博碩士論文 109326007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:42 、訪客IP:18.221.59.242
姓名 廖威理(Wei-Li Liao)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 2021年冬季都市與2022年春季高山細懸浮微粒(PM2.5)水溶性無機離子與光學特性實時變化
相關論文
★ 台灣北部地區大氣氣膠有機酸特性★ 北部氣膠超級測站近七年氣膠特性變化探討
★ 鹿林山背景大氣及受生質燃燒事件影響的氣膠化學特性★ 鹿林山大氣氣膠含水量探討及乾氣膠光學特性
★ 中南半島近污染源生質燃燒氣膠特性及其傳輸演化與東沙島氣膠特性★ 鹿林山大氣背景站不同氣團氣膠光學特性
★ 台灣細懸浮微粒(PM2.5)空氣品質標準建置研究★ 台灣都市地區細懸浮微粒(PM2.5)手動採樣分析探討
★ 2011年不同來源氣團鹿林山氣膠水溶性無機離子動態變化★ 台灣都會區細懸浮微粒(PM2.5)濃度變化影響因子、污染來源及其對大氣能見度影響
★ 2012年越南山羅高地生質燃燒期間氣膠特性及2003-2012年台灣鹿林山氣膠來源解析★ 2011年生質燃燒期間越南山羅高地和台灣鹿林山氣膠特性
★ 2013年7SEAS國際觀測對北越南山羅生質燃燒期間氣膠化學特性及來源鑑定★ 中南半島近生質燃燒源區與傳輸下風鹿林山氣膠特性及來源解析
★ 台灣北、中′南部細懸浮微粒(PM2.5)儀器比對成分分析與來源推估★ 2013年春季鹿林山和夏季龍潭氣膠水溶性離子短時間動態變化特性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本文於2021年12月在中央研究院臺中都市空氣污染研究站(都市測站)及2022年2月至3月在鹿林山空氣品質背景測站(鹿林山測站)量測氣膠水溶性無機離子(Water-Soluble Inorganic Ions, WSIIs)實時動態變化,探討PM2.5質量濃度上升時段WSIIs變化趨勢及來源,並連結氣膠粒徑分布及光學特性進行討論。
2021年冬季都市測站發生兩次濃度上升事件,PM2.5小時濃度峰值分別為38 μg m-3及61 μg m-3,主要WSIIs(SO42-、NO3-、NH4+)濃度都有明顯上升,日間NH4NO3形成與夜間N2O5水解是NO3-的主要來源,SO42-與NH4+相關性較低,SO42-可能是經由SO2與OH·氧化反應形成。都市測站NO2-濃度上升,受到相對濕度(RH)影響,NOx的液相反應第一次比第二次事件有更顯著的影響,同時也發現兩次事件液相反應都是NO2-主要形成途徑。NO3-氣膠主導都市測站氣膠對太陽輻射的散光能力,都市測站NO3-和SO42-與綠光散光係數相關性高,搭配前驅氣體與CO濃度的變化趨勢,顯示受到化石燃料燃燒和移動污染源排放的影響。本文篩選不同RH,驗證氣膠散光係數隨著RH增加而上升。
2022年春季鹿林山測站偵測到五次生質燃燒(Biomass Burning, BB)氣團傳輸,每次BB事件都能觀察到PM2.5濃度、WSIIs濃度、綠光吸、散光係數的上升。值得注意的是,BB事件期間14:00 – 18:00常觀察到谷風,WSIIs濃度上升伴隨大氣能見度明顯下降;相對濕度上升期間,氣膠粒徑吸濕增大,體積眾數粒徑集中在300 – 400 nm,NO3-與PM1綠光散光係數有顯著中等相關,說明谷風將山下污染氣團傳輸至測站,氣膠吸濕潮解,影響大氣能見度。BB事件期間,氣膠數目眾數粒徑集中在100 – 200 nm粒徑區間,谷風時段則集中在60 – 80 nm粒徑區間,顯示谷風較BB事件期間氣膠數目集中在更細粒徑。在鹿林山測站SO42-與PM1綠光散光係數相關係數較NO3-高,表示大氣背景觀測站受到區域化石燃料燃燒氣膠影響顯著。
總結來說,都市測站PM2.5來源以移動污染源為主,濃度上升期間可能還受到遠處固定污染源傳輸影響,氣膠以細粒徑散光成分為主,RH上升導致氣膠潮解使綠光散光係數明顯上升。高山測站在BB事件期間,PM2.5質量濃度上升,SO42-濃度與都市測站幾乎相同,谷風期間氣流的高RH影響氣膠化學成分及光學特性。
摘要(英) This study investigates the real-time variations of aerosol Water-Soluble Inorganic Ions (WSIIs) measured at the Urban Air Pollution Research Station (urban station) of the Academia Sinica in December 2021 and at Lulin Atmospheric Background Station (LABS; 2,862 m above mean sea level) from February to March 2022. The study aims to explore the WSIIs variations and sources during PM2.5 concentration rising periods and to discuss their relationships with aerosol size distributions and optical properties.
During the winter of 2021, the urban station experienced two events of PM2.5 concentration rise, with peak hourly concentrations of 38 μg m-3 and 61 μg m-3, respectively. The concentrations of major WSIIs (SO42-, NO3-, and NH4+) showed a significant increase. The formation of NH4NO3 in the daytime and hydrolysis of N2O5 during the nighttime were the two primary pathways of NO3-. There was a weak correlation between SO42- and NH4+, suggesting that SO42- may have been generated through the oxidation reaction of SO2 and OH·. The concentration rise of NO2- at the urban station was influenced by relative humidity (RH) with a greater impact during the first than the second event for the liquid phase reaction of NOx. Moreover, NO2- formation for both events was primarily through liquid phase reactions. At the urban station, aerosol NO3- dominated solar radiation scattering. The correlation between NO3- and SO42- at the station was high for the green light-scattering coefficient, suggesting the influences of both fossil fuel combustion and mobile source emissions. Aerosol deliquescence increased its light scattering coefficient, verified by varying RH levels in the study.
During the spring of 2022, the LABS detected five events of air mass transportation resulting from Biomass Burning (BB). Each BB event was associated with increases in PM2.5 concentration, WSIIs concentration, green light-absorption, and -scattering coefficient. Note that valley wind was often observed from 14:00 to 18:00 during the BB event. This leads to an increase in WSIIs concentration and a significant reduction in atmospheric visibility. As the RH rises, the aerosol size increases due to hygroscopic growth to result in the modal diameter of aerosol volume concentration distributed at 300 – 400 nm. There is a significant moderate correlation between NO3- and the green light-scattering coefficient of PM1, indicating that valley wind transport polluted air masses from below the mountain to the measuring station. As the aerosol absorbs moisture and deliquesces, it affects atmospheric visibility. During the BB event, the modal diameter of the aerosol number concentration was distributed in the 100 – 200 nm size range, whereas during the period of valley wind, it was accumulated in the 60 – 80 nm size range. The results indicate that valley winds result in aerosol number concentration being accumulated in smaller particle sizes than during the BB event. At LABS, the correlation coefficient between SO42- and the green light-scattering coefficient of PM1 is higher than that of NO3-, indicating that the LABS is significantly affected by regional fossil fuel combustion aerosols.
In summary, PM2.5 at the urban station is mainly derived from mobile emission sources, and during periods of concentration increase, it may also be influenced by distant transport of stationary sources. The aerosols are mainly composed of fine scattering components, and aerosol deliquescence caused by the RH increase leads to a significant enhancement in the green light-scattering coefficient. In contrast, the PM2.5 mass concentration at LABS increases, and the SO42- concentration is almost the same as at the urban station during the BB periods. The high RH of the valley wind affects the chemical composition and optical properties of the aerosols.
關鍵字(中) ★ 氣膠水溶性無機離子實時變化
★ 生質燃燒煙團
★ 氣膠光學特性
★ NO2-形成途徑
★ 氣膠濃度上升事件
★ 台中都會區污染
關鍵字(英) ★ Real-time variations of aerosol water-soluble inorganic ions
★ Biomass burning smoke
★ Aerosol optical properties
★ NO2- formation pathways
★ Aerosol concentration rising event
★ Taichung metropolis pollution
論文目次 摘要 I
Abstract III
致謝 V
目錄 VI
圖目錄 IX
表目錄 XVII
第一章 前言 1
1.1研究緣起 1
1.2研究目的 2
第二章 文獻回顧 4
2.1氣膠水溶性無機離子 4
2.2 氣膠水溶性無機離子來源 4
2.2.1 WSIIs中和狀況及結合型態 7
2.2.2 WSIIs粒徑分析 8
2.2.3亞硝酸根離子(NO2-)形成途徑 10
2.2.4氣膠海鹽成分 10
2.3生質燃燒 11
2.3.1生質燃燒化學成分 11
2.3.2生質燃燒氣膠老化(aging) 12
2.3.3生質燃燒氣膠粒徑分布 12
2.4氣膠光學特性 14
2.4.1氣膠光學厚度(Aerosol Optical Depth, AOD) 14
2.4.2氣膠吸散光特性 14
2.5氣膠酸度 15
2.5.1 ISORROPIA-II模式 15
2.5.2氣膠pH值及含水量 16
2.6鹿林山長程傳輸氣膠 17
2.7都市氣膠特性 19
2.8自動氣膠水溶性無機離子監測儀器 19
2.8.1平行板濕式固氣分離器 20
第三章 研究方法 21
3.1研究架構 21
3.2觀測週期及觀測地點 23
3.3採樣儀器與方法 25
3.3.1 ACME-IC系統 26
3.3.2積分式散光儀 30
3.3.3 微粒碳吸收光度計 31
3.3.4 粒徑分布監測系統 35
3.4 Angström exponent 38
3.5氣流軌跡模式 38
3.6 觀測數據QA/QC(Quality Assurance/Quality Control) 39
第四章 結果與討論 43
4.1 都市氣膠WSIIs實時動態變化 43
4.1.1 都市站點第一次濃度上升事件(12月9日至12月12日) 47
4.1.2 都市測站第二次濃度上升事件(12月14日至12月17日) 59
4.1.3 觀測期間NO3-和SO42-轉化探討 70
4.1.4 兩次濃度上升事件亞硝酸根離子(NO2-)探討 74
4.2 鹿林山氣膠WSIIs實時變化 81
4.2.1 鹿林山天氣因子、氣體、氣膠、水溶性無機離子動態變化 81
4.2.2山谷風、生質燃燒事件判斷條件 85
4.3 鹿林山春季生質燃燒事件氣膠、氣體及天氣因子動態變化 88
4.3.1 第一次生質燃燒事件(3月2日16:00 至 3月7日 05:00) 88
4.3.2 第二次生質燃燒事件(3月11日08:00 至 3月12日 18:00) 103
4.3.3 第三次生質燃燒事件(3月15日01:00 至 3月15日 22:00) 112
4.3.4 第四、五次生質燃燒事件(3月18日03:00 至 3月21日 08:00) 121
4.4 高山與都市測站氣膠光學特性變化 135
4.4.1 氣膠光學型態分類 135
4.4.2 氣膠來源光學特性分析 144
4.4.3 氣膠WSIIs與綠光散光係數 146
第五章 結論與建議 155
5.1 結論 155
5.2 建議 157
參考資料 158
附錄 170
附錄一、2022年春季鹿林山觀測期間逆推氣流軌跡圖 170
附錄二、2022年春季鹿林山觀測期間火點圖 176
附錄三、(a)臺中市區中央研究院空氣污染研究站、環保署空氣品質觀測站及周遭固定污染源相對位置、(b) 臺中市區中央研究院空氣污染研究站、臺中市垃圾焚化廠、中龍煉鋼廠、台中發電廠相對位置。 180
附錄四、忠明SOx前二十五大排放源一覽表(李等人,2021) 181
附錄五、都市高濃度事件SOR、NOR列表 182
附錄六、口試委員意見與答覆 193
參考文獻 Adam, M.G., Chiang, A.W.J. and Balasubramanian, R. 2020. Insights into characteristics of light absorbing carbonaceous aerosols over an urban location in Southeast Asia. Environmental Pollution 257, 113425.
Ali, M.A., Nichol, J.E., Bilal, M., Qiu, Z., Mazhar, U., Wahiduzzaman, M., Almazroui, M. and Islam, M.N. 2020. Classification of aerosols over Saudi Arabia from 2004–2016. Atmospheric Environment 241, 117785.
Andreae, M.O. 2019. Emission of trace gases and aerosols from biomass burning – an updated assessment. Atmospheric Chemistry and Physics 19, 8523-8546.
Angyal, A., Kertész, Z., Szikszai, Z. and Szoboszlai, Z. 2010. Study of Cl-containing urban aerosol particles by ion beam analytical methods. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 268, 2211-2215.
Arimoto, R., Duce, R., Savoie, D., Prospero, J., Talbot, R., Cullen, J., Tomza, U., Lewis, N. and Ray, B. 1996. Relationships among aerosol constitutes from Asia and the North Pacific during PEM-West A. Journal of Geophysical Research 101, 2011-2024.
Ault, A.P., Guasco, T.L., Baltrusaitis, J., Ryder, O.S., Trueblood, J.V., Collins, D.B., Ruppel, M.J., Cuadra-Rodriguez, L.A., Prather, K.A. and Grassian, V.H. 2014. Heterogeneous Reactivity of Nitric Acid with Nascent Sea Spray Aerosol: Large Differences Observed between and within Individual Particles. The Journal of Physical Chemistry 5, 2493-2500.
Ault, A.P., Moffet, R.C., Baltrusaitis, J., Collins, D.B., Ruppel, M.J., Cuadra-Rodriguez, L.A., Zhao, D., Guasco, T.L., Ebben, C.J., Geiger, F.M., Bertram, T.H., Prather, K.A. and Grassian, V.H. 2013. Size-dependent changes in sea spray aerosol composition and properties with different seawater conditions. Environmental Science & Technology 47, 5603-5612.
Beardsley, R., Jang, M., Ori, B., Im, Y., Delcomyn, C.A. and Witherspoon, N. 2013. Role of sea salt aerosols in the formation of aromatic secondary organic aerosol: yields and hygroscopic properties. Environmental Chemistry 10.
Betha, R., Russell, L.M., Chen, C.L., Liu, J., Price, D.J., Sanchez, K.J., Chen, S., Lee, A.K.Y., Collier, S.C., Zhang, Q., Zhang, X. and Cappa, C.D. 2018. Larger Submicron Particles for Emissions With Residential Burning in Wintertime San Joaquin Valley (Fresno) than for Vehicle Combustion in Summertime South Coast Air Basin (Fontana). Journal of Geophysical Research: Atmospheres 123.
Bhardwaj, P., Naja, M., Kumar, R. and Chandola, H.C. 2016. Seasonal, interannual, and long-term variabilities in biomass burning activity over South Asia. Environmental Science and Pollution Research 23, 4397-4410.
Chen, L., Li, Q., Wu, D., Sun, H., Wei, Y., Ding, X., Chen, H., Cheng, T. and Chen, J. 2019. Size distribution and chemical composition of primary particles emitted during open biomass burning processes: Impacts on cloud condensation nuclei activation. Science of The Total Environment 674, 179-188.
Chen, W.-R., Singh, A., Pani, S.K., Chang, S.-Y., Chou, C.C.K., Chang, S.-C., Chuang, M.-T., Lin, N.-H., Huang, C.-H. and Lee, C.-T. 2021. Real-time measurements of PM2.5 water-soluble inorganic ions at a high-altitude mountain site in the western North Pacific: Impact of upslope wind and long-range transported biomass-burning smoke. Atmospheric Research 260.
Cheng, Y., Zheng, G., Wei, C., Mu, Q., Zheng, B., Wang, Z., Gao, M., Zhang, Q., He, K., Carmichael, G., Pöschl, U. and Su, H. 2016. Reactive nitrogen chemistry in aerosol water as a source of sulfate during haze events in China. Science Advances.
Chien, C.-L., Tsai, C.-J., Sheu, S.-R., Cheng, Y.-H. and Starik, A.M. 2015. High-efficiency parallel-plate wet scrubber (PPWS) for soluble gas removal. Separation and Purification Technology 142, 189-195.
China, S., Burrows, S.M., Wang, B., Harder, T.H., Weis, J., Tanarhte, M., Rizzo, L.V., Brito, J., Cirino, G.G., Ma, P.L., Cliff, J., Artaxo, P., Gilles, M.K. and Laskin, A. 2018. Fungal spores as a source of sodium salt particles in the Amazon basin. Nature Communications 9, 4793.
Chuang, M.-T., Lee, C.-T., Chou, C.C.K., Lin, N.-H., Sheu, G.-R., Wang, J.-L., Chang, S.-C., Wang, S.-H., Chi, K.H., Young, C.-Y., Huang, H., Chen, H.-W., Weng, G.-H., Lai, S.-Y., Hsu, S.-P., Chang, Y.-J., Chang, J.-H. and Wu, X.-C. 2014. Carbonaceous aerosols in the air masses transported from Indochina to Taiwan: Long-term observation at Mt. Lulin. Atmospheric Environment 89, 507-516.
Cohen, M.D., Stunder, B.J.B., Rolph, G.D., Draxler, R.R., Stein, A.F. and Ngan, F. 2015. NOAA’s HYSPLIT Atmospheric Transport and Dispersion Modeling System. Bulletin of the American Meteorological Society 96, 2059-2077.
Deng, J., Zhang, Y., Hong, Y., Xu, L., Chen, Y., Du, W. and Chen, J. 2016. Optical properties of PM2. 5 and the impacts of chemical compositions in the coastal city Xiamen in China. Science of the Total Environment 557, 665-675.
Denjean, C., Formenti, P., Picquet-Varrault, B., Katrib, Y., Pangui, E., Zapf, P. and Doussin, J.F. 2014. A new experimental approach to study the hygroscopic and optical properties of aerosols: application to ammonium sulfate particles. Atmospheric Measurement Techniques 7, 183-197.
Ding, J., Zhao, P., Su, J., Dong, Q., Du, X. and Zhang, Y. 2019. Aerosol pH and its driving factors in Beijing. Atmospheric Chemistry and Physics 19, 7939-7954.
Do, T.V., Vuong, Q.T. and Choi, S.-D. 2021. Day–night variation and size distribution of water-soluble inorganic ions in particulate matter in Ulsan, South Korea. Atmospheric Research 247.
Draxler, R.R. 2010 HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model access via NOAA ARL READY Website.
Farren, N.J., Dunmore, R.E., Mead, M.I., Mohd Nadzir, M.S., Samah, A.A., Phang, S.M., Bandy, B.J., Sturges, W.T. and Hamilton, J.F. 2019. Chemical characterisation of water-soluble ions in atmospheric particulate matter on the east coast of Peninsular Malaysia. Atmospheric Chemistry and Physics 19, 1537-1553.
Gao, J., Wei, Y., Shi, G., Yu, H., Zhang, Z., Song, S., Wang, W., Liang, D. and Feng, Y. 2020. Roles of RH, aerosol pH and sources in concentrations of secondary inorganic aerosols, during different pollution periods. Atmospheric Environment 241.
Gautam, R., Hsu, N.C., Eck, T.F., Holben, B.N., Janjai, S., Jantarach, T., Tsay, S.-C. and Lau, W.K. 2013. Characterization of aerosols over the Indochina peninsula from satellite-surface observations during biomass burning pre-monsoon season. Atmospheric Environment 78, 51-59.
Gonz ́alez, C.R., Schaap, M., Leeuw, G., Builtjes, P.J.H. and Loon, M. 2003. Spatial variation of aerosol properties over Europe derived from satellite observations and comparison with model calculations. Atmospheric Chemistry and Physics 3, 521-533

Guo, H., Nenes, A. and Weber, R.J. 2018. The underappreciated role of nonvolatile cations in aerosol ammonium-sulfate molar ratios. Atmospheric Chemistry and Physics 18, 17307-17323.
Guo, H., Xu, L., Bougiatioti, A., Cerully, K.M., Capps, S.L., Hite, J.R., Carlton, A.G., Lee, S.H., Bergin, M.H., Ng, N.L., Nenes, A. and Weber, R.J. 2015. Fine-particle water and pH in the southeastern United States. Atmospheric Chemistry and Physics 15, 5211-5228.
He, H., Wang, Y., Ma, Q., Ma, J., Chu, B., Ji, D., Tang, G., Liu, C., Zhang, H. and Hao, J. 2014. Mineral dust and NOx promote the conversion of SO2 to sulfate in heavy pollution days. Scientific Reports 4, 4172.
He, K., Zhao, Q., Ma, Y., Duan, F., Yang, F., Shi, Z. and Chen, G. 2012. Spatial and seasonal variability of PM<sub>2.5</sub> acidity at two Chinese megacities: insights into the formation of secondary inorganic aerosols. Atmospheric Chemistry and Physics 12, 1377-1395.
Hennigan, C.J., Izumi, J., Sullivan, A.P., Weber, R.J. and Nenes, A. 2015. A critical evaluation of proxy methods used to estimate the acidity of atmospheric particles. Atmospheric Chemistry and Physics 15, 2775-2790.
Huang, W.R., Wang, S.H., Yen, M.C., Lin, N.H. and Promchote, P. 2016. Interannual variation of springtime biomass burning in Indochina: Regional differences, associated atmospheric dynamical changes, and downwind impacts. Journal of Geophysical Research: Atmospheres 121, 10016-10028.
Huang, X., Song, Y., Li, M., Li, J., Huo, Q., Cai, X., Zhu, T., Hu, M. and Zhang, H. 2012. A high-resolution ammonia emission inventory in China. Global Biogeochemical Cycles 26, n/a-n/a.
Jia, S., Chen, W., Zhang, Q., Krishnan, P., Mao, J., Zhong, B., Huang, M., Fan, Q., Zhang, J., Chang, M., Yang, L. and Wang, X. 2020. A quantitative analysis of the driving factors affecting seasonal variation of aerosol pH in Guangzhou, China. Science of The Total Environment 725, 138228.
Jiang, F., Liu, F., Lin, Q., Fu, Y., Yang, Y., Peng, L., Lian, X., Zhang, G., Bi, X., Wang, X. and Sheng, G. 2019. Characteristics and Formation Mechanisms of Sulfate and Nitrate in Size-segregated Atmospheric Particles from Urban Guangzhou, China. Aerosol and Air Quality Research 19, 1284-1293.
Kenagy, H.S., Sparks, T.L., Ebben, C.J., Wooldrige, P.J., Lopez‐Hilfiker, F.D., Lee, B.H., Thornton, J.A., McDuffie, E.E., Fibiger, D.L., Brown, S.S., Montzka, D.D., Weinheimer, A.J., Schroder, J.C., Campuzano‐Jost, P., Day, D.A., Jimenez, J.L., Dibb, J.E., Campos, T., Shah, V., Jaeglé, L. and Cohen, R.C. 2018. NOx Lifetime and NOy Partioning During WINTER. Journal of Geophysical Research: Atmospheres 123, 9813-9827.
Khamkaew, C., Chantara, S., Janta, R., Pani, S.K., Prapamontol, T., Kawichai, S., Wiriya, W. and Lin, N.-H. 2016. Investigation of Biomass Burning Chemical Components over Northern Southeast Asia during 7-SEAS/BASELInE 2014 Campaign. Aerosol and Air Quality Research 16, 2655-2670.
Kim, M.J. 2019. Sensitivity of Nitrate Aerosol Production to Vehicular Emissions in an Urban Street. Atmosphere 10.
Koo, J.-H., Lee, J., Kim, J., Eck, T.F., Giles, D.M., Holben, B.N., Park, S.S., Choi, M., Kim, N. and Yoon, J. 2021. Investigation of the relationship between the fine mode fraction and Ångström exponent: Cases in Korea. Atmospheric Research 248, 105217.
Kotnala, G., Mandal, T.K., Sharma, S.K. and Kotnala, R.K. 2020. Emergence of Blue Sky Over Delhi Due to Coronavirus Disease (COVID-19) Lockdown Implications. Aerosol Science and Engineering 4, 228-238.
Lai, S.-c., Zou, S.-c., Cao, J.-j., Lee, S.-c. and Ho, K.-f. 2007. Characterizing ionic species in PM2.5 and PM10 in four Pearl River Delta cities, South China. Journal of Environmental Sciences 19, 939-947.
Lee, C.-T., Chuang, M.-T., Lin, N.-H., Wang, J.-L., Sheu, G.-R., Chang, S.-C., Wang, S.-H., Huang, H., Chen, H.-W. and Liu, Y.-L. 2011a. The enhancement of PM2. 5 mass and water-soluble ions of biosmoke transported from Southeast Asia over the Mountain Lulin site in Taiwan. Atmospheric environment 45(32), 5784-5794.
Lee, C.-T., Chuang, M.-T., Lin, N.-H., Wang, J.-L., Sheu, G.-R., Chang, S.-C., Wang, S.-H., Huang, H., Chen, H.-W., Liu, Y.-L., Weng, G.-H., Lai, H.-Y. and Hsu, S.-P. 2011b. The enhancement of PM2.5 mass and water-soluble ions of biosmoke transported from Southeast Asia over the Mountain Lulin site in Taiwan. Atmospheric Environment 45(1), 5784-5794.
Lee, J., Kim, J., Song, C.H., Kim, S.B., Chun, Y., Sohn, B.J. and Holben, B.N. 2010. Characteristics of aerosol types from AERONET sunphotometer measurements. Atmospheric Environment 44, 3110-3117.
Li, H., Ma, Y., Duan, F., He, K., Zhu, L., Huang, T., Kimoto, T., Ma, X., Ma, T., Xu, L., Xu, B., Yang, S., Ye, S., Sun, Z., An, J. and Zhang, Z. 2017. Typical winter haze pollution in Zibo, an industrial city in China: Characteristics, secondary formation, and regional contribution. Environmental Pollution 229, 339-349.
Li, J., Pósfai, M., Hobbs, P.V. and Buseck, P.R. 2003. Individual aerosol particles from biomass burning in southern Africa: 2, Compositions and aging of inorganic particles. Journal of Geophysical Research: Atmospheres 108.
Li, L., Zhang, Y., Xiao, H.-Y., Nj, Z., Zhang, Z.-Y., Xie, Y.-J. and Liu, C. 2019. Spatial Distributions and Sources of Inorganic Chlorine in PM2.5 across China in Winter. Atmosphere 10, 505.
Lieke, K., Kandler, K., Scheuvens, D., Emmel, C., Glahn, C.V., Petzold, A., Weinzierl, B., Veira, A., Ebert, M., Weinbruch, S. and Schütz, L. 2017. Particle chemical properties in the vertical column based on aircraft observations in the vicinity of Cape Verde Islands. Tellus B: Chemical and Physical Meteorology 63, 497-511.
Lightowlers, P.J. and Cape, J.N. 1988. Sources and fate of atmospheric HCl in the U.K. and Western Europe. Atmospheric Environment 22, 7-15.
Lin, C.-Y., Zhao, C., Liu, X., Lin, N.-H. and Chen, W.-N. 2014. Modelling of long-range transport of Southeast Asia biomass-burning aerosols to Taiwan and their radiative forcings over East Asia. Tellus B: Chemical and Physical Meteorology.
Liu, L., Bei, N., Hu, B., Wu, J., Liu, S., Li, X., Wang, R., Liu, Z., Shen, Z. and Li, G. 2020. Wintertime nitrate formation pathways in the north China plain: Importance of N2O5 heterogeneous hydrolysis. Environmental Pollution 266, 115287.
Liu, S., Hu, M., Slanina, S., He, L.-Y., Niu, Y.-W., Bruegemann, E., Gnauk, T. and Herrmann, H. 2008. Size distribution and source analysis of ionic compositions of aerosols in polluted periods at Xinken in Pearl River Delta (PRD) of China. Atmospheric Environment 42, 6284-6295.
Liu, Y., Cain, J.P., Wang, H. and Laskin, A. 2007. Kinetic Study of Heterogeneous Reaction of Deliquesced NaCl Particles with Gaseous HNO3 Using Particle-on-Substrate Stagnation Flow Reactor Approach. Journal of Physical Chemistry A 111, 10026-10043.
Ma, Tigabu, Guo, Zheng, Guo and Guo 2019. Water-Soluble Inorganic Ions in Fine Particulate Emission During Forest Fires in Chinese Boreal and Subtropical Forests: An Indoor Experiment. Forests 10.
Ma, Y., Weber, R.J., Lee, Y.-N., Orsini, D.A., Maxwell-Meier, K., Thornton, D.C., Bandy, A.R., Clarke, A.D., Blake, D.R., Sachse, G.W., Fuelberg, H.E., Kiley, C.M., Woo, J.-H., Streets, D.G. and Carmichael, G.R. 2003. Characteristics and influence of biosmoke on the fine-particle ionic composition measured in Asian outflow during the Transport and Chemical Evolution Over the Pacific (TRACE-P) experiment. Journal of Geophysical Research: Atmospheres 108.
Ma, Y., Xin, J., Ma, Y., Kong, L., Zhang, K., Zhang, W., Wang, Y., Wang, X. and Zhu, Y. 2017. Optical properties and source analysis of aerosols over a desert area in Dunhuang, Northwest china. Advances in Atmospheric Sciences 34, 1017-1026.
Malm, W.C. and Day, D.E. 2001. Estimates of aerosol species scattering characteristics as a function of relative humidity. Atmospheric Environment 35, 2845-2860.
McDuffie, E.E., Fibiger, D.L., Dubé, W.P., Lopez‐Hilfiker, F., Lee, B.H., Thornton, J.A., Shah, V., Jaeglé, L., Guo, H., Weber, R.J., Michael Reeves, J., Weinheimer, A.J., Schroder, J.C., Campuzano‐Jost, P., Jimenez, J.L., Dibb, J.E., Veres, P., Ebben, C., Sparks, T.L., Wooldridge, P.J., Cohen, R.C., Hornbrook, R.S., Apel, E.C., Campos, T., Hall, S.R., Ullmann, K. and Brown, S.S. 2018. Heterogeneous N2O5 Uptake During Winter: Aircraft Measurements During the 2015 WINTER Campaign and Critical Evaluation of Current Parameterizations. Journal of Geophysical Research: Atmospheres 123, 4345-4372.
Meng, Z. and Seinfeld, J.H. 1994. On the Source of the Submicrometer Droplet Mode of Urban and Regional Aerosols. Aerosol Science and Technology 20, 253-265.
Miyakawa, T., Takegawa, N. and Kondo, Y. 2007. Removal of sulfur dioxide and formation of sulfate aerosol in Tokyo. Journal of Geophysical Research: Atmospheres 112(D13).
Mwaniki, G.R., Rosenkrance, C., Will Wallace, H., Tom Jobson, B., Erickson, M.H., Lamb, B.K., Hardy, R.J., Zalakeviciute, R. and VanReken, T.M. 2014. Factors contributing to elevated concentrations of PM 2.5 during wintertime near Boise, Idaho. Atmospheric Pollution Research 5, 96-103.
Nenes, A., Pandis, S.N., Weber, R.J. and Russell, A. 2020. Aerosol pH and liquid water content determine when particulate matter is sensitive to ammonia and nitrate availability. Atmospheric Chemistry and Physics 20, 3249-3258.
Nenes, A., Pandis, S.N., Pilinis, C., 1998. ISORROPIA: A new thermodynamic equilibrium model for multiphase multicomponent inorganic aerosols. Aquatic Geochemistry 4, 123-152.
O′Neill, N.T. 2003. Spectral discrimination of coarse and fine mode optical depth. Journal of Geophysical Research 108.
O’Neill, N.T., Dubovik, O. and Eck, T.F. 2001. Modified Ångström exponent for the characterization of submicrometer aerosols. Applied Optics 40(15), 2368-2375.
Ou Yang, C.-F., Lin, N.-H., Sheu, G.-R., Lee, C.-T. and Wang, J.-L. 2012. Seasonal and diurnal variations of ozone at a high-altitude mountain baseline station in East Asia. Atmospheric Environment 46, 279-288.
Pani, S.K., Chantara, S., Khamkaew, C., Lee, C.-T. and Lin, N.-H. 2019. Biomass burning in the northern peninsular Southeast Asia: Aerosol chemical profile and potential exposure. Atmospheric Research 224, 180-195.
Pathak, R.K., Wu, W.S. and Wang, T. 2008. Summertime PM2.5 ionic species in four major cities of China:nitrate formation in an ammonia-deficient atmosphere. Atmospheric Chemistry and Physics 9, 1711-1722.
Pathak, R.K., Wu, W.S. and Wang, T. 2009. Summertime PM2.5 ionic species in four major cities of China: nitrate formation in an ammonia-deficient atmosphere. Atmospheric Chemistry and Physics 9, 1711-1722.
Penner, J.E., Chuang, C.C. and Grant, K. 1998. Climate forcing by carbonaceous and sulfate aerosols. Climate Dynamics 14, 839-851.
Peppler, R.A., Bahrmann, C., Barnard, J.C., Campbell, J., Cheng, M.-D., Ferrare, R., Halthore, R., HeiIman, L., Hlavka, D. and Laulainen, N.S. 2000. ARM Southern Great Plains site observations of the smoke pall associated with the 1998 Central American fires. Bulletin of the American Meteorological Society 81(11), 2563-2592.
Prather, K.A., Bertram, T.H., Grassian, V.H., Deane, G.B., Stokes, M.D., Demott, P.J., Aluwihare, L.I., Palenik, B.P., Azam, F., Seinfeld, J.H., Moffet, R.C., Molina, M.J., Cappa, C.D., Geiger, F.M., Roberts, G.C., Russell, L.M., Ault, A.P., Baltrusaitis, J., Collins, D.B., Corrigan, C.E., Cuadra-Rodriguez, L.A., Ebben, C.J., Forestieri, S.D., Guasco, T.L., Hersey, S.P., Kim, M.J., Lambert, W.F., Modini, R.L., Mui, W., Pedler, B.E., Ruppel, M.J., Ryder, O.S., Schoepp, N.G., Sullivan, R.C. and Zhao, D. 2013. Bringing the ocean into the laboratory to probe the chemical complexity of sea spray aerosol. Proceedings of the National Academy of Sciences of the United States of America 110, 7550-7555.
Reid, J.S., Koppmann, R., Eck, T.F. and Eleuterio, D.P. 2005. A review of biomass burning emissions part II: intensive physical properties of biomass burning particles. Atmospheric Chemistry and Physics 5, 799-825.
Ryder, O.S., Ault, A.P., Cahill, J.F., Guasco, T.L., Riedel, T.P., Cuadra-Rodriguez, L.A., Gaston, C.J., Fitzgerald, E., Lee, C., Prather, K.A. and Bertram, T.H. 2014. On the role of particle inorganic mixing state in the reactive uptake of N2O5 to ambient aerosol particles. Environmental Science & Technology 48, 1618-1627.
Saul, D.T., Tolocka, P.M. and Johnston, V.M. 2006. Reactive Uptake of Nitric Acid onto Sodium Chloride Aerosols Across a Wide Range of Relative Humidities. Journal of Physical Chemistry A 110, 7614-7620.
Scharko, N.K., Berke, A.E. and Raff, J.D. 2014. Release of nitrous acid and nitrogen dioxide from nitrate photolysis in acidic aqueous solutions. Environmental Science & Technology 48, 11991-12001.
Seinfeld, J.H. and Pandis, S.N. 2016. From Air Pollution to Climate Change. Atmospheric Chemistry and Physics 3rd Edition.
Shabunya, S., Wende, B., Fisenko, S. and Schaber, K. 2003. Simulations and experiments on the formation of ammonium chloride particles in wet scrubbers. Chemical Engineering and Processing 42, 789-800.
Shang, X., Kang, H., Chen, Y., Abdumutallip, M., Li, L., Li, X., Fu, H., Wang, X., Wang, L., Wang, X., Ouyang, H., Tang, X., Xiao, H., George, C. and Chen, J. 2021. PM1.0-Nitrite Heterogeneous Formation Demonstrated via a Modified Versatile Aerosol Concentration Enrichment System Coupled with Ion Chromatography. Environmental Science & Technology 55, 9794-9804.
Shao, J., Chen, Q., Wang, Y., Lu, X., He, P., Sun, Y., Shah, V., Martin, R.V., Philip, S., Song, S., Zhao, Y., Xie, Z., Zhang, L. and Alexander, B. 2019. Heterogeneous sulfate aerosol formation mechanisms during wintertime Chinese haze events: air quality model assessment using observations of sulfate oxygen isotopes in Beijing. Atmospheric Chemistry and Physics 19, 6107-6123.
Shen, L., Wang, H., Cheng, M., Ji, D., Liu, Z., Wang, L., Gao, W., Yang, Y., Huang, W., Zhang, R., Zou, J. and Wang, Y. 2021. Chemical composition, water content and size distribution of aerosols during different development stages of regional haze episodes over the North China Plain. Atmospheric Environment 245.
Silva, P.J., Liu, D.-Y., Noble, C.A. and Prather, K.A. 1999. Size and Chemical Characterization of Individual Particles Resulting from Biomass Burning of Local Southern California Species. Environmental Science & Technology 33, 3068-3076.
Singh, A., Chou, C.C., Chang, S.Y., Chang, S.C., Lin, N.H., Chuang, M.T., Pani, S.K., Chi, K.H., Huang, C.H. and Lee, C.T. 2020. Long-term (2003-2018) trends in aerosol chemical components at a high-altitude background station in the western North Pacific: Impact of long-range transport from continental Asia. Environmental Pollution 265, 114813.
Song, C.H. and Carmichael, G.R. 2001. Gas-Particle Partitioning of Nitric Acid Modulated by Alkaline Aerosol. Journal of Atmospheric Chemistry 40, 1-22.
Song, S., Gao, M., Xu, W., Shao, J., Shi, G., Wang, S., Wang, Y., Sun, Y. and McElroy, M.B. 2018. Fine particle pH for Beijing winter haze as inferred from different thermodynamic equilibrium models. Atmospheric Chemistry and Physics 18, 7423-7438.
Sorooshian, A., Wonaschutz, A., Jarjour, E.G., Hashimoto, B.I., Schichtel, B.A. and Betterton, E.A. 2011. An aerosol climatology for a rapidly growing arid region (southern Arizona): Major aerosol species and remotely sensed aerosol properties. Journal of Geophysical Research: Atmospheres 116, 16.
Souri, A.H., Choi, Y., Jeon, W., Kochanski, A.K., Diao, L., Mandel, J., Bhave, P.V. and Pan, S. 2017. Quantifying the Impact of Biomass Burning Emissions on Major Inorganic Aerosols and Their Precursors in the U.S. Journal of Geophysical Research: Atmospheres 122, 12,020-012,041.
Stein, A.F., Draxler, R.R., Rolph, G.D., Stunder, B.J.B., Cohen, M.D. and Ngan, F. 2015. NOAA’s HYSPLIT Atmospheric Transport and Dispersion Modeling System. Bulletin of the American Meteorological Society 96, 2059-2077.
Sun, J., Shen, Z., Zhang, L., Lei, Y., Gong, X., Zhang, Q., Zhang, T., Xu, H., Cui, S., Wang, Q., Cao, J., Tao, J., Zhang, N. and Zhang, R. 2019. Chemical source profiles of urban fugitive dust PM2.5 samples from 21 cities across China. Science of The Total Environment 649, 1045-1053.
Tian, M., Liu, Y., Yang, F., Zhang, L., Peng, C., Chen, Y., Shi, G., Wang, H., Luo, B., Jiang, C., Li, B., Takeda, N. and Koizumi, K. 2019. Increasing importance of nitrate formation for heavy aerosol pollution in two megacities in Sichuan Basin, southwest China. Environmental Pollution 250, 898-905.
Tsai, J.H., Tsai, S.M., Wang, W.C. and Chiang, H.L. 2016. Water-soluble ionic species of coarse and fine particulate matter and gas precursor characteristics at urban and rural sites of central Taiwan. Environmental Science and Pollution Research 23, 16722-16737.
Valentini, S., Barnaba, F., Bernardoni, V., Calzolai, G., Costabile, F., Di Liberto, L., Forello, A.C., Gobbi, G.P., Gualtieri, M., Lucarelli, F., Nava, S., Petralia, E., Valli, G., Wiedensohler, A. and Vecchi, R. 2020. Classifying aerosol particles through the combination of optical and physical-chemical properties: Results from a wintertime campaign in Rome (Italy). Atmospheric Research 235.
Voulgarakis, A. and Field, R.D. 2015. Fire Influences on Atmospheric Composition, Air Quality and Climate. Current Pollution Reports 1, 70-81.
Vu, D., Roth, P., Berte, T., Yang, J., Cocker, D., Durbin, T.D., Karavalakis, G. and Asa-Awuku, A. 2019. Using a new Mobile Atmospheric Chamber (MACh) to investigate the formation of secondary aerosols from mobile sources: The case of gasoline direct injection vehicles. Journal of Aerosol Science 133, 1-11.
Wang, H., Ding, J., Xu, J., Wen, J., Han, J., Wang, K., Shi, G., Feng, Y., Ivey, C.E., Wang, Y., Nenes, A., Zhao, Q. and Russell, A.G. 2019. Aerosols in an arid environment: The role of aerosol water content, particulate acidity, precursors, and relative humidity on secondary inorganic aerosols. Sci Total Environ 646, 564-572.
Wang, J., Li, J., Ye, J., Zhao, J., Wu, Y., Hu, J., Liu, D., Nie, D., Shen, F., Huang, X., Huang, D.D., Ji, D., Sun, X., Xu, W., Guo, J., Song, S., Qin, Y., Liu, P., Turner, J.R., Lee, H.C., Hwang, S., Liao, H., Martin, S.T., Zhang, Q., Chen, M., Sun, Y., Ge, X. and Jacob, D.J. 2020a. Fast sulfate formation from oxidation of SO2 by NO2 and HONO observed in Beijing haze. Nature Communications 11, 2844.
Wang, J., Zhang, J.-s., Liu, Z.-j., Wu, J.-h., Zhang, Y.-f., Han, S.-q., Zheng, X.-j., Zhou, L.-d., Feng, Y.-c. and Zhu, T. 2017. Characterization of chemical compositions in size-segregated atmospheric particles during severe haze episodes in three mega-cities of China. Atmospheric Research 187, 138-146.
Wang, Q., Li, J., Yang, J., Chen, Y., Li, Y., Li, S., Xie, C., Chen, C., Wang, L., Wang, L., Wang, W., Tong, S. and Sun, Y. 2020b. Seasonal characterization of aerosol composition and sources in a polluted city in Central China. Chemosphere 258, 127310.
Wang, X., Dalton, E.Z., Payne, Z.C., Perrier, S., Riva, M., Raff, J.D. and George, C. 2020c. Superoxide and Nitrous Acid Production from Nitrate Photolysis Is Enhanced by Dissolved Aliphatic Organic Matter. Environmental Science & Technology Letters 8, 53-58.
Wen, L., Chen, J., Yang, L., Wang, X., Caihong, X., Sui, X., Yao, L., Zhu, Y., Zhang, J., Zhu, T. and Wang, W. 2015. Enhanced formation of fine particulate nitrate at a rural site on the North China Plain in summer: The important roles of ammonia and ozone. Atmospheric Environment 101, 294-302.
Wild, R.J., Edwards, P.M., Bates, T.S., Cohen, R.C., de Gouw, J.A., Dubé, W.P., Gilman, J.B., Holloway, J., Kercher, J., Koss, A.R., Lee, L., Lerner, B.M., McLaren, R., Quinn, P.K., Roberts, J.M., Stutz, J., Thornton, J.A., Veres, P.R., Warneke, C., Williams, E., Young, C.J., Yuan, B., Zarzana, K.J. and Brown, S.S. 2016. Reactive nitrogen partitioning and its relationship to winter ozone events in Utah. Atmospheric Chemistry and Physics 16, 573-583.
Wonaschütz, A., Hersey, S.P., Sorooshian, A., Craven, J.S., Metcalf, A.R., Flagan, R.C. and Seinfeld, J.H. 2011. Impact of a large wildfire on water-soluble organic aerosol in a major urban area: the 2009 Station Fire in Los Angeles County. Atmospheric Chemistry and Physics 11, 8257-8270.
Xu, L., Duan, F., He, K., Ma, Y., Zhu, L., Zheng, Y., Huang, T., Kimoto, T., Ma, T., Li, H., Ye, S., Yang, S., Sun, Z. and Xu, B. 2017. Characteristics of the secondary water-soluble ions in a typical autumn haze in Beijing. Environmental Pollution 227, 296-305.
Xu, X., Zhao, W., Fang, B., Zhou, J., Wang, S., Zhang, W., Venables, D.S. and Chen, W. 2018. Three-wavelength cavity-enhanced albedometer for measuring wavelength-dependent optical properties and single-scattering albedo of aerosols. Optics Express 26, 33484-33500.
Xue, J., Yuan, Z., Griffith, S.M., Yu, X., Lau, A.K. and Yu, J.Z. 2016. Sulfate Formation Enhanced by a Cocktail of High NOx, SO2, Particulate Matter, and Droplet pH during Haze-Fog Events in Megacities in China: An Observation-Based Modeling Investigation. Environmental Science & Technology 50, 7325-7334.
Yu, F., Luo, G., Nair, A.A., Schwab, J.J., Sherman, J.P. and Zhang, Y. 2020a. Wintertime new particle formation and its contribution to cloud condensation nuclei in the Northeastern United States. Atmospheric Chemistry and Physics 20, 2591-2601.
Yu, Y., Ding, F., Mu, Y., Xie, M. and Wang, Q. 2020b. High time-resolved PM2.5 composition and sources at an urban site in Yangtze River Delta, China after the implementation of the APPCAP. Chemosphere 261, 127746.
Zaid, M.Z.S.M., Wahid, M.A., Mailah, M., Mazlan, M.A. and Saat, A. 2019 Coal fired power plant: A review on coal blending and emission issues.
Zhai, J., Lu, X., Li, L., Zhang, Q., Zhang, C., Chen, H., Yang, X. and Chen, J. 2017. Size-resolved chemical composition, effective density, and optical properties of biomass burning particles. Atmospheric Chemistry and Physics 17, 7481-7493.
Zhang, F., Xu, L., Chen, J., Yu, Y., Niu, Z. and Yin, L. 2012. Chemical compositions and extinction coefficients of PM2.5 in peri-urban of Xiamen, China, during June 2009–May 2010. Atmospheric Research 106, 150-158.
Zhou, D., Ding, K., Huang, X., Liu, L., Liu, Q., Xu, Z., Jiang, F., Fu, C. and Ding, A. 2018. Transport, mixing and feedback of dust, biomass burning and anthropogenic pollutants in eastern Asia: a case study. Atmospheric Chemistry and Physics 18, 16345-16361.
Zhou, Y., Wang, Q., Zhang, X., Wang, Y., Liu, S., Wang, M., Tian, J., Zhu, C., Huang, R., Zhang, Q., Zhang, T., Zhou, J., Dai, W. and Cao, J. 2019. Exploring the impact of chemical composition on aerosol light extinction during winter in a heavily polluted urban area of China. Journal of Environmental Economics and Management 247, 766-775.
Zhu, J., Xia, X., Che, H., Wang, J., Cong, Z., Zhao, T., Kang, S., Zhang, X., Yu, X. and Zhang, Y. 2019. Spatiotemporal variation of aerosol and potential long-range transport impact over the Tibetan Plateau, China. Atmospheric Chemistry and Physics 19, 14637-14656.
王韋智 (2020) 2019年春季高山與都市氣膠水溶性無機離子與光學特性短時間變化, 國立中央大學.
李崇德, 周崇光, 張士昱, 莊銘棟 and 許文昌 (2021). 110年度細懸浮微粒(PM2.5)化學成分基測及分析計畫,期末報告(定稿本),行政院環保署,台北,110年12月.
楊孟樵 (2020) 2017~2018年台灣平地與高山氣膠水溶性無機離子短時間動態變化特性, 國立中央大學.
蔡伊亭 (2021) 台灣都會區PM2.5化學成分與大氣光學特性, 國立中央大學.
蔡茗宇 (2014) 2013年春季鹿林山和夏季龍潭氣膠水溶性離子短時間動態變化特性, 國立中央大學.
指導教授 李崇德(Chung-Te Lee) 審核日期 2023-3-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明