博碩士論文 110323071 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:3.148.162.188
姓名 丁芷馨(Chih-Hsin Ting)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 物理氣相傳輸法生長 6 吋碳化矽單晶之熱場與熱應力數值模擬分析
(Numerical Simulation Analysis of Thermal Field and Thermal Stress of 6-inch Sick Single Crystal Growth by Physical Vapor Transport Method)
相關論文
★ 鋰鋁矽酸鹽之負熱膨脹陶瓷製程★ 鋰鋁矽酸鹽摻鈦陶瓷之性質研究
★ 高功率LED之熱場模擬與結構分析★ 干涉微影之曝光與顯影參數對週期性結構外型之影響
★ 週期性極化反轉鈮酸鋰之結構製作與研究★ 圖案化藍寶石基板之濕式蝕刻
★ 高功率發光二極體於自然對流環境下之熱流場分析★ 液珠撞擊熱板之飛濺行為現象分析
★ 柴式法生長氧化鋁單晶過程最佳化熱流場之分析★ 柴式法生長氧化鋁單晶過程晶體內部輻射對於固液界面及熱應力之分析
★ 交流電發光二極體之接面溫度量測★ 柴氏法生長單晶矽過程之氧雜質傳輸控制數值分析
★ 泡生法生長大尺寸氧化鋁單晶降溫過程中晶體熱場及熱應力分析★ KY法生長大尺寸氧化鋁單晶之數值模擬分析
★ 外加水平式磁場柴氏法生長單晶矽之熱流場及氧雜質傳輸數值分析★ 大尺寸LED晶片Efficiency Droop之光電熱效應研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 物理氣相傳輸法(Physical vapor transport, PVT)為對長晶爐內的坩堝進行加熱,使熱傳導至坩堝內的碳化矽粉末,並在高溫低壓的情況下分解成不同的反應氣體(Si, SiC, Si2C, SiC2等),因溫度梯度與濃度差的關係,反應氣體由較高溫的碳化矽粉末傳輸至上方較低溫的晶種表面,當到達飽和濃度時晶種表面開始凝固結晶,並生成碳化矽單晶之生長過程。
本研究針對生長6吋單晶碳化矽,開發一物理氣相傳輸法準穩態(Quasi-steady state)熱流場的數值方法,使用其數值方法分析長晶過程中熱流場隨著晶體厚度增加而產生的變化,進一步探討其對晶體長率與表面形狀的影響,並考量不同線圈數量、改變上觀測孔的形狀以及改變絕緣層結構,對晶體表面的長晶速率曲線進行優化,來避免長晶速率過快造成晶體內部的錯位(Stacking fault)發生,以及當徑向溫度梯度太大時,晶體內部熱應力破壞或缺陷形成。
模擬結果表示當晶體厚度增加時,晶體與粉末間的距離會縮小,影響軸向溫度梯度,因此當軸向溫度梯度越小,晶體表面的長率隨之下降。而本研究在PVT製程上的改善建議為(1)增加線圈個數,使生長室內溫度分佈更均勻;(2)改善上觀測孔形狀,使得長率趨於平穩,並探討不同上觀測孔溫度對長率的影響,可以發現當上觀測孔溫度增加時,長率也隨之上升;(3)在絕緣層頂部加入一個方形缺口,隨著距離增加,熱源從缺口散失的量增加,使得傳導到生長室內的溫度降低,使得熱應力值也會隨之降低。
摘要(英) The physical vapor transport method (PVT) is to heat the crucible in the crystal growth furnace, so that the heat is transferred to the silicon carbide powder in the crucible, and decomposed into different reaction gases (SiC, Si2C, SiC2, etc.) under high temperature and low pressure.However, the relationship between the temperature gradient and the concentration difference, the reaction gas is transported from the higher temperature silicon carbide powder to the upper lower temperature seed crystal surface. When the saturation concentration is reached, the seed crystal surface begins to solidify and crystallize, and the growth process of silicon carbide single crystal is formed.
In this study, a numerical method for the quasi-steady-state heat flow field of the physical vapor transport method was developed for the growth of 6-inch single-crystal silicon carbide. Its numerical method is used to analyze the change of thermal flow field with the increase of crystal thickness during the crystal growth process. Further explore its influence on the crystal length and surface shape, and consider different number of coils, changing the shape of the upper observation hole and changing the structure of the insulating layer. Optimize the crystal growth rate curve on the crystal surface to avoid Stacking fault inside the crystal when the crystal growth rate is too fast, and thermal stress damage inside the crystal when the radial temperature gradient is too large.
The simulation results show that when the crystal thickness increases, the distance between the crystal and the powder will shrink, which will affect the axial temperature gradient. Therefore, when the axial temperature gradient is smaller, the elongation rate of the crystal surface will decrease. The improvement suggestions of this study on the PVT process are as follows: (1) Increasing the number of coils to make the temperature distribution in the growth chamber more uniform. (2) Improve the shape of the upper observation hole so that the elongation rate tends to be stable, and discuss the influence of different upper observation hole temperatures on the elongation rate. It can be found that when the upper observation hole temperature increases, the elongation rate also increases. (3) A square gap is added to the top of the insulating layer. As the distance increases, the amount of heat lost from the gap increases, so that the temperature transferred to the growth chamber decreases, and the stress value also decreases.
關鍵字(中) ★ 物理氣相傳輸法
★ 碳化矽單晶
★ 熱應力
★ 數值模擬分析
關鍵字(英) ★ physical vapor transport method
★ silicon carbide single crystal
★ thermal stress
★ numerical simulation analysis
論文目次 目錄...............................................................V
圖目錄 ............................................................VIII
表目錄 ............................................................XI
符號說明...........................................................XII
第一章 緒論........................................................1
1.1 研究背景.......................................................1
1.2 文獻回顧.......................................................2
1.2.1 物理氣相傳輸法之優化坩堝結構.................................2
1.2.2 SiC 晶體 PVT 生長中感應加熱的數值設計........................2
1.2.3 生長室內溫度分佈對晶體形狀的影響.............................3
1.3 研究動機與目的.................................................6
第二章 研究方法 ...................................................7
2.1 模型幾何.......................................................7
2.2 物理系統.......................................................9
2.3 基本假設.......................................................10
2.4 統御方程式.....................................................11
2.4.1 感應電流與磁場方程式.........................................11
2.4.2 熱傳導.......................................................11
2.4.3 熱輻射.......................................................12
2.4.4 流體力學.....................................................13
2.4.5 質量傳遞.....................................................14
2.4.6 長晶速率.....................................................15
2.4.7 熱應力.......................................................15
2.4.8 多孔性材料之熱傳導係數.......................................16
2.5 邊界條件 ......................................................18
2.4.1 冷卻系統.....................................................18
2.4.2 固體表面輻射.................................................18
2.4.3 物種的傳輸...................................................20
2.4.4 混合氣體流場.................................................20
2.5.5 應力邊界.....................................................21
2.6 材料性質 ......................................................22
第三章 數值方法 ...................................................27
3.1 數值分析模擬 ..................................................27
3.2 網格配置測試...................................................28
3.3 收斂公差測試...................................................29
3.4 輻射解析度測試.................................................30
第四章 結果與討論 .................................................32
4.1 模型驗證與溫度分佈的影響.......................................32
4.2 不同線圈個數的比較.............................................34
4.2.1 溫度分佈與磁場強度之關係.....................................34
4.2.2 徑向溫差與長率之關係.........................................34
4.3 改善上觀測孔形狀對長率的影響 ..................................42
4.3.1 不同上觀測孔形狀.............................................42
4.3.2 不同上觀測孔溫度.............................................42
4.4 生長晶體厚度的變化.............................................49
4.4.1 長率的變化...................................................49
4.4.2 熱應力的變化.................................................50
4.5 改變絕緣層頂部形狀對熱應力的影響...............................57
第五章 結論與未來方向 .............................................61
5.1 結論...........................................................61
5.2 未來方向.......................................................62
參考文獻...........................................................63
參考文獻 [1] Y.B. Yang, J. Wang, Y.M. Wang, "Thermal stress simulation of optimized SiC single crystal growth crucible structure" , Journal of Crystal Growth, vol.504, pp. 31–36,2018.
[2] J.-Y. Yan, Q.-S. Chen, Y.-N Jiang, H. Zhang, "Improvement of the thermal design in the SiC PVT growth process" , Journal of Crystal Growth , vol. 385, pp. 34–37, 2014.
[3] P. Tan, W. Kang, J. Yin, J. Kang, "200mm silicon carbide bulk growth optimisation: mass transport controlled by a designed gas deflector" , Phys. Scr. 97 105708, 2022.
[4] S. Zhang, G. Fan, T. Lic, L. Zhao, "Optimization of thermal field of 150 mm SiC crystal growth by PVT method" ,RSC Advances, 2022.
[5] J. Su, X. Chen, and Y. Li, "Numerical design of induction heating in the PVT growth of SiC crystal" , Journal of Crystal Growth, vol. 401, pp. 128-132, 2014
[6] S. Lin, Z. Chen, B. Liu, L. Li, X. Feng, "Identification and control of SiC polytypes in PVT method," Journal of Materials Science, vol. 21, pp. 326-329, 2010.
[7] R. Ma, H. Zhang, V. Prasad, M. Dudley, "Growth kinetics and thermal stress in the sublimation growth of silicon carbide," Crystal Growth & Design, vol. 2, no. 3, p.p. 213-220, 2002.
[8] J. Lu, Z-B. Zhang, Q.-S. Chen, "Numerical simulation of the flow field and concentration distribution in the bulk growth of silicon carbide crystals," Journal of Crystal Growth, vol. 292, pp. 519-522, 2006.
[9] Q.-S. Chen, H. Zhang, V. Prasad, C. M. Balkas, N. K. Yushin, "Modeling of heat transfer and kinetics of physical vapor transport growth of silicon carbide crystals," Journal of Heat Transfer, vol. 123, pp. 1098-1109, 2001.
[10] Z. Li and R. C. Bradt," Thermal Expansion of the Hexagonal (6H) Polytype of Silicon Carbide" , J. Am. Ceram. Soc, vol.69, pp. 863–866,1986.
[11] F. P. Incropera, D. P. Dewitt, T. L. Bergman, A. S. Lavine, "Fundamentals of heat and mass transfer," John Wiley & Sons, 6 th Edition, pp. 569-583, 2007.
[12] D. Duc, I. Naoki, F. Kazuyoshi, "A study of near-infrared nanosecond laser ablation of silicon carbide, " International Journal of Heat and Mass Transfer, vol. 65, p.p. 713-718, 2013.
[13] T. Kaneko, "Growth kinetics of vapor-grown SiC," Journal of Crystal Growth, vol. 128, pp. 354-357, 1993.
[14] P. Vueghs, P. Beckers, "Presentation of the hemisphere method," Engineering Sciences, vol. 53, 2006.
[15] O. Klein, P. Philip, "Transient numerical investigation of induction heating during sublimation growth of silicon carbide single crystals," Journal of Crystal Growth, vol. 247, pp. 219-235, 2003.
[16] N. M. Ravindra, S. R. Marthi, A. Banobre, "Radiative properties of semiconductors," IOP Concise Physics, 2017.
[17] Y. Wang, M. Sasaki, T. Hiral, "Thermal properties of chemical vapour-deposition SiC-C nanocomposites," Journal of Materials Science, vol. 26, pp. 5495-5501, 1991.
[18] L. Yin, E-Y.J. Vancoille, K. Ramesh, H. Huang, "Surface characterization of 6H-SiC (0001) substrates in indentation and abrasive machining" , International Journal of Machine Tools & Manufacture 44 , pp. 607–615,2004.
[19] S. H. P. Chen, S. C. Saxena, "Thermal conductivity of argon in the temperature range 350 to 2500 K," Molecular Physics, vol. 29, no. 2, pp. 455-466, 1975.
[20] Q.-S. Chen, H. Zhang, V. Prasad, C. M. Balkas, N. K. Yushin, and S. Wang, "Kinetics and modeling of sublimation growth of silicon carbide bulk crystal," Journal of Crystal Growth, vol. 224, pp. 101-110, 2001.
[21] I.A.Zhmakin,A.V.Kulik,S.Yu.Karpov,S.E.Demina,M.S.Ramm,Yu.N.Makar-ov, " Evolution of thermoelastic strain and dislocation density during sublimation growth of silicon carbide," Diamond and Related Materials 9, pp.446–451,2000.
指導教授 陳志臣(Jyh-Chen,Chen,) 審核日期 2023-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明