博碩士論文 106386603 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:24 、訪客IP:3.133.145.155
姓名 瓦卡(Wahyu Kamal Setiawan)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 開發生物填料改善聚醚/聚醯胺嵌段共聚物薄膜分離CO2性能之評估研究
(Development of biogenic filler for improving poly (ether-blockamide) membrane CO2/N2 separation performance)
相關論文
★ 大學生對綠建材認知與態度之研究★ 塑膠廢棄物催化裂解產能效率與裂解油物種特性變化之評估研究
★ 應用高壓蒸氣技術製備抗菌輕質材料及其 特性評估研究★ 加速碳酸鹽反應對都市垃圾焚化灰渣捕捉二氧化碳之可行性評估研究
★ 應用無機聚合物技術探討都市垃圾焚化飛灰 無害化之可行性研究★ 動畫與教學介入對桃園市某國小六年級學童環境行動影響之研究
★ 下水污泥與工業區廢水污泥共同蒸氣氣化產能效率與重金屬分佈特性之研究★ 應用自製催化劑評估廢車破碎殘餘物氣化產能效率及污染物排放特性
★ 應用熱裂解技術評估廢車破碎殘餘物轉換能源效率及重金屬排放特性★ 應用揮發性有機物自動採樣技術評估工業區異味污染物來源及指紋之可行性研究
★ 評估傳統濕式洗滌塔對印刷電路板防焊製程之揮發性有機氣體去除效率之研究★ 污水處理廠逸散微粒之物理、化學及生物特性分析
★ 應用熱氣清淨系統提升稻稈氣化過程合成氣品質及污染物去除之可行性研究★ 台北都會區PM1.0微粒物理特徵描述與含碳氣膠來源分析
★ 以無人飛行載具(UAV)平台探討空氣污染物之垂直分佈特徵及搭載之氣膠儀器性能評估★ 應用高溫淨化技術提昇廢水污泥與沼渣共氣化產能效率及 重金屬去除之評估研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-2-21以後開放)
摘要(中) 本研究目的為開發生物質來源之填料,改善聚醚/聚醯胺嵌段共聚物薄膜 (poly (ether-block-amide),簡稱 Pebax) 分離二氧化碳之性能。生物質來源之含矽填料,係從稻殼中以環境友善之萃取回收程序製備。此外,本研究修飾生物質填料之表面官能基及孔洞特性,並評估其對Pebax薄膜分離CO2性能之影響。實驗結果顯示,葡萄糖酸浸出法可有效去除大部分非矽質成分,從稻殼中回收生物質含矽(biogenic silica, BSi)填料,約達89.91%。萃取回收之 BSi 主要以非晶質結構及中孔型態存在,相對而言,具有較低之表面積及較小之孔隙體積。此外,與現有前處理方法相比,葡萄糖酸浸出法具有較環境友善之特性與優勢,因此,葡萄糖酸可作為 BSi製備之萃取劑。
為進一步改善 BSi 作為 Pebax 薄膜填料之性能,本研究分別評估表面官能基功能及結構特性之修飾等兩種策略。首先,BSi以聚乙烯亞胺(polyethyleneimine,簡稱 PEI)、N-甲基氨基丙基三甲氧基矽烷(N-methylaminopropyl trimethoxysilane,簡稱 MAPS)及2-(2-吡啶基)乙基三甲氧基矽烷(2-(2-pyridyl) ethyl trimethoxy silane,簡稱 PETS)等三種物質與 Pebax薄膜混合,並成功達到薄膜之修飾與官能基功能化之目的。其中,胺基可在填料及聚合物之間,提供非選擇性空隙,並促進 CO2 分離之傳輸作用。整體而言,本研究開發含有胺基官能化BSi 之Pebax薄膜,展現出卓越之CO2分離性能,並超越Robeson 2008年研究結果之上限值。本研究開發之Pebax/BSi-MAPS-10薄膜,具有較佳之分離特性,其中CO2穿透率及CO2/N2選擇性,分別為90.05 Barrer及100.41。此外,Pebax/BSi-MAPS-10亦具有長期操作之穩定性能,深具未來工業應用之潛力。
調整BSi之結構特性,亦具有增強填料-聚合物之相容性,並提供選擇性擴散氣體之通道。本研究以具有環境友善性之溶膠-凝膠法,以葡萄糖酸作為催化劑,與聚乙烯醇 (polyvinylalcohol, PVA)、聚乙烯吡咯烷酮(polyvinylpyrrolidone, PVP)及可溶性澱粉等三種水溶性聚合物,作為結構定向劑(structure-directing agent, SDA)進行試驗。研究結果顯示,PVA/PVP混合物為製備具有均勻粒徑分布之球形中孔含矽奈米粒子(mesoporous silica nanoparticles, MSNs)之最佳SDA。MSNs顆粒與Pebax基質具有良好之界面作用,有助於提高其熱力及機械性能。此外,根據XRD之鑑定分析結果顯示,合成薄膜具有較小之晶面間距值(d-spacing),有助於促進CO2/N2氣體之擴散。因此,添加10 wt%MSNs之Pebax薄膜,相較於僅有BSi填料之Pebax薄膜,具有更佳之CO2/N2分離性能,並接近Robeson 2008年的上限值。然而,分離性能仍較前述之Pebax/BSi-MAPS-10為差。因此,本研究在薄膜分離CO2/N2性能之試驗結果顯示,胺基官能化改質在改善Pebax薄膜之BSi填料性能,較調整BSi之結構特性有較佳之成效。
摘要(英) This study aims to develop a biogenic filler to improve CO2/N2 separation performance of poly (ether-block-amide) or Pebax membranes. Biogenic silica filler was derived from rice husk through the eco-friendly recovery process. Its surface functionalities and pore characteristics were consequently modified and their impacts on the CO2/N2 perm-selectivity of Pebax membranes were evaluated.
Gluconic acid leaching could effectively remove majority of non-siliceous components, to recover biogenic silica (BSi) from rice husks with 89.91% efficiency. The recovered BSi was mainly in an amorphous structure and mesoporous profile, with relatively low surface area and small pore volume. In addition, gluconic acid leaching was environmentally preferable compared to the existing pre-treatment methods. In these regards, gluconic acid could be reasonably chosen for BSi preparation.
Two strategies (surface functionalities and textural properties modifications) for improving the BSi performance as a filler in poly(ether-block-amide)/Pebax membranes were investigated. First, BSi was perfectly functionalized with polyethyleneimine (PEI), N-methylaminopropyl trimethoxysilane (MAPS), and 2-(2-pyridyl) ethyl trimethoxy silane (PETS) and incorporated into Pebax matrices. Amines could provide non-selective voids between filler and polymer and enable facilitated transport for CO2 separation. As a result, the Pebax membrane comprising amine-functionalized BSi exhibited remarkable CO2/N2 perm-selectivity beyond Robeson′s upper bound 2008. Pebax/BSi-MAPS-10 became foremost, offering a CO2 permeability of 90.05 Barrer and CO2/N2 selectivity of 100.41. In addition, Pebax/BSi-MAPS-10 was found in a stable CO2/N2 performance for long-term operation, indicating good practicality in industrial applications.
Tuning the textural properties of BSi could enhance filler-polymer compatibility and provide a selective diffusional gas pathway. Thus, an eco-friendly sol-gel method was proposed, with gluconic acid as a catalyst and three water-soluble polymers including polyvinylalcohol (PVA), polyvinylpyrrolidone (PVP), and soluble starch as a structure-directing agent (SDA). The PVA/PVP mixture was the best SDA for preparing spherical mesoporous silica nanoparticles (MSNs) with homogenous particle size distribution. The MSNs particles were found in good interfacial interaction with the Pebax matrix, contributing good thermal and mechanical properties. Besides, a smaller d-spacing value was observed by XRD analysis, promoting a beneficial diffusional pathway for CO2/N2 gases. As a result, Pebax containing 10 wt% MSNs showed better CO2/N2 separation performance compared to Pebax membrane with BSi filler, approaching Robeson’s upper bound 2008. However, it was incomparable with Pebax/BSi-MAPS-10, indicating the eminence of amine functionalization towards the textural properties modification in improving the performance of BSi as a filler in Pebax membranes.
關鍵字(中) ★ 生物質含矽填料
★ 稻殼
★ 混合基質膜
★ 二氧化碳分離
關鍵字(英)
論文目次 摘 要 i
Abstract v
Acknowledgment vii
Table of Contents ix
List of Tables xiii
List of Figures xv
List of Abbreviations xix
Chapter 1 Introduction 1
Chapter 2 Literature Review 5
2.1 Recent progress in carbon dioxide separation technologies 5
2.2 Membrane-based carbon dioxide separation 9
2.3 Poly(ether-block-amide) membranes for CO2 separation 11
2.4 Recent strategies to upgrade CO2 separation of Pebax membranes 15
2.5 Biogenic filler for fabricating mixed matrix membranes 23
2.6 Rice husk as a potential biogenic silica source 24
2.7 Recent techniques for recovering biogenic silica from rice husk 28
2.8 Enhancement of CO2 sorption capacity of silica particles 32
2.9 Tuning the textural properties of BSi 34
2.10 General gas transport mechanism through MMMs comprising silica 36
2.11 Design thinking to establish a research structure 39
Chapter 3 Materials and Methods 41
3.1 Materials 41
3.2 Methodology 42
3.2.1 Characterization of raw materials 42
3.2.2 Biogenic silica recovery from rice husk 42
3.2.3 Environmental impact assessment 44
3.2.4 Modification of biogenic silica 47
3.2.5 Mixed matrix membranes fabrication 48
3.2.6 CO2/N2 permeation test of Pebax MMMs 48
3.3 Characterization of materials 50
3.3.1 Proximate analysis of rice husk 50
3.3.2 Ultimate analysis of rice husk 51
3.3.3 Heating value analysis of rice husk 54
3.3.4 Chemical composition analysis of recovered biogenic silica 55
3.3.5 Biogenic silica characterization 57
3.3.6 Filler characterization 57
3.3.7 Membrane characterization 58
Chapter 4 Results and Discussion 61
4.1 Prospecting rice husk as a biogenic silica source 61
4.2 Biogenic silica recovery from rice husk 65
4.2.1 Removal of non-siliceous species in rice husk 65
4.2.2 Characteristics of recovered biogenic silica 71
4.2.3 Environmental impact assessment of recovery method 75
4.3 Amine functionalization of biogenic silica 77
4.3.1 The impact on the chemical and structural properties 77
4.3.2 The impact of functionalization on the morphologies 80
4.3.3 The impact of functionalization on the textural properties 81
4.4 Tuning the textural properties of biogenic silica 82
4.4.1 The influence of SDAs on the chemical and structural properties 82
4.4.2 The influence of SDAs on the morphologies 84
4.4.3 The influence of SDAs on the textural properties 86
4.5 Comparison and evaluation of Pebax MMMs with different fillers 90
4.5.1 Chemical properties of MMMs 90
4.5.2 Morphologies of MMMs 91
4.5.3 Structural properties of MMMs 94
4.5.4 Thermal properties of MMMs 95
4.5.5 Mechanical properties of MMMs 100
4.5.6 The impact of filler type on CO2/N2 separation of Pebax MMMs 102
4.5.7 The effect of filler loading on CO2/N2 separation of Pebax/BSi-MAPS 106
4.5.8 The effect of pressure on CO2/N2 separation of Pebax/BSi-MAPS 107
4.5.9 Durability test of Pebax/BSi-MAPS-10 109
4.5.10 Benchmarking of prepared Pebax MMMs with recent studies 110
Chapter 5 Conclusions and Recommendations 115
5.1 Conclusions 115
5.2 Recommendations 116
Bibliography 119
Appendix 141
Publication List 159

參考文獻 Abdallah, H., 2017. A review on catalytic membranes production and applications. Bulletin of Chemical Reaction Engineering & Catalysis 12, 136-156.
Abdollahi, M., Khoshbin, M., Biazar, H., Khanbabaei, G., 2017. Preparation, morphology and gas permeation properties of carbon dioxide-selective vinyl acetate-based Polymer/Poly(ethylene oxide-b-amide 6) blend membranes. Polymer 121, 274-285.
Aghaei, Z., Naji, L., Hadadi Asl, V., Khanbabaei, G., Dezhagah, F., 2018. The influence of fumed silica content and particle size in poly (amide 6-b-ethylene oxide) mixed matrix membranes for gas separation. Separation and Purification Technology 199, 47-56.
Armstrong, S., Freeman, B., Hiltner, A., Baer, E., 2012. Gas permeability of melt-processed poly(ether block amide) copolymers and the effects of orientation. Polymer 53, 1383-1392.
Asemave, K., 2018. Greener chelators for recovery of metals and other applications. Organic & Medicinal Chemistry International Journal 6.
Atash Jameh, A., Mohammadi, T., Bakhtiari, O., 2020. Preparation of PEBAX-1074/modified ZIF-8 nanoparticles mixed matrix membranes for CO2 removal from natural gas. Separation and Purification Technology 231, 115900.
Azat, S., Korobeinyk, A.V., Moustakas, K., Inglezakis, V.J., 2019. Sustainable production of pure silica from rice husk waste in Kazakhstan. Journal of Cleaner Production 217, 352-359.
Azizi, N., Mahdavi, H.R., Isanejad, M., Mohammadi, T., 2017a. Effects of low and high molecular mass PEG incorporation into different types of poly(ether-b-amide) copolymers on the permeation properties of CO2 and CH4. Journal of Polymer Research 24, 141.
Azizi, N., Mohammadi, T., Mosayebi Behbahani, R., 2017b. Comparison of permeability performance of PEBAX-1074/TiO2, PEBAX-1074/SiO2 and PEBAX-1074/Al2O3 nanocomposite membranes for CO2/CH4 separation. Chemical Engineering Research and Design 117, 177-189.
Bakar, R.A., Yahya, R., Gan, S.N., 2016. Production of high purity amorphous silica from rice husk. Procedia Chemistry 19, 189-195.
Bare, J., 2011. TRACI 2.0: the tool for the reduction and assessment of chemical and other environmental impacts 2.0. Clean Technologies and Environmental Policy 13, 687-696.
Bayrak, B., Laçin, O., Saraç, H., 2010. Kinetic study on the leaching of calcined magnesite in gluconic acid solutions. Journal of Industrial and Engineering Chemistry 16, 479-484.
Bhattacharya, M., Mandal, M.K., 2018. Synthesis of rice straw extracted nano-silica-composite membrane for CO2 separation. Journal of Cleaner Production 186, 241-252.
Bondar, V.I., Freeman, B.D., Pinnau, I., 2000. Gas transport properties of poly(ether-b-amide) segmented block copolymers. Journal of Polymer Science Part B: Polymer Physics 38, 2051-2062.
Boonmee, A., Sabsiriroht, P., Jarukumjorn, K., 2019. Preparation and characterization of rice husk ash for using as a filler in natural rubber. Materials Today: Proceedings 17, 2097-2103.
Carmona, V.B., Oliveira, R.M., Silva, W.T.L., Mattoso, L.H.C., Marconcini, J.M., 2013. Nanosilica from rice husk: Extraction and characterization. Industrial Crops and Products 43, 291-296.
Casadei, R., Giacinti Baschetti, M., Rerolle, B.G., Park, H.B., Giorgini, L., 2021. Synthesis and characterization of a benzoyl modified Pebax materials for gas separation applications. Polymer 228, 123944.
Chen, C., Xu, H., Jiang, Q., Lin, Z., 2021. Rational design of silicas with meso-macroporosity as supports for high-performance solid amine CO2 adsorbents. Energy 214, 119093.
Chen, P., Gu, W., Fang, W., Ji, X., Bie, R., 2017. Removal of metal impurities in rice husk and characterization of rice husk ash under simplified acid pretreatment process. Environmental Progress & Sustainable Energy 36, 830-837.
Chen, Z., Zhang, P., Wu, H., Sun, S., You, X., Yuan, B., Hou, J., Duan, C., Jiang, Z., 2022. Incorporating amino acids functionalized graphene oxide nanosheets into Pebax membranes for CO2 separation. Separation and Purification Technology 288, 120682.
Chun, J., Mo Gu, Y., Hwang, J., Oh, K.K., Lee, J.H., 2020. Synthesis of ordered mesoporous silica with various pore structures using high-purity silica extracted from rice husk. Journal of Industrial and Engineering Chemistry 81, 135-143.
Das, S.K., Mishra, J., Singh, S.K., Mustakim, S.M., Patel, A., Das, S.K., Behera, U., 2020. Characterization and utilization of rice husk ash (RHA) in fly ash – Blast furnace slag based geopolymer concrete for sustainable future. Materials Today: Proceedings 33, 5162-5167.
Dávalos, J., Bonilla, A., Villaquirán-Caicedo, M.A., de Gutiérrez, R.M., Rincón, J.M., 2021. Preparation of glass–ceramic materials from coal ash and rice husk ash: Microstructural, physical and mechanical properties. Boletín de la Sociedad Española de Cerámica y Vidrio 60, 183-193.
Ding, R., Wang, Q., Ruan, X., Dai, Y., Li, X., Zheng, W., He, G., 2022. Novel and versatile PEI modified ZIF-8 hollow nanotubes to construct CO2 facilitated transport pathway in MMMs. Separation and Purification Technology 289, 120768.
Ebadi, R., Maghsoudi, H., Babaluo, A.A., 2021. Fabrication and characterization of Pebax-1657 mixed matrix membrane loaded with Si-CHA zeolite for CO2 separation from CH4. Journal of Natural Gas Science and Engineering 90, 103947.
Elimbinzi, E., Nyandoro, S.S., Mubofu, E.B., Manayil, J.C., Lee, A.F., Wilson, K., 2020. Valorization of rice husk silica waste: Organo-amine functionalized castor oil templated mesoporous silicas for biofuels synthesis. Microporous and Mesoporous Materials 294, 109868.
Embaye, A.S., Martínez-Izquierdo, L., Malankowska, M., Téllez, C., Coronas, J., 2021. Poly(ether-block-amide) Copolymer Membranes in CO2 Separation Applications. Energy & Fuels 35, 17085-17102.
Fleig, O.P., Raymundo, L.M., Trierweiler, L.F., Trierweiler, J.O., 2021. Study of rice husk continuous torrefaction as a pretreatment for fast pyrolysis. Journal of Analytical and Applied Pyrolysis 154, 104994.
Font, A., Soriano, L., de Moraes Pinheiro, S.M., Tashima, M.M., Monzó, J., Borrachero, M.V., Payá, J., 2020. Design and properties of 100% waste-based ternary alkali-activated mortars: Blast furnace slag, olive-stone biomass ash and rice husk ash. Journal of Cleaner Production 243, 118568.
Fu, L., Ren, Z., Si, W., Ma, Q., Huang, W., Liao, K., Huang, Z., Wang, Y., Li, J., Xu, P., 2022. Research progress on CO2 capture and utilization technology. Journal of CO2 Utilization 66, 102260.
Gao, X., Xu, F., Bao, F., Tu, C., Zhang, Y., Wang, Y., Yang, Y., Li, B., 2019. Simulation and optimization of rice husk gasification using intrinsic reaction rate based CFD model. Renewable Energy 139, 611-620.
García-Balboa, C., Bedoya, I.C., González, F., Blázquez, M.L., Muñoz, J.A., Ballester, A., 2010. Bio-reduction of Fe(III) ores using three pure strains of Aeromonas hydrophila, Serratia fonticola and Clostridium celerecrescens and a natural consortium. Bioresour Technol 101, 7864-7871.
Garcia, J.A., Villen-Guzman, M., Rodriguez-Maroto, J.M., Paz-Garcia, J.M., 2022. Technical analysis of CO2 capture pathways and technologies. Journal of Environmental Chemical Engineering 10, 108470.
Gencel, O., Benli, A., Bayraktar, O.Y., Kaplan, G., Sutcu, M., Elabade, W.A.T., 2021. Effect of waste marble powder and rice husk ash on the microstructural, physico-mechanical and transport properties of foam concretes exposed to high temperatures and freeze–thaw cycles. Construction and Building Materials 291, 123374.
Ghazali, A.A., Abd Rahman, S., Abu Samah, R., 2021. Preparation and characterisation of pineapple peel waste as nanoadsorbent incorporated into Pebax 1657 nanocomposite membrane for CO2/CH4 separation. Materials Today: Proceedings 41, 88-95.
Goeppert, A., Meth, S., Prakash, G.K.S., Olah, G.A., 2010. Nanostructured silica as a support for regenerable high-capacity organoamine-based CO2 sorbents. Energy & Environmental Science 3, 1949-1960.
Gomez, R.D., Palacio, M., Arango, J.F., Avila, A.E., Mendoza, J.M., 2021. Evaluation of the energy generation potential by an experimental characterization of residual biomass blends from Córdoba, Colombia in a downdraft gasifier. Waste Management 120, 522-529.
Gu, S., Zhou, J., Yu, C., Luo, Z., Wang, Q., Shi, Z., 2015. A novel two-staged thermal synthesis method of generating nanosilica from rice husk via pre-pyrolysis combined with calcination. Industrial Crops and Products 65, 1-6.
Guan, W., Yang, X., Dong, C., Yan, X., Zheng, W., Xi, Y., Ruan, X., Dai, Y., He, G., 2021. Prestructured MXene fillers with uniform channels to enhance CO2 selective permeation in mixed matrix membranes. Journal of Applied Polymer Science 138, 49895.
Guo, F., Li, D., Ding, R., Gao, J., Ruan, X., Jiang, X., He, G., Xiao, W., 2022. Constructing MOF-doped two-dimensional composite material ZIF-90@C3N4 mixed matrix membranes for CO2/N2 separation. Separation and Purification Technology 280, 119803.
Habib, N., Durak, O., Zeeshan, M., Uzun, A., Keskin, S., 2022. A novel IL/MOF/polymer mixed matrix membrane having superior CO2/N2 selectivity. Journal of Membrane Science 658, 120712.
Hahn, M.W., Jelic, J., Berger, E., Reuter, K., Jentys, A., Lercher, J.A., 2016. Role of amine functionality for CO2 chemisorption on silica. The Journal of Physical Chemistry B 120, 1988-1995.
Hamdy, L.B., Goel, C., Rudd, J.A., Barron, A.R., Andreoli, E., 2021. The application of amine-based materials for carbon capture and utilisation: an overarching view. Materials Advances 2, 5843-5880.
Han, Y., Ho, W.S.W., 2021. Polymeric membranes for CO2 separation and capture. Journal of Membrane Science 628, 119244.
Han, Y., Hwang, G., Kim, H., Haznedaroglu, B.Z., Lee, B., 2015. Amine-impregnated millimeter-sized spherical silica foams with hierarchical mesoporous–macroporous structure for CO2 capture. Chemical Engineering Journal 259, 653-662.
Hasan, M.R., Zhao, H., Steunou, N., Serre, C., Malankowska, M., Téllez, C., Coronas, J., 2022. Optimization of MIL-178(Fe) and Pebax® 3533 loading in mixed matrix membranes for CO2 capture. International Journal of Greenhouse Gas Control 121, 103791.
Hausfather, Z., Friedlingstein, P., 2022. Analysis: Global CO2 emissions from fossil fuels hits record high in 2022. World Economic Forum.
Hiyoshi, N., Yogo, K., Yashima, T., 2005. Adsorption characteristics of carbon dioxide on organically functionalized SBA-15. Microporous and Mesoporous Materials 84, 357-365.
Homchat, K., Ramphueiphad, S., 2022. The continuous carbonisation of rice husk on the gasifier for high yield charcoal production. Results in Engineering 15, 100495.
Hou, J., Weng, R., Jiang, W., Sun, H., Xia, J., Liu, Y., Sheng, J., Song, Y., 2021. In-situ preparation of novel sedimentary rock-like Fe3O4 by rice-husk mesoporous silica as templates for effective remove As(III) from aqueous solutions. Journal of Environmental Chemical Engineering 9, 105866.
Huang, G., Isfahani, A.P., Muchtar, A., Sakurai, K., Shrestha, B.B., Qin, D., Yamaguchi, D., Sivaniah, E., Ghalei, B., 2018. Pebax/ionic liquid modified graphene oxide mixed matrix membranes for enhanced CO2 capture. Journal of Membrane Science 565, 370-379.
Hubadillah, S.K., Othman, M.H.D., Ismail, A.F., Rahman, M.A., Jaafar, J., Iwamoto, Y., Honda, S., Dzahir, M.I.H.M., Yusop, M.Z.M., 2018. Fabrication of low cost, green silica based ceramic hollow fibre membrane prepared from waste rice husk for water filtration application. Ceramics International 44, 10498-10509.
Hwang, J., Lee, J.H., Chun, J., 2021. Facile approach for the synthesis of spherical mesoporous silica nanoparticles from sodium silicate. Materials Letters 283, 128765.
Janakiram, S., Martín Espejo, J.L., Yu, X., Ansaloni, L., Deng, L., 2020. Facilitated transport membranes containing graphene oxide-based nanoplatelets for CO2 separation: Effect of 2D filler properties. Journal of Membrane Science 616, 118626.
Jaramillo, L.Y., Arango-Benítez, K., Henao, W., Vargas, E., Recio-Sánchez, G., Romero-Sáez, M., 2019. Synthesis of ordered mesoporous silicas from rice husk with tunable textural properties. Materials Letters 257, 126749.
Jothi Ramalingam, R., Appaturi, J.N., Pulingam, T., Al-Lohedan, H.A., Al-dhayan, D.M., 2020. In-situ incorporation of ruthenium/copper nanoparticles in mesoporous silica derived from rice husk ash for catalytic acetylation of glycerol. Renewable Energy 160, 564-574.
Khalilinejad, I., Kargari, A., Sanaeepur, H., 2017. Preparation and characterization of (Pebax 1657 + silica nanoparticle)/PVC mixed matrix composite membrane for CO2/N2 separation. Chemical Papers 71, 803-818.
Khan, M.Y., Khan, A., Adewole, J.K., Naim, M., Basha, S.I., Aziz, M.A., 2020. Biomass derived carboxylated carbon nanosheets blended polyetherimide membranes for enhanced CO2/CH4 separation. Journal of Natural Gas Science and Engineering 75, 103156.
Kheirtalab, M., Abedini, R., Ghorbani, M., 2020. A novel ternary mixed matrix membrane comprising polyvinyl alcohol (PVA)-modified poly (ether-block-amide)(Pebax®1657)/graphene oxide nanoparticles for CO2 separation. Process Safety and Environmental Protection 144, 208-224.
Kim, J.H., Ha, S.Y., Lee, Y.M., 2001. Gas permeation of poly(amide-6-b-ethylene oxide) copolymer. Journal of Membrane Science 190, 179-193.
Kim, N.U., Park, B.J., Park, M.S., Park, J.T., Kim, J.H., 2019. Semi-interpenetrating polymer network membranes based on a self-crosslinkable comb copolymer for CO2 capture. Chemical Engineering Journal 360, 1468-1476.
Kirren, P., Barka, L., Rahmani, S., Bondon, N., Donzel, N., Trens, P., Bessière, A., Raehm, L., Charnay, C., Durand, J.-O., 2022. Periodic mesoporous organosilica nanoparticles for CO2 adsorption at standard temperature and pressure. Molecules.
Knowles, G.P., Chaffee, A.L., 2016. aminopropyl-functionalized silica CO2 adsorbents via sonochemical methods. Journal of Chemistry 2016, 1070838.
Kojabad, M.E., Babaluo, A., Tavakoli, A., 2021a. A novel semi-mobile carrier facilitated transport membrane containing aniline/poly (ether-block-amide) for CO2/N2 separation: Molecular simulation and experimental study. Separation and Purification Technology 266, 118494.
Kojabad, M.E., Babaluo, A., Tavakoli, A., Sofla, R.L.M., Kahnamouei, H.G., 2021b. Comparison of acidic and basic ionic liquids effects on dispersion of alumina particles in Pebax composite membranes for CO2/N2 separation: Experimental study and molecular simulation. Journal of Environmental Chemical Engineering 9, 106116.
Lakatos, A., Kiss, T., Bertani, R., Venzo, A., Di Marco, V.B., 2008. Complexes of Al(III) with d-gluconic acid. Polyhedron 27, 118-124.

Lee, J.H., Kwon, J.H., Lee, J.-W., Lee, H.-s., Chang, J.H., Sang, B.-I., 2017. Preparation of high purity silica originated from rice husks by chemically removing metallic impurities. Journal of Industrial and Engineering Chemistry 50, 79-85.
Li, J.Y., Wang, D.K., Tseng, H.H., Wey, M.Y., 2021. Solvent effects on diffusion channel construction of organosilica membrane with excellent CO2 separation properties. Journal of Membrane Science 618, 118758.
Li, K., Jiang, J., Yan, F., Tian, S., Chen, X., 2014. The influence of polyethyleneimine type and molecular weight on the CO2 capture performance of PEI-nano silica adsorbents. Applied Energy 136, 750-755.
Li, X., Ding, S., Zhang, J., Wei, Z., 2020. Optimizing microstructure of polymer composite membranes by tailoring different ionic liquids to accelerate CO2 transport. International Journal of Greenhouse Gas Control 101, 103136.
Li, X., Hou, J., Guo, R., Wang, Z., Zhang, J., 2019. Constructing unique cross-sectional structured mixed matrix membranes by mncorporating ultrathin microporous nanosheets for efficient CO2 separation. ACS Applied Materials & Interfaces 11, 24618-24626.
Liu, N., Cheng, J., Hou, W., Yang, C., Yang, X., Zhou, J., 2022. Bottom-up synthesis of two-dimensional composite via CuBDC-ns growth on multilayered MoS2 to boost CO2 permeability and selectivity in Pebax-based mixed matrix membranes. Separation and Purification Technology 282, 120007.
Liu, Y.C., Chen, C.Y., Lin, G.S., Chen, C.-H., Wu, K.C.W., Lin, C.H., Tung, K.L., 2019. Characterization and molecular simulation of Pebax-1657-based mixed matrix membranes incorporating MoS2 nanosheets for carbon dioxide capture enhancement. Journal of Membrane Science 582, 358-366.
Maleh, M.S., Raisi, A., 2023. In-situ growth of ZIF-8 nanoparticles in Pebax-2533 for facile preparation of high CO2-selective mixed matrix membranes. Colloids and Surfaces A: Physicochemical and Engineering Aspects 659, 130747.
Manianglung, C., Pacia, R.M., Ko, Y.S., 2019. Synergistic effect of blended primary and secondary amines functionalized onto the silica on CO2 capture performance. Korean Journal of Chemical Engineering 36, 1267-1273.
Meshkat, S., Kaliaguine, S., Rodrigue, D., 2018. Mixed matrix membranes based on amine and non-amine MIL-53(Al) in Pebax® MH-1657 for CO2 separation. Separation and Purification Technology 200, 177-190.
Meshkat, S., Kaliaguine, S., Rodrigue, D., 2019. Enhancing CO2 separation performance of Pebax® MH-1657 with aromatic carboxylic acids. Separation and Purification Technology 212, 901-912.
Miri, S., Omidkhah, M., Ebadi Amooghin, A., Matsuura, T., 2020. Membrane-based gas separation accelerated by quaternary mixed matrix membranes. Journal of Natural Gas Science and Engineering 84, 103655.
Mohsenpour, S., Ameen, A.W., Leaper, S., Skuse, C., Almansour, F., Budd, P.M., Gorgojo, P., 2022. PIM-1 membranes containing POSS - graphene oxide for CO2 separation. Separation and Purification Technology 298, 121447.
Moraes, C.A.M., Fernandes, I.J., Calheiro, D., Kieling, A.G., Brehm, F.A., Rigon, M.R., Berwanger Filho, J.A., Schneider, I.A.H., Osorio, E., 2014. Review of the rice production cycle: By-products and the main applications focusing on rice husk combustion and ash recycling. Waste Management & Research 32, 1034-1048.
Mozaffari, V., Sadeghi, M., Fakhar, A., Khanbabaei, G., Ismail, A.F., 2017. Gas separation properties of polyurethane/poly(ether-block-amide) (PU/PEBA) blend membranes. Separation and Purification Technology 185, 202-214.
Nadeali, A., Kalantari, S., Yarmohammadi, M., Omidkhah, M., Ebadi Amooghin, A., Zamani Pedram, M., 2020. CO2 Separation Properties of a Ternary Mixed-Matrix Membrane Using Ultraselective Synthesized Macrocyclic Organic Compounds. ACS Sustainable Chemistry & Engineering 8, 12775-12787.
Nadeali, A., Zamani Pedram, M., Omidkhah, M., Yarmohammadi, M., 2019. Promising Performance for Efficient CO2 Separation with the p-tert-Butylcalix[4]arene/Pebax-1657 Mixed Matrix Membrane. ACS Sustainable Chemistry & Engineering 7, 19015-19026.
Nana, A., Epey, N., Rodrique, K.C., Deutou, J.G.N., Djobo, J.N.Y., Tomé, S., Alomayri, T.S., Ngouné, J., Kamseu, E., Leonelli, C., 2021. Mechanical strength and microstructure of metakaolin/volcanic ash-based geopolymer composites reinforced with reactive silica from rice husk ash (RHA). Materialia 16, 101083.
Ndindeng, S.A., Wopereis, M., Sanyang, S., Futakuchi, K., 2019. Evaluation of fan-assisted rice husk fuelled gasifier cookstoves for application in sub-Sahara Africa. Renewable Energy 139, 924-935.
Niu, M., Yang, H., Zhang, X., Wang, Y., Tang, A., 2016. Amine-Impregnated Mesoporous Silica Nanotube as an Emerging Nanocomposite for CO2 Capture. ACS Applied Materials & Interfaces 8, 17312-17320.
Nobakht, D., Abedini, R., 2023. A new ternary Pebax®1657/maltitol/ZIF-8 mixed matrix membrane for efficient CO2 separation. Process Safety and Environmental Protection 170, 709-719.
Ogwang, G., Olupot, P.W., Kasedde, H., Menya, E., Storz, H., Kiros, Y., 2021. Experimental evaluation of rice husk ash for applications in geopolymer mortars. Journal of Bioresources and Bioproducts 6, 160-167.
Park, J.H., Celedonio, J.M., Seo, H., Park, Y.K., Ko, Y.S., 2016. A study on the effect of the amine structure in CO2 dry sorbents on CO2 capture. Catalysis Today 265, 68-76.
Park, S.J., Son, S.H., Kook, J.W., Ra, H.W., Yoon, S.J., Mun, T.Y., Moon, J.H., Yoon, S.M., Kim, J.H., Kim, Y.K., Lee, J.G., Lee, D.Y., Seo, M.W., 2021. Gasification operational characteristics of 20-tons-Per-Day rice husk fluidized-bed reactor. Renewable Energy 169, 788-798.
Pazani, F., Aroujalian, A., 2020. Enhanced CO2-selective behavior of Pebax-1657: A comparative study between the influence of graphene-based fillers. Polymer Testing 81, 106264.
Porrang, S., Rahemi, N., Davaran, S., Mahdavi, M., Hassanzadeh, B., 2021. Preparation and in-vitro evaluation of mesoporous biogenic silica nanoparticles obtained from rice and wheat husk as a biocompatible carrier for anti-cancer drug delivery. European Journal of Pharmaceutical Sciences 163, 105866.
Rafiul Hasan, M., Moriones, A., Malankowska, M., Coronas, J., 2023. Study on the recycling of zeolitic imidazolate frameworks and polymer Pebax® 1657 from their mixed matrix membranes applied to CO2 capture. Separation and Purification Technology 304, 122355.
Raheem, A.A., Oriola, K.O., Kareem, M.A., Abdulwahab, R., 2021. Investigation on thermal properties of rice husk ash-blended palm kernel shell concrete. Environmental Challenges 5, 100284.
Rodríguez de Sensale, G., Rodríguez Viacava, I., 2018. A study on blended Portland cements containing residual rice husk ash and limestone filler. Construction and Building Materials 166, 873-888.
Salazar-Carreño, D., García-Cáceres, R.G., Ortiz-Rodríguez, O.O., 2015. Laboratory processing of Colombian rice husk for obtaining amorphous silica as concrete supplementary cementing material. Construction and Building Materials 96, 65-75.
Salehi Maleh, M., Raisi, A., 2019. Comparison of porous and nonporous filler effect on performance of poly (ether-block-amide) mixed matrix membranes for gas separation applications. Chemical Engineering Research and Design 147, 545-560.
Sanaeepur, H., Mashhadikhan, S., Mardassi, G., Ebadi Amooghin, A., Van der Bruggen, B., Moghadassi, A., 2019. Aminosilane cross-linked poly ether-block-amide PEBAX 2533: Characterization and CO2 separation properties. Korean Journal of Chemical Engineering 36, 1339-1349.
Sanz-Pérez, E.S., Arencibia, A., Calleja, G., Sanz, R., 2018. Tuning the textural properties of HMS mesoporous silica. Functionalization towards CO2 adsorption. Microporous and Mesoporous Materials 260, 235-244.
Sarrigani, G.V., Ding, J., Ghadi, A.E., Alam, D., Fitzgerald, P., Wiley, D.E., Wang, D.K., 2022. Interfacially-confined polyetherimide tubular membranes for H2, CO2 and N2 separations. Journal of Membrane Science 655, 120596.
Setiawan, W.K., Chiang, K.Y., 2019. Silica applied as mixed matrix membrane inorganic filler for gas separation: a review. Sustainable Environment Research 29, 32.
Setiawan, W.K., Chiang, K.Y., 2021a. Crop Residues as Potential Sustainable Precursors for Developing Silica Materials: A Review. Waste and Biomass Valorization 12, 2207-2236.
Setiawan, W.K., Chiang, K.Y., 2021b. Eco-friendly rice husk pre-treatment for preparing biogenic silica: Gluconic acid and citric acid comparative study. Chemosphere 279, 130541.
Shah Buddin, M.M.H., Ahmad, A.L., 2021. A review on metal-organic frameworks as filler in mixed matrix membrane: Recent strategies to surpass upper bound for CO2 separation. Journal of CO2 Utilization 51, 101616.
Sheikh, M., Asghari, M., Afsari, M., 2017. Effect of nano Zinc Oxide on gas permeation through mixed matrix poly (Amide-6-b-Ethylene Oxide)-based membranes. International Journal of Nano Dimension 8, 31-39.
Shi, F., Sun, J., Wang, J., Liu, M., Yan, Z., Zhu, B., Li, Y., Cao, X., 2021. MXene versus graphene oxide: Investigation on the effects of 2D nanosheets in mixed matrix membranes for CO2 separation. Journal of Membrane Science 620, 118850.
Shi, F., Tian, Q., Wang, J., Wang, Q., Shi, F., Li, Y., Nunes, S.P., 2020. Carbon Quantum Dot-Enabled Tuning of the Microphase Structures of Poly(ether-b-amide) Membrane for CO2 Separation. Industrial & Engineering Chemistry Research 59, 14960-14969.
Shirinia, M., Abdollahi, M., Omidkhah, M., 2020. Simultaneous enhancement of CO2 permeability and CO2/CH4 and CO2/N2 selectivity via incorporating dense, rubbery and CO2-philic vinyl acetate- based copolymers into poly(ethylene oxide-b-amide 6) membranes. Reactive and Functional Polymers 154, 104673.
Sidhikku Kandath Valappil, R., Ghasem, N., Al-Marzouqi, M., 2021. Current and future trends in polymer membrane-based gas separation technology: A comprehensive review. Journal of Industrial and Engineering Chemistry 98, 103-129.
Sobrosa, F.Z., Stochero, N.P., Marangon, E., Tier, M.D., 2017. Development of refractory ceramics from residual silica derived from rice husk ash. Ceramics International 43, 7142-7146.
Souza, M.M., Anjos, M.A.S., Sá, M.V.V.A., 2021. Using scheelite residue and rice husk ash to manufacture lightweight aggregates. Construction and Building Materials 270, 121845.
Stochero, N.P., Marangon, E., Nunes, A.S., Tier, M.D., 2017. Development of refractory ceramics from residual silica derived from rice husk ash and steel fibres. Ceramics International 43, 13875-13880.
Taheri, P., Raisi, A., Maleh, M.S., 2021. CO2-selective poly (ether-block-amide)/polyethylene glycol composite blend membrane for CO2 separation from gas mixtures. Environmental Science and Pollution Research 28, 38274-38291.
Téllez, J.F., Silva, M.P., Simister, R., Gomez, L.D., Fuertes, V.C., De Paoli, J.M., Moyano, E.L., 2021. Fast pyrolysis of rice husk under vacuum conditions to produce levoglucosan. Journal of Analytical and Applied Pyrolysis 156, 105105.
Trong Nguyen, Q., Sublet, J., Langevin, D., Chappey, C., Marais, S., Valleton, J.-M., Poncin-Epaillard, F., 2010. CO2 Permeation with Pebax®-based Membranes for Global Warming Reduction. Membrane Gas Separation, pp. 255-277.
Umeda, J., Kondoh, K., 2010. High-purification of amorphous silica originated from rice husks by combination of polysaccharide hydrolysis and metallic impurities removal. Industrial Crops and Products 32, 539-544.
Usgodaarachchi, L., Thambiliyagodage, C., Wijesekera, R., Bakker, M.G., 2021. Synthesis of mesoporous silica nanoparticles derived from rice husk and surface-controlled amine functionalization for efficient adsorption of methylene blue from aqueous solution. Current Research in Green and Sustainable Chemistry 4, 100116.
Vaughn, J.T., Koros, W.J., 2014. Analysis of feed stream acid gas concentration effects on the transport properties and separation performance of polymeric membranes for natural gas sweetening: A comparison between a glassy and rubbery polymer. Journal of Membrane Science 465, 107-116.
Waheed, N., Mushtaq, A., Tabassum, S., Gilani, M.A., Ilyas, A., Ashraf, F., Jamal, Y., Bilad, M.R., Khan, A.U., Khan, A.L., 2016. Mixed matrix membranes based on polysulfone and rice husk extracted silica for CO2 separation. Separation and Purification Technology 170, 122-129.
Wang, D., Song, S., Zhang, W., He, Z., Wang, Y., Zheng, Y., Yao, D., Pan, Y., Yang, Z., Meng, Z., Li, Y., 2020a. CO2 selective separation of Pebax-based mixed matrix membranes (MMMs) accelerated by silica nanoparticle organic hybrid materials (NOHMs). Separation and Purification Technology 241, 116708.
Wang, D., Yao, D., Wang, Y., Wang, F., Xin, Y., Song, S., Zhang, Z., Su, F., Zheng, Y., 2019. Carbon nanotubes and graphene oxide-based solvent-free hybrid nanofluids functionalized mixed-matrix membranes for efficient CO2/N2 separation. Separation and Purification Technology 221, 421-432.
Wang, X., Ding, X., Zhao, H., Fu, J., Xin, Q., Zhang, Y., 2020b. Pebax-based mixed matrix membranes containing hollow polypyrrole nanospheres with mesoporous shells for enhanced gas permeation performance. Journal of Membrane Science 602, 117968.
Weng, W., Costa, M., Aldén, M., Li, Z., 2019. Single particle ignition and combustion of pulverized pine wood, wheat straw, rice husk and grape pomace. Proceedings of the Combustion Institute 37, 2663-2671.
White, L.S., Wei, X., Pande, S., Wu, T., Merkel, T.C., 2015. Extended flue gas trials with a membrane-based pilot plant at a one-ton-per-day carbon capture rate. Journal of Membrane Science 496, 48-57.
Wu, H., Li, X., Li, Y., Wang, S., Guo, R., Jiang, Z., Wu, C., Xin, Q., Lu, X., 2014. Facilitated transport mixed matrix membranes incorporated with amine functionalized MCM-41 for enhanced gas separation properties. Journal of Membrane Science 465, 78-90.
Wu, S.H., Mou, C.Y., Lin, H.P., 2013. Synthesis of mesoporous silica nanoparticles. Chemical Society Reviews 42, 3862-3875.
Wu, Y., Zhao, D., Ren, J., Qiu, Y., Deng, M., 2019. A novel Pebax-C60(OH)24/PAN thin film composite membrane for carbon dioxide capture. Separation and Purification Technology 215, 480-489.
Wulandari, N.M., Efiyanti, L., Trisunaryanti, W., Oktaviano, H.S., Bahri, S., Ni’mah, Y.L., Larasati, S., 2021. Effect of CTAB Ratio to the Characters of Mesoporous Silica Prepared from Rice Husk Ash in the Pyrolysis of a–cellulose. Bulletin of Chemical Reaction Engineering & Catalysis; 2021: BCREC Volume 16 Issue 3 Year 2021 (September 2021)DO - 10.9767/bcrec.16.3.10828.632-640.
Yu, L., Nobandegani, M.S., Hedlund, J., 2022a. Industrially relevant CHA membranes for CO2/CH4 separation. Journal of Membrane Science 641, 119888.
Yu, Y., Zhang, C., Fan, J., Liu, D., Meng, J., 2022b. A mixed matrix membrane for enhanced CO2/N2 separation via aligning hierarchical porous zeolite with a polyethersulfone based comb-like polymer. Journal of the Taiwan Institute of Chemical Engineers 132, 104132.
Zelenak, V., Halamova, D., Gaberova, L., Bloch, E., Llewellyn, P., 2008. Amine-modified SBA-12 mesoporous silica for carbon dioxide capture: Effect of amine basicity on sorption properties. Microporous and Mesoporous Materials 116, 358-364.
Zhang, B., Yang, C., Zheng, Y., Wu, Y., Song, C., Liu, Q., Wang, Z., 2021a. Modification of CO2-selective mixed matrix membranes by a binary composition of poly(ethylene glycol)/NaY zeolite. Journal of Membrane Science 627, 119239.
Zhang, H., Tian, H., Zhang, J., Guo, R., Li, X., 2018. Facilitated transport membranes with an amino acid salt for highly efficient CO2 separation. International Journal of Greenhouse Gas Control 78, 85-93.
Zhang, Q., Zhou, M., Liu, X., Zhang, B., 2021b. Pebax/two-dimensional MFI nanosheets mixed-matrix membranes for enhanced CO2 separation. Journal of Membrane Science 636, 119612.
Zhang, S., Zheng, Y., Wu, Y., Zhang, B., 2021c. Fabrication of Pebax/SAPO mixed matrix membranes for CO2/N2 separation. Journal of Applied Polymer Science 138, 51336.
Zhang, X., Atsumi, H., Matsuura, H., Tsukihashi, F., 2014. Influence of gluconic acid on dissolution of Si, P and Fe from steelmaking slag with different composition into seawater. ISIJ international 54, 1443-1449.
Zhao, H., Xie, Q., Ding, X., Cai, R., Tan, X., Zhang, Y., 2021a. Advanced mixed matrix membranes of Pebax embedded with amino acid ionic liquids@PIM core-shell composite nanoparticles for CO2 separation. Separation and Purification Technology 263, 118350.
Zhao, Q., Lian, S., Li, R., Yang, Y., Zang, G., Song, C., 2023. Fabricating Leaf-like hierarchical ZIF-67 as Intra-Mixed matrix membrane microarchitecture for efficient intensification of CO2 separation. Separation and Purification Technology 305, 122460.
Zhao, X., Liu, W., Liu, X., Zhang, B., 2021b. Mixed Matrix Membranes Incorporated with Aminosilane-Functionalized SAPO-34 for Upgrading CO2/CH4 Separation Performances. Industrial & Engineering Chemistry Research 60, 13927-13937.
Zheng, Y., Wu, Y., Zhang, B., Wang, Z., 2020. Preparation and characterization of CO2-selective Pebax/NaY mixed matrix membranes. Journal of Applied Polymer Science 137, 48398.
Zhu, W., Liu, F., Gou, M., Guo, R., Li, X., 2021. Mixed matrix membrane containing metal oxide nanosheets for efficient CO2 separation. Green Chemical Engineering 2, 132-143.
Zinla, D., Gbaha, P., Koffi, P.M.E., Koua, B.K., 2021. Characterization of rice, coffee and cocoa crops residues as fuel of thermal power plant in Côte d’Ivoire. Fuel 283, 119250.
Zou, Y., Yang, T., 2019. Chapter 9 - Rice Husk, Rice Husk Ash and Their Applications. in: Cheong, L.-Z., Xu, X. (Eds.). Rice Bran and Rice Bran Oil. AOCS Press, pp. 207-246.
指導教授 江康鈺 審核日期 2023-2-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明