P. J. García-Ramírez, and E. Manjarrez, “Resonant magnetic field sensors based on MEMS technology,” Sensors, vol. 9, no. 10, pp. 7785-7813, 2009.
[2] J. Lee, Y. Oh, S. Oh, H. Chae. “Low Power CMOS-Based Hall Sensor with Simple Structure Using Double-Sampling Delta-Sigma ADC,” Sensors 2020, 20(18),5285.
[3] G. Wu , D. Xu, B. Xiong, D. Feng, Y. Wang, “Resonant magnetic field sensor with capacitive driving and electromagnetic induction sensing,” IEEE electron device letters, vol. 34, pp. 459-61,2013.
[4] E. Mehdizadeh, V. Kumar, X. Guo and S. Pourkamali, “High-Q Lorentz force MEMS magnetometer with internal self-amplification,” SENSORS, 2014 IEEE, Valencia, Spain, 2014, pp. 706-709.
[5] P. Gkotsis, M. L. Castro, F. L. Huerta, A. L. Herrera-May and J. P. Raskin, “Mechanical characterization and modelling of Lorentz force based MEMS magnetic field sensors,” Solid-State Electronics, vol. 112, pp. 68-77, 2015.
[6] S. Ghosh and J. E. Y. Lee, “A lorentz force magnetometer based on a piezoelectric-on-silicon radial-contour mode disk, ” 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), Kaohsiung, Taiwan, 2017, pp. 830-833.
[7] C. I. Chang, M. H. Tsai, Y. C. Liu, C. M. Sun and W. Fang, “Development of multi-axes CMOS-MEMS resonant magnetic sensor using Lorentz and electromagnetic forces, ” 2013 IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS), Taipei, Taiwan, 2013, pp. 193-196.
[8] C. H. Lin, C. H. Song, K. A. Wen, “Multi-Function Microelectromechanical Systems Implementation with an ASIC Compatible CMOS 0.18 μm Process, ” Micromachines 2021, 12, 314.
[9] 王怡仁,《CMOS MEMS 晶片實作與感測電路IP整合》,台灣半導體研究中心,2022.
[10] D. Rana and M. Kaur, “Design and simulation of CMOS MEMS accelerometer behavioral model,” 2016 5th International Conference on Wireless Networks and Embedded Systems (WECON), Rajpura, India, 2016, pp. 1-4.
[11] C. H. Hsieh, C. L. Dai, M. Z. Yang, “Fabrication and Characterization of CMOS-MEMS Magnetic Microsensors, ” Sensors 2013, 13, 14728-14739.
[12] W. L. Sung, F. Y. Lee, C. L. Cheng, C. I. Chang, E. Cheng and W. Fang, “MEMS above CMOS process for single proof-mass 3-AXIS Lorentz-force resonant magnetic sensor, ” 2016 IEEE 29th International Conference on Micro Electro Mechanical Systems (MEMS), Shanghai, China, 2016, pp. 978-981.
[13] C. H. Song and K. A. Wen, “Integration Design of Wide-Dynamic-Range MEMS Magnetometer and Oscillator,” 2018 IEEE International Conference on Semiconductor Electronics (ICSE), Kuala Lumpur, Malaysia, 2018, pp. 17-20.
[14] C. I. Chang, M. H. Tsai, Y. C. Liu, C. M. Sun and W. Fang, “Development of multi-axes CMOS-MEMS resonant magnetic sensor using Lorentz and electromagnetic forces,” 2013 IEEE 26th International Conference on Micro Electro Mechanical Systems (MEMS), Taipei, Taiwan, 2013, pp. 193-196.
[15] V.T. Rouf, M. Li, D.A. Horsley, “Area-efficient three axis MEMS Lorentz force magnetometer,” IEEE Sensors Journal, vol.13(11), pp. 4474-4481, 2013.
指導教授 陳世叡(Shih-Jui Chen) 審核日期 2023-7-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明