摘要(英) |
In the past, a large amount of pumping led to a continuous decrease in the groundwater level in the Taipei Basin, resulting in severe land subsidence. Subsequently, the implementation of a policy prohibiting groundwater pumping led to an increase in the groundwater level. However, this caused engineering problems, such as soil liquefaction. The spatial distribution of geological materials, the geology structure, and the groundwater level are essential for evaluating land subsidence and soil liquefaction. This study develops a heterogeneous hydrogeological model and applies the MODFLOW module for assessing the groundwater level.
Initially, a three-dimensional heterogeneous hydrogeological model in the study area was constructed. Non-consolidated sediment in the Taipei Basin is divided into two main layers. The first layer is the Songshan formation, primarily formed of fine grain materials, such as sand and clay. The second layer is a confined gravel layer below the Songshan formation. Transition probability - Markov chain approach was adopted to analyze the borehole data and generate realizations of the heterogeneous hydrogeological model in the first layer. The results show that the north-south spatial continuity of geological materials in the Taipei Basin is superior to the east-west direction. Furthermore, the hydrogeological model showed a 0.76% consistency with the borehole data.
Subsequently, the hydrogeological model was combined with the groundwater observation data for calibration to the steady-state groundwater level through MODFLOW packages in the Groundwater Modeling System (GMS) software. Compared to observed groundwater level, the coefficients of determination (R²) for the first and second layers were 0.95 and 0.83, respectively, while the root mean square errors (RMSE) were 0.56 and 0.60 meters. Water level changes remained within one meter when pumping volumes were increased or decreased by ten percent, indicating the potential of the Taipei Basin to provide additional water resources. The results provide a reliable assessment for groundwater resource management in the Taipei Basin in the future. |
參考文獻 |
1.Carle, S. F. (1996). Transition Probability-based Indicator Geostatistics. Mathematical Geology, 28, 453-476.
2.Carle, S. F. (1999). T-PROGS: transition probability geostatistical software, version 2.1. Department of Land, Air and Water Resources, University of California, Davis.
3.Carle, S. F., Esser, B. K., & Moran, J. E. (2006). High-resolution simulation of basin-scale nitrate transport considering aquifer system heterogeneity. Geosphere, 2(4).
4.Carle, S. F., & Fogg, G. E. (1997). Modeling Spatial Variability with One and Multidimensional Continuous-Lag Markov Chains. Mathematical Geology, 29, 891-918.
5.Chen, C.T., Hu, J.C., Lu, C.Y., Lee, J.C., & Chan, Y.-C. (2007). Thirty-year land elevation change from subsidence to uplift following the termination of groundwater pumping and its geological implications in the Metropolitan Taipei Basin, Northern Taiwan. Engineering Geology, 95(1-2), 30-47.
6.Domenico, P. A., & Schwartz, F. W. (1990). Physical and Chemical Hydrogeology. New York: John Wiley and Sons.
7.Harbaugh, A. W. (2005). MODFLOW-2005, the US Geological Survey modular ground-water model: the ground-water flow process (Vol. 6): US Department of the Interior, US Geological Survey Reston, VA, USA.
8.Hwang, J. M., & Wu, C. M. (1970). Land subsidence problems in Taipei basin. Land subsidence: proceedings of the Tokyo Symposium, 21-34.
9.Juang, C. H., Gong, W., Martin, J. R., & Chen, Q. (2018). Model selection in geological and geotechnical engineering in the face of uncertainty - Does a complex model always outperform a simple model? Engineering Geology, 242, 184-196.
10.Krumbein, W. C., & Dacey, M. F. (1969). Markov Chains and Embedded Markov Chains in Geology. Mathematical Geology, 1, 79-96.
11.McDonald, M. G., & Harbaugh, A. W. (1988). A modular three-dimensional finite-difference ground-water flow model. US Geological Survey.
12.Refsgaard, J. C., Christensen, S., Sonnenborg, T. O., Seifert, D., Højberg, A. L., & Troldborg, L. (2012). Review of strategies for handling geological uncertainty in groundwater flow and transport modeling. Advances in Water Resources, 36, 36-50.
13.Rushton, K. R. (2004). Groundwater Hydrology: Conceptual and computational models. John Wiley & Sons.
14.Su, P. J., Lin, A. T. S., Hu, J. C., & Teng, L. S. Y. (2018). Tectonic controls on the stratigraphic development of the rifted Taipei Basin: A late quaternary marine-influenced inland half graben. Quaternary International, 482, 27-45.
15.Tran, D. H., Wang, S. J., & Nguyen, Q. C. (2022). Uncertainty of heterogeneous hydrogeological models in groundwater flow and land subsidence simulations – A case study in Huwei Town, Taiwan. Engineering Geology, 298, 106543.
16.Weissmann, G. S., & Fogg, G. E. (1999). Multi-scale alluvial fan heterogeneity modeled with transition geostatistics in a sequence stratigraphic framework. Journal of Hydrology, 226(1-2), 48-65.
17.經濟部地質調查及礦業管理中心,2014。地下水水文地質與補注模式研究-補注區劃設與資源量評估(2臺北盆地),國立陽明交通大學。
18.江崇榮,張閔翔,林燕初,黃智昭,蘇泰維,陳瑞娥,2012。臺北盆地之水文地質初探,大臺北地區防災地質研討會論文集。
19.吳建民,1968。臺北盆地地盤沈陷問題之研究,水利工程,4,53-81。
20.周彥呂,2008。臺北盆地地下水利用可行性之評估及管理,國立台灣大學生物資源暨農學院生物環境系統工程學系碩士論文。
21.林佩儀,2007。晚第四紀以來臺北盆地沉積物的組成特性,國立臺灣大學理學院地質科學系暨研究所碩士論文。
22.林紹弘,2018。利用持久性散射體合成孔徑雷達干涉技術與數值模型探討臺北盆地地下水引起的地表變形與水力參數,國立臺灣大學理學院地質科學系暨研究所碩士論文。
23.林銘軒,2012。臺北盆地水文地質架構及地層下陷之探討,國立臺灣大學理學院地質科學系暨研究所碩士論文。
24.林頤謙,2023。考慮地質模型與參數不確定性對Vs30分布圖之影響—以臺北盆地測試區為例,國立中央大學應用地質研究所碩士論文。
25.陳文山,林朝宗,楊志成,費立沅,謝凱旋,龔慧敏,楊小青,2008。 晚期更新世以來臺北盆地沉積環境與構造演化的時空演變,經濟部中央地質調查所彙刊,21,61-106。
26.黃水添,陳景文,2002。臺北盆地地下水位改變對地層下陷與液化潛能與之影響,國立成功大學土木工程研究所碩士論文。
27.歐晉德,李延恭,鄭在仁,1983。臺北盆地松山層地下水位及水壓分佈對基礎工程影響,土木水利,10(3),89-102。
28.鄧屬予,2006。臺北盆地地質研究,西太平洋地質科學,6,1-28。
29.鄭文柱,2004。臺北盆地地下水位變化對土壤液化潛勢及地層下陷之影響,國立成功大學土木工程研究所碩士論文。
30.譚志豪,冀樹勇,顧承宇,林坤霖,2004。臺北盆地區域性三圍地下水流動數值模擬,工程技術,93。
31.蘇品如,林殿順,胡植慶,2016。臺北盆地景美層岩相及沉積演育新解,經濟部中央地質調查所彙刊,29,173-196。 |