參考文獻 |
1. Veerman, J., Reverse electrodialysis: design and optimization by modeling and experimentation. Rijksuniversiteit Groningen: Groningen, The Netherlands, 2010.
2. Pawlowski, S., J. Crespo, and S. Velizarov, Sustainable power generation from salinity gradient energy by reverse electrodialysis, in Electrokinetics Across Disciplines and Continents. 2016, Springer. p. 57-80.
3. Yang, E., et al., Critical review of bioelectrochemical systems integrated with membrane-based technologies for desalination, energy self-sufficiency, and high-efficiency water and wastewater treatment. 2019. 452: p. 40-67.
4. McCarty, P.L., J. Bae, and J. Kim, Domestic wastewater treatment as a net energy producer–can this be achieved? 2011, ACS Publications.
5. Hong, J.G., et al., Modeling of power generation from the mixing of simulated saline and freshwater with a reverse electrodialysis system: The effect of monovalent and multivalent ions. 2013. 110: p. 244-251.
6. Mei, Y. and C.Y.J.D. Tang, Recent developments and future perspectives of reverse electrodialysis technology: A review. 2018. 425: p. 156-174.
7. Guler, E., K.J.J.o.M.S. Nijmeijer, and Research, Reverse electrodialysis for salinity gradient power generation: challenges and future perspectives. 2018. 4(3): p. 108-110.
8. Vermaas, D.A., et al., High efficiency in energy generation from salinity gradients with reverse electrodialysis. 2013. 1(10): p. 1295-1302.
9. Loeb, S., One hundred and thirty benign and renewable megawatts from Great Salt Lake? The possibilities of hydroelectric power by pressure-retarded osmosis. Desalination, 2001. 141(1): p. 85-91.
10. Zoungrana, A. and M. Çakmakci, From non‐renewable energy to renewable by harvesting salinity gradient power by reverse electrodialysis: A review. International Journal of Energy Research, 2021. 45(3): p. 3495-3522.
11. Mora, D.A. and A. de Rijck, Blue energy: salinity gradient power in practice. Global Sustainable Development Report; United Nations: New York, NY, USA, 2015.
12. Evans, A., V. Strezov, and T.J. Evans, Assessment of sustainability indicators for renewable energy technologies. Renewable and sustainable energy reviews, 2009. 13(5): p. 1082-1088.
13. Yip, N.Y., et al., Salinity gradients for sustainable energy: primer, progress, and prospects. Environmental science & technology, 2016. 50(22): p. 12072-12094.
14. Post, J.W., et al., Salinity-gradient power: Evaluation of pressure-retarded osmosis and reverse electrodialysis. 2007. 288(1-2): p. 218-230.
15. Długołȩcki, P., et al., Practical potential of reverse electrodialysis as process for sustainable energy generation. Environmental science & technology, 2009. 43(17): p. 6888-6894.
16. 陈霞, et al., 反向电渗析在新能源及环境保护应用中的研究进展. 2018. 69(1): p. 188-202.
17. Geise, G.M., et al., Salt concentration differences alter membrane resistance in reverse electrodialysis stacks. Environmental Science & Technology Letters, 2014. 1(1): p. 36-39.
18. Długołęcki, P., et al., Current status of ion exchange membranes for power generation from salinity gradients. Journal of Membrane Science, 2008. 319(1-2): p. 214-222.
19. Hong, J.G., et al., Potential ion exchange membranes and system performance in reverse electrodialysis for power generation: A review. Journal of Membrane Science, 2015. 486: p. 71-88.
20. Strathmann, H., Ion-exchange membrane separation processes. 2004: Elsevier.
21. Güler, E., et al., Performance-determining membrane properties in reverse electrodialysis. Journal of Membrane Science, 2013. 446: p. 266-276.
22. Galama, A., et al., Membrane resistance: The effect of salinity gradients over a cation exchange membrane. Journal of membrane science, 2014. 467: p. 279-291.
23. Suda, F., T. Matsuo, and D. Ushioda, Transient changes in the power output from the concentration difference cell (dialytic battery) between seawater and river water. Energy, 2007. 32(3): p. 165-173.
24. Veerman, J., et al., Reverse electrodialysis: Comparison of six commercial membrane pairs on the thermodynamic efficiency and power density. Journal of Membrane Science, 2009. 343(1): p. 7-15.
25. Hong, J.G. and Y. Chen, Nanocomposite reverse electrodialysis (RED) ion-exchange membranes for salinity gradient power generation. Journal of Membrane Science, 2014. 460: p. 139-147.
26. Fontananova, E., et al., Effect of solution concentration and composition on the electrochemical properties of ion exchange membranes for energy conversion. Journal of Power Sources, 2017. 340: p. 282-293.
27. Vermaas, D.A., et al., Influence of multivalent ions on renewable energy generation in reverse electrodialysis. Energy & Environmental Science, 2014. 7(4): p. 1434-1445.
28. Veerman, J., et al., Reverse electrodialysis: Performance of a stack with 50 cells on the mixing of sea and river water. Journal of Membrane Science, 2009. 327(1): p. 136-144.
29. Vermaas, D.A., M. Saakes, and K. Nijmeijer, Doubled Power Density from Salinity Gradients at Reduced Intermembrane Distance. Environmental Science & Technology, 2011. 45(16): p. 7089-7095.
30. Nagarale, R.K., G.S. Gohil, and V.K. Shahi, Recent developments on ion-exchange membranes and electro-membrane processes. Advances in Colloid and Interface Science, 2006. 119(2): p. 97-130.
31. Chang, H.-K., E. Choi, and J. Park, Paper-based energy harvesting from salinity gradients. Lab on a Chip, 2016. 16(4): p. 700-708.
32. Zhu, X., W. He, and B.E. Logan, Reducing pumping energy by using different flow rates of high and low concentration solutions in reverse electrodialysis cells. Journal of Membrane Science, 2015. 486: p. 215-221.
33. Vermaas, D.A., M. Saakes, and K. Nijmeijer, Enhanced mixing in the diffusive boundary layer for energy generation in reverse electrodialysis. Journal of Membrane Science, 2014. 453: p. 312-319.
34. Kim, H.-K., et al., High power density of reverse electrodialysis with pore-filling ion exchange membranes and a high-open-area spacer. Journal of Materials Chemistry A, 2015. 3(31): p. 16302-16306.
35. Gi Hong, J. and Y. Chen, Evaluation of electrochemical properties and reverse electrodialysis performance for porous cation exchange membranes with sulfate-functionalized iron oxide. Journal of Membrane Science, 2015. 473: p. 210-217.
36. Gi Hong, J., S. Glabman, and Y. Chen, Effect of inorganic filler size on electrochemical performance of nanocomposite cation exchange membranes for salinity gradient power generation. Journal of Membrane Science, 2015. 482: p. 33-41.
37. Zhang, H., et al., A novel hybrid poly (vinyl alcohol)(PVA)/poly (2, 6-dimethyl-1, 4-phenylene oxide)(PPO) membranes for reverse electrodialysis power system. Electrochimica Acta, 2017. 239: p. 65-73.
38. Cho, D.H., et al., Effect of cationic groups in poly(arylene ether sulfone) membranes on reverse electrodialysis performance. Chemical Communications, 2017. 53(15): p. 2323-2326.
39. Avci, A.H., et al., Effect of Mg2+ ions on energy generation by Reverse Electrodialysis. Journal of Membrane Science, 2016. 520: p. 499-506.
40. Post, J.W., H.V. Hamelers, and C.J. Buisman, Influence of multivalent ions on power production from mixing salt and fresh water with a reverse electrodialysis system. Journal of Membrane Science, 2009. 330(1-2): p. 65-72.
41. Vaselbehagh, M., et al., Biofouling phenomena on anion exchange membranes under the reverse electrodialysis process. Journal of Membrane Science, 2017. 530: p. 232-239.
42. Burheim, O.S., et al., Improved electrode systems for reverse electro-dialysis and electro-dialysis. Desalination, 2012. 285: p. 147-152.
43. Veerman, J., et al., Reverse electrodialysis: evaluation of suitable electrode systems. Journal of Applied Electrochemistry, 2010. 40(8): p. 1461-1474.
44. Hatzell, M.C., et al., Comparison of hydrogen production and electrical power generation for energy capture in closed-loop ammonium bicarbonate reverse electrodialysis systems. Physical Chemistry Chemical Physics, 2014. 16(4): p. 1632-1638.
45. Hatzell, M.C., X. Zhu, and B.E. Logan, Simultaneous hydrogen generation and waste acid neutralization in a reverse electrodialysis system. ACS Sustainable Chemistry & Engineering, 2014. 2(9): p. 2211-2216.
46. Li, W., et al., A novel hybrid process of reverse electrodialysis and reverse osmosis for low energy seawater desalination and brine management. Applied Energy, 2013. 104: p. 592-602.
47. Logan, B.E. and M. Elimelech, Membrane-based processes for sustainable power generation using water. Nature, 2012. 488(7411): p. 313-319.
48. Aziz, H.A., et al., Removal of ammoniacal nitrogen (N-NH3) from municipal solid waste leachate by using activated carbon and limestone. Waste Management & Research, 2004. 22(5): p. 371-375.
49. Manios, T., E.I. Stentiford, and P.A. Millner, THE REMOVAL OF NH3-N FROM PRIMARY TREATED WASTEWATER IN SUBSURFACE REED BEDS USING DIFFERENT SUBSTRATES. Journal of Environmental Science and Health, Part A, 2002. 37(3): p. 297-308.
50. Randall, D.J. and T.K.N. Tsui, Ammonia toxicity in fish. Marine Pollution Bulletin, 2002. 45(1): p. 17-23.
51. Eddy, F.B., Ammonia in estuaries and effects on fish. Journal of Fish Biology, 2005. 67(6): p. 1495-1513.
52. Postgate, J., Nitrogen fixation. 1998: Cambridge University Press.
53. Sumino, T., et al., Nitrogen removal from wastewater using simultaneous nitrate reduction and anaerobic ammonium oxidation in single reactor. 2006. 102(4): p. 346-351.
54. Kim, J.-H., Y.-B. Yu, and J.-H. Choi, Toxic effects on bioaccumulation, hematological parameters, oxidative stress, immune responses and neurotoxicity in fish exposed to microplastics: A review. Journal of Hazardous Materials, 2021. 413: p. 125423.
55. Benli, A.Ç.K., G. Köksal, and A. Özkul, Sublethal ammonia exposure of Nile tilapia (Oreochromis niloticus L.): Effects on gill, liver and kidney histology. Chemosphere, 2008. 72(9): p. 1355-1358.
56. Cong, M., et al., Effects of ammonia nitrogen on gill mitochondria in clam Ruditapes philippinarum. Environmental Toxicology and Pharmacology, 2019. 65: p. 46-52.
57. Qi, X.-Z., et al., Ammonia exposure alters the expression of immune-related and antioxidant enzymes-related genes and the gut microbial community of crucian carp (Carassius auratus). Fish & Shellfish Immunology, 2017. 70: p. 485-492.
58. Wright, R.O., W.J. Lewander, and A.D. Woolf, Methemoglobinemia: Etiology, Pharmacology, and Clinical Management. Annals of Emergency Medicine, 1999. 34(5): p. 646-656.
59. Renou, S., et al., Landfill leachate treatment: Review and opportunity. Journal of hazardous materials, 2008. 150(3): p. 468-493.
60. Chiang, L.-C., J.-E. Chang, and T.-C. Wen, Indirect oxidation effect in electrochemical oxidation treatment of landfill leachate. Water Research, 1995. 29(2): p. 671-678.
61. Marinčić, L. and F.B. Leitz, Electro-oxidation of ammonia in waste water. Journal of Applied Electrochemistry, 1978. 8(4): p. 333-345.
62. Deng, Y. and J.D. Englehardt, Electrochemical oxidation for landfill leachate treatment. Waste management, 2007. 27(3): p. 380-388.
63. Martínez-Huitle, C.A. and L.S. Andrade, Electrocatalysis in wastewater treatment: recent mechanism advances. Quimica Nova, 2011. 34: p. 850-858.
64. Mendia, L., Electrochemical processes for wastewater treatment. Water Science and Technology, 1982. 14(1-2): p. 331-344.
65. Sudoh, M., et al., OXIDATIVE DEGRADATION OF AQUEOUS PHENOL EFFLUENT WITH ELECTROGENERATED FENTON′′S REAGENT. Journal of chemical engineering of japan, 1986. 19(6): p. 513-518.
66. Zhou, Y., et al., Electrochemical oxidation of ammonia accompanied with electricity generation based on reverse electrodialysis. 2018. 269: p. 128-135.
67. Weiner, A.M. and R.K. McGovern, A new reverse electrodialysis design strategy which significantly reduces the levelized cost of electricity. Journal of Membrane Science, 2015. 493: p. 605-614.
68. Scialdone, O., et al., Investigation of electrode material – Redox couple systems for reverse electrodialysis processes. Part I: Iron redox couples. Journal of Electroanalytical Chemistry, 2012. 681: p. 66-75.
69. Scialdone, O., et al., Investigation of electrode material–redox couple systems for reverse electrodialysis processes. Part II: Experiments in a stack with 10–50 cell pairs. 2013. 704: p. 1-9.
70. Bunce, N.J. and D. Bejan, Mechanism of electrochemical oxidation of ammonia. Electrochimica Acta, 2011. 56(24): p. 8085-8093.
71. Li, L. and Y. Liu, Ammonia removal in electrochemical oxidation: Mechanism and pseudo-kinetics. Journal of Hazardous Materials, 2009. 161(2): p. 1010-1016.
|