參考文獻 |
Aakra, A., Utåker, J., Pommerening-Röser, A., Koops, H.-P., & Nes, I. F. (2001). Detailed phylogeny of ammonia-oxidizing bacteria determined by rDNA sequences and DNA homology values. International Journal of Systematic and Evolutionary Microbiology, 51(6), 2021-2030.
Barker, P., & Dold, P. (1997). General model for biological nutrient removal activated‐sludge systems: model presentation. Water Environment Research, 69(5), 969-984.
Bishop, D. F., Heidman, J. A., & Stamberg, J. B. (1976). Single-stage nitrification-denitrification. Journal (Water Pollution Control Federation), 520-532.
Carucci, A., Ramadori, R., Rossetti, S., & Tomei, M. (1996). Kinetics of denitrification reactions in single sludge systems. Water research, 30(1), 51-56.
Charpentier, J., Florentz, M., & David, G. (1987). Oxidation-reduction potential (ORP) regulation: a way to optimize pollution removal and energy savings in the low load activated sludge process. Water Science and Technology, 19(3-4), 645-655.
Cherchi, C., Onnis‐Hayden, A., El‐Shawabkeh, I., & Gu, A. Z. (2009). Implication of using different carbon sources for denitrification in wastewater treatments. Water Environment Research, 81(8), 788-799.
Ciudad, G., Werner, A., Bornhardt, C., Muñoz, C., & Antileo, C. (2006). Differential kinetics of ammonia-and nitrite-oxidizing bacteria: a simple kinetic study based on oxygen affinity and proton release during nitrification. Process Biochemistry, 41(8), 1764-1772.
Elefsiniotis, P., & Li, D. (2006). The effect of temperature and carbon source on denitrification using volatile fatty acids. Biochemical Engineering Journal, 28(2), 148-155.
Fan, J., Tao, T., Zhang, J., & You, G.-l. (2009). Performance evaluation of a modified anaerobic/anoxic/oxic (A2/O) process treating low strength wastewater. Desalination, 249(2), 822-827.
Fillos, J., Katehis, D., Ramalingam, K., Carrio, L., & Gopalakrishnan, K. (2000). Determination of nitrifier growth rates in NYC water pollution control plants. WEFTEC 2000,
Fuerhacker, M., Bauer, H., Ellinger, R., Sree, U., Schmid, H., Zibuschka, F., & Puxbaum, H. (2000). Approach for a novel control strategy for simultaneous nitrification/denitrification in activated sludge reactors. Water research, 34(9), 2499-2506.
Haas, C. N. (1979). Oxygen uptake rate as an activated sludge control parameter. Journal (Water Pollution Control Federation), 938-943.
Henze, M., Gujer, W., Mino, T., Matsuo, T., Wentzel, M., & Marais, G. (1995). Wastewater and biomass characterization for the activated sludge model no. 2: biological phosphorus removal. Water Science and Technology, 31(2), 13-23.
Könneke, M., Bernhard, A. E., de La Torre, J. R., Walker, C. B., Waterbury, J. B., & Stahl, D. A. (2005). Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature, 437(7058), 543-546.
Kampschreur, M. J., Temmink, H., Kleerebezem, R., Jetten, M. S., & van Loosdrecht, M. C. (2009). Nitrous oxide emission during wastewater treatment. Water research, 43(17), 4093-4103.
Komorowska-Kaufman, M., Majcherek, H., & Klaczyński, E. (2006). Factors affecting the biological nitrogen removal from wastewater. Process Biochemistry, 41(5), 1015-1021.
Koops, H.-P., & Pommerening-Röser, A. (2001). Distribution and ecophysiology of the nitrifying bacteria emphasizing cultured species. FEMS Microbiology ecology, 37(1), 1-9.
Ludzack, F., & Ettinger, M. (1962). Controlling operation to minimize activated sludge effluent nitrogen. Journal (Water Pollution Control Federation), 920-931.
Madoni, P., Davoli, D., & Guglielmi, L. (1999). Response of SOUR and AUR to heavy metal contamination in activated sludge. Water research, 33(10), 2459-2464.
Malovanyy, M., Shandrovych, V., Malovanyy, A., & Polyuzhyn, I. (2016). Comparative analysis of the effectiveness of regulation of aeration depending on the quantitative characteristics of treated sewage water. Journal of Chemistry, 2016.
Metcalf, L., Eddy, H. P., & Tchobanoglous, G. (1991). Wastewater engineering: treatment, disposal, and reuse (Vol. 4). McGraw-Hill New York.
Molinos-Senante, M., Hernández-Sancho, F., & Sala-Garrido, R. (2010). Economic feasibility study for wastewater treatment: A cost–benefit analysis. Science of the Total Environment, 408(20), 4396-4402.
Monod, J. (1949). The growth of bacterial cultures. Annual review of microbiology, 3(1), 371-394.
Nowak, O., & Svardal, K. (1993). Observations on the kinetics of nitrification under inhibiting conditions caused by industrial wastewater compounds. Water Science and Technology, 28(2), 115-123.
Panswad, T., & Anan, C. (1999). Specific oxygen, ammonia, and nitrate uptake rates of a biological nutrient removal process treating elevated salinity wastewater. Bioresource Technology, 70(3), 237-243.
Park, H.-D., Wells, G. F., Bae, H., Criddle, C. S., & Francis, C. A. (2006). Occurrence of ammonia-oxidizing archaea in wastewater treatment plant bioreactors. Applied and environmental microbiology, 72(8), 5643-5647.
Parker, D. S. (1975). Process Design Manual for Nitrogen Control.
Sawyer, C. N., & Bradney, L. (1945). Rising of activated sludge in final settling tanks. sewage works journal, 17(6), 1191-1209.
Shen, J., He, R., Han, W., Sun, X., Li, J., & Wang, L. (2009). Biological denitrification of high-nitrate wastewater in a modified anoxic/oxic-membrane bioreactor (A/O-MBR). Journal of Hazardous Materials, 172(2-3), 595-600.
Stenstrom, M. K., & Poduska, R. A. (1980). The effect of dissolved oxygen concentration on nitrification. Water research, 14(6), 643-649.
Surmacz-Gorska, J., Gernaey, K., Demuynck, C., Vanrolleghem, P., & Verstraete, W. (1996). Nitrification monitoring in activated sludge by oxygen uptake rate (OUR) measurements. Water research, 30(5), 1228-1236.
Thörn, M., & Sörensson, F. (1996). Variation of nitrous oxide formation in the denitrification basin in a wastewater treatment plant with nitrogen removal. Water research, 30(6), 1543-1547.
U.S. EPA,1993. Retrieved from http://www.epa.state.il.us/public-notices/2004/lincoln-trails-mhp/draft-permit.pdf.
Vijaranakul, U., Nadakavukaren, M. J., Bayles, D. O., Wilkinson, B. J., & Jayaswal, R. K. (1997). Characterization of an NaCl-sensitive Staphylococcus aureus mutant and rescue of the NaCl-sensitive phenotype by glycine betaine but not by other compatible solutes. Applied and environmental microbiology, 63(5), 1889-1897.
Wang, Y. Y., Zhang, Z. X., Yan, M., Gao, N. Y., Yang, J., & Ren, M. H. (2010). Impact of operating conditions on nitrogen removal using cyclic activated sludge technology (CAST). Journal of Environmental Science and Health, Part A, 45(3), 370-376.
Wild Jr, H. E., Sawyer, C. N., & McMahon, T. C. (1971). Factors affecting nitrification kinetics. Journal (Water Pollution Control Federation), 1845-1854.
Wuhrmann, K. (1964). Nitrogen removal in sewage treatment processes: With 9 figures in the text and on 2 folders. Internationale Vereinigung für theoretische und angewandte Limnologie: Verhandlungen, 15(2), 580-596.
Zhao, H. W., Mavinic, D. S., Oldham, W. K., & Koch, F. A. (1999). Controlling factors for simultaneous nitrification and denitrification in a two-stage intermittent aeration process treating domestic sewage. Water research, 33(4), 961-970.
內政部營建署污水處理廠設計與解說. 污水處理廠設計與解說.
張聖雄, 陳見財, & 陳良棟. (2006). 廢水生物處理程序常見問題實務探討. In: 工業污染防治. |