博碩士論文 110356004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:43 、訪客IP:3.133.152.189
姓名 蕭琮芳(Tsung-Fang Hsiao)  查詢紙本館藏   畢業系所 環境工程研究所在職專班
論文名稱 利用綠色深共熔溶劑製備導電性凝膠
(Synthesis of conductive gel using green deep eutectic solvent)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-7-1以後開放)
摘要(中) 離子凝膠因其良好的導電性、熱穩定性、電化學穩定性及不易揮發的性質成為近年興起的熱門材料。然而目前的離子凝膠具有成本高昂、毒性較強、製程麻煩等問題。本研究提出了一種物理性綠色導電凝膠的簡易製備方法,利用深共熔溶劑結合聚乙烯醇和卡波膠兩種聚合物開發一款製程簡易、低成本、具高機械強度及自修復能力且符合綠色化學精神的導電性凝膠,在這種深共熔凝膠中,藉由微凝膠阻塞系統使聚乙烯醇產生均勻分佈的結晶域充當穩定的物理交聯劑,由氫鍵鏈結的深共熔凝膠在擁有優秀機械性質的同時又具有很強的自我癒合能力和可回收性。具體來說,這種凝膠表現出1290% 的優異拉伸性,可承受 1.02 MPa 的高強度應力,且具有0.052 S/m 的優秀導電率。由於可達到97% 的回收效率,用物理反應法製造的深共熔凝膠具有很高的耐用型。此種凝膠在可穿戴電子設備、人機系統和軟機器人技術方面具有廣闊的應用前景。
摘要(英) Ionogels, which are formed by immobilization of large amounts of ionic liquids (ILs) in polymeric networks, have received a lot of attention for their diverse usages in biomedical applications. However, the usage of ILs in real-life and human-related applications is limited because ILs are toxic and expensive. In this study, a green physical eutectogel based on polyvinyl alcohol and carpobol is prepared by immobilizing deep eutectic solvents (DESs) inside the polymeric complex. The eutectogel features one-step simple fabrication process, good mechanical strength, sufficient conductivity, self-healing ability and recyclability. Specifically, this gel exhibits an excellent stretchability of 1290%, a superior tensile strength of 1.02 MPa, and an excellent electrical conductivity of 0.052 S/m. An outstanding recycling rate of 97% ensures its long-term usage in practical applications. This eutectogel can find widespread uses in a variety of applications such as wearable electronics, strain sensor and soft robotics.
關鍵字(中) ★ 深共熔溶劑
★ 凝膠
關鍵字(英) ★ deep eutectic solvent
★ gel
論文目次 目錄
第一章 前言 1
1.1研究緣起 1
1.2研究目的 1
1.3研究流程 2
第二章 文獻回顧 4
2.1 深共熔溶劑 4
2.2高分子聚合物 7
2.3聚合物相關的離子凝膠製造機制 10
第三章 實驗方法 13
3.1實驗藥品與材料 13
3.2儀器設備 14
3.3實驗方法 15
3.3.1製備Car-PVA 深共熔凝膠 15
3.3.2配製卡波膠-DES溶液 16
3.3.3 Car-PVA 深共熔凝膠的自我癒合與回收 16
A. Car-PVA 深共熔凝膠的自我癒合 16
B. 回收Car-PVA 深共熔凝膠 16
3.3.3深共熔凝膠的表徵 17
A. 流變分析 17
B.結構分析 17
C. 拉伸應力分析 17
D. 導電性量測 18
第四章 結果與討論 19
4.1 卡波膠-DES溶液的流變特性 19
4.2 Car-PVA 深共熔凝膠之結構與表徵 23
4.3 拉伸性與導電性測試 26
4.3.1 Car-PVA 深共熔凝膠的機械特性和離子導電率 26
4.3.2 Car3-PVA15 深共熔凝膠的彈性遲滯特性 28
4.4 Car3-PVA15 深共熔凝膠的癒合力測試與回收再利用 31
第五章 結論與建議 34
5.1 結論 34
5.2 建議 34
參考文獻 36
參考文獻 [1] B. Sun, X. Huang, Seeking advanced thermal management for stretchable electronics, npj Flexible Electronics, 5 (2021) 1-5.
[2] Z. Ma, Q. Huang, Q. Xu, Q. Zhuang, X. Zhao, Y. Yang, H. Qiu, Z. Yang, C. Wang, Y. Chai, Permeable superelastic liquid-metal fibre mat enables biocompatible and monolithic stretchable electronics, Nature Materials, 20 (2021) 859-868.
[3] Y. Wu, Y. Ma, H. Zheng, S. Ramakrishna, Piezoelectric materials for flexible and wearable electronics: A review, Materials & Design, 211 (2021) 110164.
[4] Z. Zhao, K. Xia, Y. Hou, Q. Zhang, Z. Ye, J. Lu, Designing flexible, smart and self-sustainable supercapacitors for portable/wearable electronics: from conductive polymers, Chemical Society Reviews, (2021).
[5] D. Wan, J. Yang, X. Cui, N. Ma, Z. Wang, Y. Li, P. Li, Y. Zhang, Z.-H. Lin, S. Sang, Human body-based self-powered wearable electronics for promoting wound healing driven by biomechanical motions, Nano Energy, 89 (2021) 106465.
[6] J. Dong, Y. Peng, L. Pu, K. Chang, L. Li, C. Zhang, P. Ma, Y. Huang, T. Liu, Perspiration-Wicking and Luminescent On-Skin Electronics Based on Ultrastretchable Janus E-Textiles, Nano Letters, 22 (2022) 7597-7605.
[7] A.S. Farooq, P. Zhang, A comprehensive review on the prospects of next-generation wearable electronics for individualized health monitoring, assistive robotics, and communication, Sensors and Actuators A: Physical, (2022) 113715.
[8] M.R. Chetyrkina, F.S. Talalaev, L.V. Kameneva, S.V. Kostyuk, P.A. Troshin, Vat dyes: promising biocompatible organic semiconductors for wearable electronics applications, Journal of Materials Chemistry C, 10 (2022) 3224-3231.
[9] B. Ying, R.Z. Chen, R. Zuo, J. Li, X. Liu, An anti‐freezing, ambient‐stable and highly stretchable ionic skin with strong surface adhesion for wearable sensing and soft robotics, Advanced Functional Materials, 31 (2021) 2104665.
[10] F. Hartmann, M. Baumgartner, M. Kaltenbrunner, Becoming sustainable, the new frontier in soft robotics, Advanced Materials, 33 (2021) 2004413.
[11] K.W. Cho, S.-H. Sunwoo, Y.J. Hong, J.H. Koo, J.H. Kim, S. Baik, T. Hyeon, D.-H. Kim, Soft bioelectronics based on nanomaterials, Chemical Reviews, 122 (2021) 5068-5143.
[12] C. Wang, T. Yokota, T. Someya, Natural biopolymer-based biocompatible conductors for stretchable bioelectronics, Chemical Reviews, 121 (2021) 2109-2146.
[13] Y. Gao, Y. Gao, Z. Zhang, Y. Wang, X. Ren, F. Jia, G. Gao, Highly conductive hydrogel sensors driven by amylose with freezing and dehydration resistances, Journal of Materials Chemistry C, 10 (2022) 12873-12882.
[14] W. Xie, J. Duan, H. Wang, J. Li, R. Liu, B. Yu, S. Liu, J. Zhou, Ultra-stretchable, bio-inspired ionic skins that work stably in various harsh environments, Journal of Materials Chemistry A, 6 (2018) 24114-24119.
[15] H. Wang, J. Lu, H. Huang, S. Fang, M. Zubair, Z. Peng, A highly elastic, Room-temperature repairable and recyclable conductive hydrogel for stretchable electronics, Journal of Colloid and Interface Science, 588 (2021) 295-304.
[16] L. Wang, Y. Wang, S. Yang, X. Tao, Y. Zi, W.A. Daoud, Solvent-free adhesive ionic elastomer for multifunctional stretchable electronics, Nano Energy, 91 (2022) 106611.
[17] Y. Lu, X. Qu, S. Wang, Y. Zhao, Y. Ren, W. Zhao, Q. Wang, C. Sun, W. Wang, X. Dong, Ultradurable, freeze-resistant, and healable MXene-based ionic gels for multi-functional electronic skin, Nano Research, 15 (2022) 4421-4430.
[18] X. Xu, K. San Hui, K.N. Hui, H. Wang, J. Liu, Recent advances in the interface design of solid-state electrolytes for solid-state energy storage devices, Materials Horizons, 7 (2020) 1246-1278.
[19] T.P.T. Pham, C.-W. Cho, Y.-S. Yun, Environmental fate and toxicity of ionic liquids: a review, Water research, 44 (2010) 352-372.
[20] B.B. Hansen, S. Spittle, B. Chen, D. Poe, Y. Zhang, J.M. Klein, A. Horton, L. Adhikari, T. Zelovich, B.W. Doherty, Deep eutectic solvents: A review of fundamentals and applications, Chemical reviews, 121 (2020) 1232-1285.
[21] E.L. Smith, A.P. Abbott, K.S. Ryder, Deep eutectic solvents (DESs) and their applications, Chemical reviews, 114 (2014) 11060-11082.
[22] M.P. Garralaga, L. Lomba, A. Leal-Duaso, S. Gracia-Barberán, E. Pires, B. Giner, Ecotoxicological study of bio-based deep eutectic solvents formed by glycerol derivatives in two aquatic biomodels, Green Chemistry, 24 (2022) 5228-5241.
[23] G. Zhu, J. Zhang, J. Huang, X. Yu, J. Cheng, Q. Shang, Y. Hu, C. Liu, M. Zhang, L. Hu, Self-Healing, Antibacterial, and 3D-Printable Polymerizable Deep Eutectic Solvents Derived from Tannic Acid, ACS Sustainable Chemistry & Engineering, (2022).
[24] J.D. Mota-Morales, R.J. Sánchez-Leija, A. Carranza, J.A. Pojman, F. del Monte, G. Luna-Bárcenas, Free-radical polymerizations of and in deep eutectic solvents: Green synthesis of functional materials, Progress in Polymer Science, 78 (2018) 139-153.
[25] Y. Wang, J. Wang, Z. Ma, L. Yan, A Highly Conductive, Self-Recoverable, and Strong Eutectogel of a Deep Eutectic Solvent with Polymer Crystalline Domain Regulation, ACS Applied Materials & Interfaces, 13 (2021) 54409-54416.
[26] Y. Feng, J. Yu, D. Sun, C. Dang, W. Ren, C. Shao, R. Sun, Extreme environment-adaptable and fast self-healable eutectogel triboelectric nanogenerator for energy harvesting and self-powered sensing, Nano Energy, 98 (2022) 107284.
[27] H. Zhang, T. Gao, L. Jiang, X. Meng, J. Wang, N. Ma, H. Wei, X. Zhang, Conductive and Transparent Poly (N-isopropylacrylamide) Hydrogels with Tunable LCST Copolymerized by the Green Acrylamide-Based Deep Eutectic Solvent, European Polymer Journal, (2022) 111266.
[28] S. Hong, Y. Yuan, C. Liu, W. Chen, L. Chen, H. Lian, H. Liimatainen, A stretchable and compressible ion gel based on a deep eutectic solvent applied as a strain sensor and electrolyte for supercapacitors, Journal of Materials Chemistry C, 8 (2020) 550-560.
[29] Y. Jiang, S. Li, Y. Chen, S. Yan, M. Tao, P. Wen, Facile and green preparation of superfast responsive macroporous polyacrylamide hydrogels by frontal polymerization of polymerizable deep eutectic monomers, Industrial & Engineering Chemistry Research, 59 (2020) 1526-1533.
[30] Y. Wu, Y. Deng, K. Zhang, J. Qiu, J. Wu, L. Yan, Ultrahigh Conductive and Stretchable Eutectogel Electrolyte for High-Voltage Flexible Antifreeze Quasi-solid-state Zinc-Ion Hybrid Supercapacitor, ACS Applied Energy Materials, 5 (2022) 3013-3021.
[31] F.M. Perna, P. Vitale, V. Capriati, Deep eutectic solvents and their applications as green solvents, Current Opinion in Green and Sustainable Chemistry, 21 (2020) 27-33.
[32] A.K. Halder, M.N.D. Cordeiro, Probing the environmental toxicity of deep eutectic solvents and their components: An in silico modeling approach, ACS Sustainable Chemistry & Engineering, 7 (2019) 10649-10660.
[33] S. Wang, Z. Zhang, Z. Lu, Z. Xu, A novel method for screening deep eutectic solvent to recycle the cathode of Li-ion batteries, Green Chemistry, 22 (2020) 4473-4482.
[34] S. Wang, C. Xu, Z. Lei, J. Li, J. Lu, Q. Xiang, X. Chen, Y. Hua, Y. Li, Recycling of zinc oxide dust using ChCl-urea deep eutectic solvent with nitrilotriacetic acid as complexing agents, Minerals Engineering, 175 (2022) 107295.
[35] S. Geng, H. Dong, Y. Lu, S. Wang, Y. Huang, X. Zou, Y. Zhang, Q. Xu, X. Lu, Electrolytic production of Cu-Ni alloy from nickel matte through chlorination and deep eutectic solvent leaching-electrodeposition, Separation and Purification Technology, 242 (2020) 116779.
[36] Z. Wu, R.-R. Huang, H. Yu, Y.-C. Xie, X.-Y. Lv, J. Su, Y.-F. Long, Y.-X. Wen, Deep eutectic solvent synthesis of LiMnPO4/C nanorods as a cathode material for Lithium Ion Batteries, Materials, 10 (2017) 134.
[37] Y. Wang, Z. Niu, Q. Zheng, C. Zhang, J. Ye, G. Dai, Y. Zhao, X. Zhang, Zn-based eutectic mixture as anolyte for hybrid redox flow batteries, Scientific Reports, 8 (2018) 5740.
[38] C.L. Boldrini, N. Manfredi, F.M. Perna, V. Trifiletti, V. Capriati, A. Abbotto, Dye‐sensitized solar cells that use an aqueous choline chloride‐based deep eutectic solvent as effective electrolyte solution, Energy Technology, 5 (2017) 345-353.
[39] B. Wang, C. Tian, C. Zheng, L. Wang, H. Fu, A simple and large-scale strategy for the preparation of Ag nanoparticles supported on resin-derived carbon and their antibacterial properties, Nanotechnology, 20 (2008) 025603.
[40] K.Y. Lau, M. Piah, Polymer nanocomposites in high voltage electrical insulation perspective: a review, Malaysian Polymer Journal, 6 (2011) 58-69.
[41] M. Xiao, B.X. Du, Review of high thermal conductivity polymer dielectrics for electrical insulation, High Voltage, 1 (2016) 34-42.
[42] C. Zhao, C. Wang, Z. Yue, K. Shu, G.G. Wallace, Intrinsically stretchable supercapacitors composed of polypyrrole electrodes and highly stretchable gel electrolyte, ACS applied materials & interfaces, 5 (2013) 9008-9014.
[43] L. Dong, X. Zhou, S. Zheng, Z. Luo, Y. Nie, X. Feng, J. Zhu, Z. Wang, X. Lu, L. Mu, Liquid Metal@ Mxene Spring Supports Ionic Gel with Excellent Mechanical Properties for High-Sensitivity Wearable Strain Sensor, Chemical Engineering Journal, (2023) 141370.
[44] W.J. Mun, B. Kim, S.J. Moon, J.H. Kim, Multifunctional, bicontinuous, flexible comb copolymer electrolyte for solid-state supercapacitors, Chemical Engineering Journal, 454 (2023) 140386.
[45] H.J. Min, Y.J. Kim, M. Kang, C.-H. Seo, J.-H. Kim, J.H. Kim, Crystalline elastomeric block copolymer/ionic liquid membranes with enhanced mechanical strength and gas separation properties, Journal of Membrane Science, 660 (2022) 120837.
[46] K. Hanabusa, M. Suzuki, Development of low-molecular-weight gelators and polymer-based gelators, Polymer journal, 46 (2014) 776-782.
[47] R. Ketz, R. Prud′homme, W. Graessley, Rheology of concentrated microgel solutions, Rheologica acta, 27 (1988) 531-539.
[48] T. Ebata, A. Fujii, N. Mikami, Structures of size-selected hydrogen-bonded phenol-(H2O) n clusters in S0, S1 and ion, International journal of mass spectrometry and ion processes, 159 (1996) 111-124.
[49] H. Soenen, S. Heyrman, X. Lu, P. Redelius, Aging of bituminous films under ambient conditions compared to accelerated aging in the pressure aging vessel, ISAP 2012 International Symposium on Heavy Duty Asphalt Pavements and Bridge …, 2012.
[50] K.I.A. Tarmidzi, An Experimental Study of Carboxylic Acid Prepared by Carbon Dioxide (CO2), UMP, 2010.
[51] X. Li, J. Liu, Q. Guo, X. Zhang, M. Tian, Polymerizable Deep Eutectic Solvent‐Based Skin‐Like Elastomers with Dynamic Schemochrome and Self‐Healing Ability, Small, 18 (2022) 2201012.
[52] K. Zhang, G. Chen, J. Yang, J. Tian, M. He, Polymerizable deep eutectic solvent-based mechanically strong and ultra-stretchable conductive elastomers for detecting human motions, Journal of Materials Chemistry A, 9 (2021) 4890-4897.
指導教授 秦靜如 曹恆光(Ching-Ju Chin Heng-Kwong Tsao) 審核日期 2023-6-7
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明