博碩士論文 107083606 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:97 、訪客IP:18.119.133.138
姓名 斯塔納(Putu Aryastana)  查詢紙本館藏   畢業系所 環境科技博士學位學程
論文名稱 衛星降水資料於高衝擊天氣和滑坡事件的應用研究
(Investigation of Satellite Precipitation Datasets for the Application of High-Impact Weather and Landslide Occurrences)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-12-31以後開放)
摘要(中) 衛星降水資料(SPDs)可提供全球大規模空間覆蓋的降雨數據,且具有不同時間的解析度,因此預期可應用於高衝擊天氣(如颱風)和滑坡發生的相關性研究。本研究的第一個目標,即是客觀地評估 SPD 的性能。首先選定印尼的巴厘島省,因其自然災害脆弱性風險高而被選為測試評估研究區,也針對高衝擊天氣現象,選取有侵襲菲律賓呂宋島的颱風事件,進行在多重降水情景下對 SPD 進行全面性客觀的評估。第二個目標是應用適當的 SPD 來評估巴厘島滑坡發生的平均降雨強度和持續時間 (I-D) 以及累積強度和持續時間 (E-D) 閾值。第三個目標是應用降雨強度的優化調整來評估巴厘島滑坡發生的 I-D 和 E-D 閾值。評估 SPD 性能係採取一個客觀定量分析方式,亦即「連續統計測量」和「體積指數」,而另一方面,冪律技術則用於評析 I-D 和 E-D 閾值。分析結果顯示,IMERG 資料與雨量計觀測數據具有良好的一致性,且在侵襲菲律賓呂宋島的五個颱風事件中,降雨量的推估方面表現優於其他幾種,並且在不同風速下判釋強降水的能力也很高。 GSMaP 展示了在高海拔地區的強降水能力,而 IMERG 則有在低海拔強地區的較佳降水推估能力。 IMERG 數據集在每日、五天和季節尺度上表現出色,而 CHIRPS 在巴厘島省的月降雨量方面表現最佳。IMERG 數據集還描述了在低海拔地區的良好性能,而 GSMaP 在高海拔地區表現出更好的性能。在於應用 IMERG 資料方面,經由 I-D 和 E-D 閾值的結果,觸發巴厘島滑坡事件的主要降雨特徵是長期持續的高強度前期降雨。考察結果顯示20%的閾值最適合 IMERG 估計巴厘島省滑坡發生率。使用平均偏差強度 (MD) 和偏差因子 (BF) 調整降雨強度取決於I-D 和 E-D 閾值方面分別優於其他調整模型,概率水平分別為 5% 和 10%。綜合目前研究中的 I-D 和 E-D 閾值與過去研究的比較表明,使用E-D 閾值可以大幅降低 SPD 的不確定性,這表明未來可使用衛星降雨數據集,並且建立 E-D 閾值的高度可應用性。
摘要(英) Satellite Precipitation Datasets (SPDs) provide rainfall data on global spatial coverage and different temporal resolution have the potential to be applied in high-impact weather (typhoons) and landslide occurrence because the ground-based observation needs to maintain, the coverage observation is not widespread enough, and limited in the mountain areas. The first objective of this study is to evaluate the performance of SPDs objectively. In addition to the fair weather, SPDs under heavy precipitation events are investigated as well. Thus, Bali Province is chosen as the study area for its high risk of natural disaster vulnerability, while the typhoon events in the Philippines represent severe weather phenomena. The SPDs could expect to be evaluated comprehensively under various precipitation scenarios. The second objective is to apply the appropriate SPD in determining the mean rainfall intensities and duration (I-D) and cumulated intensities and duration (E-D) thresholds for landslide occurrences over Bali Province. The third objective is to apply the optimal adjustments of rainfall intensity in determining the I-D and E-D thresholds for landslide occurrences over Bali Province. Quantitative analysis used to assess the performance of SPDs are the continuous statistical measurement and volumetric indices. The power-law method was used to represent the I-D and E-D thresholds. The analysis results show IMERG dataset shows good agreement with rain gauge observations and performs significantly better in detecting rainfall during five typhoon events over the Philipines and also high capability to identify heavy precipitation in different wind velocities. The GSMaP demonstrated the highest ability to recognize heavy precipitation in high altitudes, while the greatest capability to identify heavy precipitation at low altitudes was demonstrated by IMERG. The IMERG dataset outperformed on daily, Penta-day, and seasonal scales, while CHIRPS achieved the best capability on monthly rainfall over Bali Province. The IMERG dataset also depicts good performance at low elevations, while GSMaP shows greater performance at high elevations. This study also demonstrated the result of the I-D and E-D threshold for landslides over Bali Province by using the IMERG early run dataset. The dominant rainfall characteristic triggering the landslide events over Bali Island is a long-term duration with high-intensity antecedent rainfall. The threshold of 20% is the most appropriate for IMERG in estimating the landslide occurrences over Bali Province. The adjustment of rainfall intensity using the mean deviation intensity (MD) and bias factor (BF) outperforms other adjustment models in determining the I-D and E-D thresholds at the probability levels of 5% and 10%, respectively. Comparison of the I-D and E-D thresholds in the current study with past studies exhibits that the E-D threshold can reduce the uncertainty in SPDs, this indicates a high possibility of using the satellite rainfall datasets to establish the E-D thresholds.
關鍵字(中) ★ 調查
★ 滑坡
★ 沉澱
★ 衛星
關鍵字(英) ★ investigation
★ landslide
★ precipitation
★ satellite
論文目次 Table of Contents
摘要 i
Abstract iii
Acknowledgments v
Table of Contents vii
List of Tables x
List of Figures xi
List of Abbreviations xv
Chapter 1. Introduction 1
1.1 Motivation 1
1.2 Objective 7
1.3 Dissertation Outline 7
Chapter 2. Literature Review 9
2.1 The Development of SPDs 9
2.2 Validation of SPDs 15
2.3 Rainfall Threshold for Landslide Occurrences 18
2.3.1 I-D threshold 19
2.3.2 E-D threshold 21
2.3.3 Amount of rainfall events (AoR) threshold 22
2.4 The Application of SPDs in Analyzing Rainfall Threshold for Landslide Occurrences 22
Chapter 3. Performance of SPDs over the Severe Weather Phenomena Region 25
3.1 Background 25
3.2 Study Area 28
3.3 Data and Methods 30
3.3.1 Data 30
3.3.2 Methods 35
3.4 Results and Discussion 36
3.4.1 The capability of SPDs in typhoon occurrences 36
3.4.2 The capability of SPDs under various rain rate intensity 41
3.4.3 The capability of the SPDs in diverse altitudes 45
3.4.4 The capability of the SPDs under diverse wind speed 47
Chapter 4. Performance of SPDs over High Risk of Natural Disaster Vulnerability Region 53
4.1 Background 53
4.2 Study Area 55
4.3 Data and Methods 55
4.3.1 Data 55
4.3.2 Methods 58
4.4 Results and Discussion 60
4.4.1 Performance assessment under various temporal variations 60
4.4.2 Performance assessment at various elevations 69
4.4.3 Performance assessment: various rainfall intensities 73
Chapter 5. Application of IMERG in Determining Rainfall Thresholds 75
5.1 Background 75
5.2 Study Area 79
5.3 Dataset and Methods 81
5.3.1 Landslides dataset 81
5.3.2 Rainfall dataset 84
5.3.3 Methods 85
5.4 Results and Discussion 88
5.4.1 Rainfall occurrence characteristics 88
5.4.2 The time interval between peak rainfall and landslide occurrences 91
5.4.3 Performance of the IMERG in rainfall threshold estimation 92
5.4.4 Adjustments of rainfall intensity in determining rainfall threshold 96
5.4.5 Comparison I-D & E-D Threshold 100
Chapter 6. Summary and Future Work 102
6.1 Summary 102
6.2 Future Work 105
References 107

參考文獻 [1] R. Gao, F. Li, X. Wang, T. Liu, D. Du, and Y. Bai, “Spatiotemporal variations in precipitation across the Chinese Mongolian plateau over the past half century,” Atmospheric Research, vol. 193, pp. 204–215, Sep. 2017, doi: 10.1016/j.atmosres.2017.04.014.
[2] M. Kotz, A. Levermann, and L. Wenz, “The effect of rainfall changes on economic production,” Nature, vol. 601, no. 7892, pp. 223–227, Jan. 2022, doi: 10.1038/s41586-021-04283-8.
[3] L. Trinh-Tuan, J. Matsumoto, T. Ngo-Duc, M. I. Nodzu, and T. Inoue, “Evaluation of satellite precipitation products over Central Vietnam,” Progress in Earth and Planetary Science, vol. 6, no. 1, 2019, doi: 10.1186/s40645-019-0297-7.
[4] Z. Duan and W. G. M. Bastiaanssen, “First results from Version 7 TRMM 3B43 precipitation product in combination with a new downscaling–calibration procedure,” Remote Sensing of Environment, vol. 131, pp. 1–13, Apr. 2013, doi: 10.1016/j.rse.2012.12.002.
[5] T. C. Chen and C. C. Wu, “The remote effect of Typhoon Megi (2010) on the heavy rainfall over Northeastern Taiwan,” Monthly Weather Review, vol. 144, no. 9, pp. 3109–3131, 2016, doi: 10.1175/MWR-D-15-0269.1.
[6] D. Stampoulis, E. N. Anagnostou, and E. I. Nikolopoulos, “Assessment of high-resolution satellite-based rainfall estimates over the mediterranean during heavy precipitation events,” Journal of Hydrometeorology, vol. 14, no. 5, pp. 1500–1514, 2013, doi: 10.1175/JHM-D-12-0167.1.
[7] H. Wu, R. F. Adler, Y. Hong, Y. Tian, and F. Policelli, “Evaluation of Global Flood Detection Using Satellite-Based Rainfall and a Hydrologic Model,” Journal of Hydrometeorology, vol. 13, no. 4, pp. 1268–1284, 2012, doi: 10.1175/jhm-d-11-087.1.
[8] G. T. Ayehu, T. Tadesse, B. Gessesse, and T. Dinku, “Validation of new satellite rainfall products over the Upper Blue Nile Basin, Ethiopia,” Atmospheric Measurement Techniques, vol. 11, no. 4, pp. 1921–1936, 2018, doi: 10.5194/amt-11-1921-2018.
[9] C.-Y. Liu, P. Aryastana, G.-R. Liu, and W.-R. Huang, “Assessment of satellite precipitation product estimates over Bali Island,” Atmospheric Research, vol. 244, p. 105032, Nov. 2020, doi: 10.1016/j.atmosres.2020.105032.
[10] M. D. Setiawati, F. Miura, and P. Aryastana, “Validation of Hourly GSMaP and ground base estimates of precipitation for flood monitoring in Kumamoto, Japan.,” in Geospatial Technology for Water Resource Applications, P. K. Srivastava, P. C. Pandey, P. Kumar, A. S. Raghubanshi, and D. Han, Eds. Boca Raton : Taylor & Francis, 2017.: CRC Press, 2016, pp. 130–143.
[11] R. Xu, F. Tian, L. Yang, H. Hu, H. Lu, and A. Hou, “Ground validation of GPM IMERG and TRMM 3B42V7 rainfall products over southern Tibetan plateau based on a high-density rain gauge network,” Journal of Geophysical Research, vol. 122, no. 2, pp. 910–924, 2017, doi: 10.1002/2016JD025418.
[12] K. Sunilkumar, T. Narayana Rao, K. Saikranthi, and M. Purnachandra Rao, “Comprehensive evaluation of multisatellite precipitation estimates over India using gridded rainfall data,” Journal of Geophysical Research: Atmospheres, vol. 120, no. 17, pp. 8987–9005, Sep. 2015, doi: 10.1002/2015JD023437.
[13] H. Feidas, “Validation of satellite rainfall products over Greece,” Theoretical and Applied Climatology, vol. 99, no. 1–2, pp. 193–216, 2010, doi: 10.1007/s00704-009-0135-8.
[14] P. Salio, M. P. Hobouchian, Y. García Skabar, and D. Vila, “Evaluation of high-resolution satellite precipitation estimates over southern South America using a dense rain gauge network,” Atmospheric Research, vol. 163, pp. 146–161, 2015, doi: 10.1016/j.atmosres.2014.11.017.
[15] X. Ji et al., “Evaluation of bias correction methods for APHRODITE data to improve hydrologic simulation in a large Himalayan basin,” Atmospheric Research, vol. 242, no. February, p. 104964, 2020, doi: 10.1016/j.atmosres.2020.104964.
[16] E. I. Nikolopoulos, E. Destro, V. Maggioni, F. Marra, and M. Borga, “Satellite rainfall estimates for debris flow prediction: An evaluation based on rainfall accumulation-duration thresholds,” Journal of Hydrometeorology, vol. 18, no. 8, pp. 2207–2214, 2017, doi: 10.1175/JHM-D-17-0052.1.
[17] Z. Li, D. Yang, and Y. Hong, “Multi-scale evaluation of high-resolution multi-sensor blended global precipitation products over the Yangtze River,” Journal of Hydrology, vol. 500, pp. 157–169, Sep. 2013, doi: 10.1016/j.jhydrol.2013.07.023.
[18] J. Zhang et al., “National Mosaic and Multi-Sensor QPE (NMQ) System: Description, Results, and Future Plans,” Bulletin of the American Meteorological Society, vol. 92, no. 10, pp. 1321–1338, Oct. 2011, doi: 10.1175/2011BAMS-D-11-00047.1.
[19] P. A. Arkin and B. N. Meisner, “The Relationship between Large-Scale Convective Rainfall and Cold Cloud over the Western Hemisphere during 1982-84,” Monthly Weather Review, vol. 115, no. 1, pp. 51–74, Jan. 1987, doi: 10.1175/1520-0493(1987)115<0051:TRBLSC>2.0.CO;2.
[20] C. Kummerow and L. Giglio, “A Passive Microwave Technique for Estimating Rainfall and Vertical Structure Information from Space. Part II: Applications to SSM/I Data,” Journal of Applied Meteorology, vol. 33, no. 1, pp. 19–34, Jan. 1994, doi: 10.1175/1520-0450(1994)033<0019:APMTFE>2.0.CO;2.
[21] P. Xie and P. A. Arkin, “Global Precipitation: A 17-Year Monthly Analysis Based on Gauge Observations, Satellite Estimates, and Numerical Model Outputs,” Bulletin of the American Meteorological Society, vol. 78, no. 11, pp. 2539–2558, 1997, doi: 10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2.
[22] G. J. Huffman et al., “The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-Global, Multiyear, Combined-Sensor Precipitation Estimates at Fine Scales,” Journal of Hydrometeorology, vol. 8, no. 1, pp. 38–55, 2007, doi: 10.1175/JHM560.1.
[23] R. J. Joyce, J. E. Janowiak, P. A. Arkin, and P. Xie, “CMORPH: A Method that Produces Global Precipitation Estimates from Passive Microwave Microwave and Infrared Data at High Spatial and Temporal Resolution,” Journal of Hydrometeorology, vol. 5, pp. 487–502, 2004, doi: 10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2.
[24] S. Sorooshian, K. L. Hsu, X. Gao, H. V. Gupta, B. Imam, and D. Braithwaite, “Evaluation of PERSIANN system satellite-based estimates of tropical rainfall,” Bulletin of the American Meteorological Society, vol. 81, no. 9, pp. 2035–2046, 2000, doi: 10.1175/1520-0477(2000)081<2035:EOPSSE>2.3.CO;2.
[25] J. R. Milford and G. Dugdale, Estimation of Rainfall Using Geostationary Satellite Data. Contributors, 1990.
[26] F. J. Turk and S. D. Miller, “Toward Improved Characterization of Remotely Sensed Precipitation Regimes With MODIS/AMSR-E Blended Data Techniques,” IEEE Transactions on Geoscience and Remote Sensing, vol. 43, no. 5, pp. 1059–1069, 2005, doi: 10.1109/TGRS.2004.841627.
[27] T. Kubota et al., “Global precipitation map using satelliteborne microwave radiometers by the GSMaP project: Production and validation,” IEEE Transactions on Geoscience and Remote Sensing, vol. 45, no. 7, pp. 2584–2587, 2007, doi: 10.1109/IGARSS.2006.668.
[28] K. Okamoto, T. Ushio, T. Iguchi, N. Takahashi, and K. Iwanami, “The Global Satellite Mapping of Precipitation (GSMaP) project,” International Geoscience and Remote Sensing Symposium (IGARSS), vol. 5, no. 3, pp. 3414–3416, 2005, doi: 10.1109/IGARSS.2005.1526575.
[29] T. Ushio et al., “A Kalman Filter Approach to the Global Satellite Mapping of Precipitation (GSMaP) from Combined Passive Microwave and Infrared Radiometric Data,” Journal of the Meteorological Society of Japan, vol. 87A, no. November 2008, pp. 137–151, 2009, doi: 10.2151/jmsj.87A.137.
[30] A. Y. Hou et al., “The global precipitation measurement mission,” Bulletin of the American Meteorological Society, vol. 95, no. 5, pp. 701–722, 2014, doi: 10.1175/BAMS-D-13-00164.1.
[31] N. S. Novella and W. M. Thiaw, “African rainfall climatology version 2 for famine early warning systems,” Journal of Applied Meteorology and Climatology, vol. 52, no. 3, pp. 588–606, 2013, doi: 10.1175/JAMC-D-11-0238.1.
[32] C. Funk et al., “The climate hazards infrared precipitation with stations - A new environmental record for monitoring extremes,” Scientific Data, vol. 2, pp. 1–21, 2015, doi: 10.1038/sdata.2015.66.
[33] H. E. Beck et al., “MSWEP: 3-hourly 0.25° global gridded precipitation (1979-2015) by merging gauge, satellite, and reanalysis data,” Hydrology and Earth System Sciences, vol. 21, no. 1, pp. 589–615, 2017, doi: 10.5194/hess-21-589-2017.
[34] R. Li, K. Wang, and D. Qi, “Event‐Based Evaluation of the GPM Multisatellite Merged Precipitation Product From 2014 to 2018 Over China: Methods and Results,” Journal of Geophysical Research: Atmospheres, vol. 126, no. 1, Jan. 2021, doi: 10.1029/2020JD033692.
[35] J. E. Diem, J. Hartter, S. J. Ryan, and M. W. Palace, “Validation of Satellite Rainfall Products for Western Uganda,” Journal of Hydrometeorology, vol. 15, no. 5, pp. 2030–2038, Oct. 2014, doi: 10.1175/JHM-D-13-0193.1.
[36] G. Tang, Y. Ma, D. Long, L. Zhong, and Y. Hong, “Evaluation of GPM Day-1 IMERG and TMPA Version-7 legacy products over Mainland China at multiple spatiotemporal scales,” Journal of Hydrology, vol. 533, pp. 152–167, Feb. 2016, doi: 10.1016/j.jhydrol.2015.12.008.
[37] T. G. Romilly and M. Gebremichael, “Evaluation of satellite rainfall estimates over Ethiopian river basins,” Hydrology and Earth System Sciences, vol. 15, no. 5, pp. 1505–1514, May 2011, doi: 10.5194/hess-15-1505-2011.
[38] C. Kidd et al., “Intercomparison of High-Resolution Precipitation Products over Northwest Europe,” Journal of Hydrometeorology, vol. 13, no. 1, pp. 67–83, Feb. 2012, doi: 10.1175/JHM-D-11-042.1.
[39] D. Stampoulis and E. N. Anagnostou, “Evaluation of Global Satellite Rainfall Products over Continental Europe,” Journal of Hydrometeorology, vol. 13, no. 2, pp. 588–603, Apr. 2012, doi: 10.1175/JHM-D-11-086.1.
[40] V. Thiemig, R. Rojas, M. Zambrano-Bigiarini, V. Levizzani, and A. De Roo, “Validation of Satellite-Based Precipitation Products over Sparsely Gauged African River Basins,” Journal of Hydrometeorology, vol. 13, no. 6, pp. 1760–1783, Dec. 2012, doi: 10.1175/JHM-D-12-032.1.
[41] F. Chiaravalloti, L. Brocca, A. Procopio, C. Massari, and S. Gabriele, “Assessment of GPM and SM2RAIN-ASCAT rainfall products over complex terrain in southern Italy,” Atmospheric Research, vol. 206, pp. 64–74, Jul. 2018, doi: 10.1016/j.atmosres.2018.02.019.
[42] Y. Chen, E. E. Ebert, K. J. E. Walsh, and N. E. Davidson, “Evaluation of TMPA 3B42 daily precipitation estimates of tropical cyclone rainfall over Australia,” Journal of Geophysical Research: Atmospheres, vol. 118, no. 21, pp. 11,966-11,978, Nov. 2013, doi: 10.1002/2013JD020319.
[43] Y. C. Gao and M. F. Liu, “Evaluation of high-resolution satellite precipitation products using rain gauge observations over the Tibetan Plateau,” Hydrology and Earth System Sciences, vol. 17, no. 2, pp. 837–849, Feb. 2013, doi: 10.5194/hess-17-837-2013.
[44] Y. Mei, E. N. Anagnostou, E. I. Nikolopoulos, and M. Borga, “Error Analysis of Satellite Precipitation Products in Mountainous Basins,” Journal of Hydrometeorology, vol. 15, no. 5, pp. 1778–1793, Oct. 2014, doi: 10.1175/JHM-D-13-0194.1.
[45] E. M. C. Demaria, D. A. Rodriguez, E. E. Ebert, P. Salio, F. Su, and J. B. Valdes, “Evaluation of mesoscale convective systems in South America using multiple satellite products and an object-based approach,” Journal of Geophysical Research, vol. 116, no. D8, p. D08103, Apr. 2011, doi: 10.1029/2010JD015157.
[46] A. T. Haile, E. Habib, and T. Rientjes, “Evaluation of the climate prediction center (CPC) morphing technique (CMORPH) rainfall product on hourly time scales over the source of the Blue Nile River,” Hydrological Processes, vol. 27, no. 12, pp. 1829–1839, Jun. 2013, doi: 10.1002/hyp.9330.
[47] R. Li, K. Wang, and D. Qi, “Validating the Integrated Multisatellite Retrievals for Global Precipitation Measurement in Terms of Diurnal Variability With Hourly Gauge Observations Collected at 50,000 Stations in China,” Journal of Geophysical Research: Atmospheres, vol. 123, no. 18, Sep. 2018, doi: 10.1029/2018JD028991.
[48] R. Oliveira, V. Maggioni, D. Vila, and C. Morales, “Characteristics and Diurnal Cycle of GPM Rainfall Estimates over the Central Amazon Region,” Remote Sensing, vol. 8, no. 7, p. 544, Jun. 2016, doi: 10.3390/rs8070544.
[49] U. Pfeifroth, J. Trentmann, A. H. Fink, and B. Ahrens, “Evaluating Satellite-Based Diurnal Cycles of Precipitation in the African Tropics,” Journal of Applied Meteorology and Climatology, vol. 55, no. 1, pp. 23–39, Jan. 2016, doi: 10.1175/JAMC-D-15-0065.1.
[50] O. Sungmin and P. Kirstetter, “Evaluation of diurnal variation of GPM IMERG‐derived summer precipitation over the contiguous US using MRMS data,” Quarterly Journal of the Royal Meteorological Society, vol. 144, no. S1, pp. 270–281, Nov. 2018, doi: 10.1002/qj.3218.
[51] A. Aghakouchak, A. Behrangi, S. Sorooshian, K. Hsu, and E. Amitai, “Evaluation of satellite-retrieved extreme precipitation rates across the central United States,” Journal of Geophysical Research Atmospheres, vol. 116, no. 2, 2011, doi: 10.1029/2010JD014741.
[52] J. Fang, W. Yang, Y. Luan, J. Du, A. Lin, and L. Zhao, “Evaluation of the TRMM 3B42 and GPM IMERG products for extreme precipitation analysis over China,” Atmospheric Research, vol. 223, no. September 2018, pp. 24–38, 2019, doi: 10.1016/j.atmosres.2019.03.001.
[53] Z. E. Asong, S. Razavi, H. S. Wheater, and J. S. Wong, “Evaluation of Integrated Multisatellite Retrievals for GPM (IMERG) over Southern Canada against Ground Precipitation Observations: A Preliminary Assessment,” Journal of Hydrometeorology, vol. 18, no. 4, pp. 1033–1050, Apr. 2017, doi: 10.1175/JHM-D-16-0187.1.
[54] D. de C. D. Melo et al., “Performance evaluation of rainfall estimates by TRMM Multi‐satellite Precipitation Analysis 3B42V6 and V7 over Brazil,” Journal of Geophysical Research: Atmospheres, vol. 120, no. 18, pp. 9426–9436, Sep. 2015, doi: 10.1002/2015JD023797.
[55] A. Dai, X. Lin, and K.-L. Hsu, “The frequency, intensity, and diurnal cycle of precipitation in surface and satellite observations over low- and mid-latitudes,” Climate Dynamics, vol. 29, no. 7–8, pp. 727–744, Oct. 2007, doi: 10.1007/s00382-007-0260-y.
[56] Y. Shen, A. Xiong, Y. Wang, and P. Xie, “Performance of high-resolution satellite precipitation products over China,” Journal of Geophysical Research, vol. 115, no. D2, p. D02114, Jan. 2010, doi: 10.1029/2009JD012097.
[57] J. Li, K. Hsu, A. AghaKouchak, and S. Sorooshian, “An object-based approach for verification of precipitation estimation,” International Journal of Remote Sensing, vol. 36, no. 2, pp. 513–529, Jan. 2015, doi: 10.1080/01431161.2014.999170.
[58] J. Li, K.-L. Hsu, A. AghaKouchak, and S. Sorooshian, “Object-Based Assessment of Satellite Precipitation Products,” Remote Sensing, vol. 8, no. 7, p. 547, Jun. 2016, doi: 10.3390/rs8070547.
[59] A. Aghakouchak and A. Mehran, “Extended contingency table: Performance metrics for satellite observations and climate model simulations,” Water Resources Research, vol. 49, no. 10, pp. 7144–7149, 2013, doi: 10.1002/wrcr.20498.
[60] T. Dinku, F. Ruiz, S. J. Connor, and P. Ceccato, “Validation and intercomparison of satellite rainfall estimates over Colombia,” Journal of Applied Meteorology and Climatology, vol. 49, no. 5, pp. 1004–1014, 2010, doi: 10.1175/2009JAMC2260.1.
[61] E. E. Ebert, J. E. Janowiak, and C. Kidd, “Comparison of near-real-time precipitation estimates from satellite observations and numerical models,” American Meteorological Society, no. January, pp. 47–64, 2007, doi: 10.1175/BAMS-88-I-47.
[62] A. R. As-Syakur, T. Tanaka, R. Prasetia, I. K. Swardika, and I. W. Kasa, “Comparison of TRMM multisatellite precipitation analysis (TMPA) products and daily-monthly gauge data over Bali,” International Journal of Remote Sensing, vol. 32, no. 24, pp. 8969–8982, 2011, doi: 10.1080/01431161.2010.531784.
[63] N. Rahmawati and M. W. Lubczynski, “Validation of satellite daily rainfall estimates in the complex terrain of Bali Island, Indonesia,” Theoretical and Applied Climatology, vol. 134, no. 1–2, pp. 513–532, 2018, doi: 10.1007/s00704-017-2290-7.
[64] C. A. Jamandre and G. T. Narisma, “Spatio-temporal validation of satellite-based rainfall estimates in the Philippines,” Atmospheric Research, vol. 122, pp. 599–608, 2013, doi: 10.1016/j.atmosres.2012.06.024.
[65] M. D. Ramos, E. Tendencia, K. Espana, J. Sabido, and G. Bagtasa, “Assessment of satellite precipitation products in the philippine archipelago,” International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, vol. 2016-Janua, no. July, pp. 423–427, 2016, doi: 10.5194/isprsarchives-XLI-B1-423-2016.
[66] G. Tang, Z. Zeng, M. Ma, R. Liu, Y. Wen, and Y. Hong, “Can Near-Real-Time Satellite Precipitation Products Capture Rainstorms and Guide Flood Warning for the 2016 Summer in South China?,” IEEE Geoscience and Remote Sensing Letters, vol. 14, no. 8, pp. 1208–1212, Aug. 2017, doi: 10.1109/LGRS.2017.2702137.
[67] P. Nguyen et al., “PERSIANN Dynamic Infrared–Rain Rate Model (PDIR) for High-Resolution, Real-Time Satellite Precipitation Estimation,” Bulletin of the American Meteorological Society, vol. 101, no. 3, pp. E286–E302, Mar. 2020, doi: 10.1175/BAMS-D-19-0118.1.
[68] R. L. Baum and J. W. Godt, “Early warning of rainfall-induced shallow landslides and debris flows in the USA,” Landslides, vol. 7, no. 3, pp. 259–272, Sep. 2010, doi: 10.1007/s10346-009-0177-0.
[69] S. Segoni et al., “Technical Note: An operational landslide early warning system at regional scale based on space–time-variable rainfall thresholds,” Natural Hazards and Earth System Sciences, vol. 15, no. 4, pp. 853–861, Apr. 2015, doi: 10.5194/nhess-15-853-2015.
[70] M. T. Brunetti, M. Melillo, S. Peruccacci, L. Ciabatta, and L. Brocca, “How far are we from the use of satellite rainfall products in landslide forecasting?,” Remote Sensing of Environment, vol. 210, pp. 65–75, Jun. 2018, doi: 10.1016/j.rse.2018.03.016.
[71] M. T. Brunetti, S. Peruccacci, M. Rossi, S. Luciani, D. Valigi, and F. Guzzetti, “Rainfall thresholds for the possible occurrence of landslides in Italy,” Natural Hazards and Earth System Sciences, vol. 10, no. 3, pp. 447–458, Mar. 2010, doi: 10.5194/nhess-10-447-2010.
[72] F. Guzzetti, S. Peruccacci, M. Rossi, and C. P. Stark, “The rainfall intensity–duration control of shallow landslides and debris flows: an update,” Landslides, vol. 5, no. 1, pp. 3–17, Feb. 2008, doi: 10.1007/s10346-007-0112-1.
[73] H. Saito, O. Korup, T. Uchida, S. Hayashi, and T. Oguchi, “Rainfall conditions, typhoon frequency, and contemporary landslide erosion in Japan,” Geology, vol. 42, no. 11, pp. 999–1002, Nov. 2014, doi: 10.1130/G35680.1.
[74] Y. Hong, R. F. Adler, and G. J. Huffman, “Use of satellite remote sensing data in the mapping of global landslide susceptibility,” Natural Hazards, vol. 43, no. 2, pp. 245–256, Oct. 2007, doi: 10.1007/s11069-006-9104-z.
[75] J. Mathew, D. G. Babu, S. Kundu, K. V. Kumar, and C. C. Pant, “Integrating intensity–duration-based rainfall threshold and antecedent rainfall-based probability estimate towards generating early warning for rainfall-induced landslides in parts of the Garhwal Himalaya, India,” Landslides, vol. 11, no. 4, pp. 575–588, Aug. 2014, doi: 10.1007/s10346-013-0408-2.
[76] A. Farahmand and A. AghaKouchak, “A satellite-based global landslide model,” Natural Hazards and Earth System Sciences, vol. 13, no. 5, pp. 1259–1267, May 2013, doi: 10.5194/nhess-13-1259-2013.
[77] D. B. Kirschbaum, R. F. Adler, Y. Hong, S. Kumar, C. Peters-Lidard, and A. Lerner-Lam, “Advances in landslide nowcasting: evaluation of a global and regional modeling approach,” Environmental Earth Sciences, vol. 66, no. 6, pp. 1683–1696, Jul. 2012, doi: 10.1007/s12665-011-0990-3.
[78] Y. Hong, R. Alder, and G. J. Huffman, “Evaluation of the potential of NASA multi-satellite precipitation analysis in global landslide hazard assessment,” Geophysical Research Letters, vol. 33, no. 22, pp. 1–5, 2006, doi: 10.1029/2006GL028010.
[79] F. Marra, E. Morin, N. Peleg, Y. Mei, and E. N. Anagnostou, “Intensity–duration–frequency curves from remote sensing rainfall estimates: comparing satellite and weather radar over the eastern Mediterranean,” Hydrology and Earth System Sciences, vol. 21, no. 5, pp. 2389–2404, May 2017, doi: 10.5194/hess-21-2389-2017.
[80] M. Rossi et al., “Statistical approaches for the definition of landslide rainfall thresholds and their uncertainty using rain gauge and satellite data,” Geomorphology, vol. 285, pp. 16–27, May 2017, doi: 10.1016/j.geomorph.2017.02.001.
[81] J. C. Robbins, “A probabilistic approach for assessing landslide-triggering event rainfall in Papua New Guinea, using TRMM satellite precipitation estimates,” Journal of Hydrology, vol. 541, pp. 296–309, Oct. 2016, doi: 10.1016/j.jhydrol.2016.06.052.
[82] A. J. Posner and K. P. Georgakakos, “Soil moisture and precipitation thresholds for real-time landslide prediction in El Salvador,” Landslides, vol. 12, no. 6, pp. 1179–1196, Dec. 2015, doi: 10.1007/s10346-015-0618-x.
[83] S. He, J. Wang, and S. Liu, “Rainfall Event–Duration Thresholds for Landslide Occurrences in China,” Water, vol. 12, no. 2, p. 494, Feb. 2020, doi: 10.3390/w12020494.
[84] R. A. Yuniawan et al., “Revised Rainfall Threshold in the Indonesian Landslide Early Warning System,” Geosciences, vol. 12, no. 3, p. 129, Mar. 2022, doi: 10.3390/geosciences12030129.
[85] C. Kidd and V. Levizzani, Quantitative precipitation estimation from satellite observations. 2019.
[86] C. Kummerow, W. Barnes, T. Kozu, J. Shiue, and J. Simpson, “The Tropical Rainfall Measuring Mission (TRMM) sensor package,” Journal of Atmospheric and Oceanic Technology, vol. 15, no. 3, pp. 809–817, 1998, doi: 10.1175/1520-0426(1998)015<0809:TTRMMT>2.0.CO;2.
[87] Y. Derin and K. K. Yilmaz, “Evaluation of Multiple Satellite-Based Precipitation Products over Complex Topography,” Journal of Hydrometeorology, vol. 15, no. 4, pp. 1498–1516, Aug. 2014, doi: 10.1175/JHM-D-13-0191.1.
[88] V. Levizzani and E. Cattani, “Satellite remote sensing of precipitation and the terrestrial water cycle in a changing climate,” Remote Sensing, vol. 11, no. 19, 2019, doi: 10.3390/rs11192301.
[89] C. Kidd and V. Levizzani, “Status of satellite precipitation retrievals,” Hydrology and Earth System Sciences, vol. 15, no. 4, pp. 1109–1116, Apr. 2011, doi: 10.5194/hess-15-1109-2011.
[90] Q. Sun, C. Miao, Q. Duan, H. Ashouri, S. Sorooshian, and K. Hsu, “A Review of Global Precipitation Data Sets: Data Sources, Estimation, and Intercomparisons,” Reviews of Geophysics, vol. 56, no. 1, pp. 79–107, Mar. 2018, doi: 10.1002/2017RG000574.
[91] R. F. Adler and A. J. Negri, “A Satellite Infrared Technique to Estimate Tropical Convective and Stratiform Rainfall,” Journal of Applied Meteorology, vol. 27, no. 1, pp. 30–51, 1988.
[92] M. B. Ba and A. Gruber, “GOES Multispectral Rainfall Algorithm (GMSRA),” Journal of Applied Meteorology, vol. 40, no. 8, pp. 1500–1514, Aug. 2001, doi: 10.1175/1520-0450(2001)040<1500:GMRAG>2.0.CO;2.
[93] Y. Hong, K.-L. Hsu, S. Sorooshian, and X. Gao, “Precipitation Estimation from Remotely Sensed Imagery Using an Artificial Neural Network Cloud Classification System,” Journal of Applied Meteorology, vol. 43, no. 12, pp. 1834–1853, Dec. 2004, doi: 10.1175/JAM2173.1.
[94] T. Kawanishi et al., “The advanced microwave scanning radiometer for the earth observing system (AMSR-E), NASDA’s contribution to the EOS for global energy and water cycle studies,” IEEE Transactions on Geoscience and Remote Sensing, vol. 41, no. 2, pp. 184–194, Feb. 2003, doi: 10.1109/TGRS.2002.808331.
[95] C. D. Kummerow et al., “The Evolution of the Goddard Profiling Algorithm to a Fully Parametric Scheme,” Journal of Atmospheric and Oceanic Technology, vol. 32, no. 12, pp. 2265–2280, Dec. 2015, doi: 10.1175/JTECH-D-15-0039.1.
[96] N.-B. Chang and Y. Hong, Eds., Multiscale Hydrologic Remote Sensing. CRC Press, 2012.
[97] T. Iguchi et al., “GPM/DPR Level-2 Algorithm Theoretical Basis Document,” 2021. [Online]. Available: https://www.theia-land.fr/wp-content-theia/uploads/sites/2/2018/12/atbd_maja_071217.pdf.
[98] K. Nakamura, K. Okamoto, T. Ihara, J. Awaka, T. Kozu, and T. Manabe, “Conceptual design of rain radar for the tropical rainfall measuring mission,” International Journal of Satellite Communications, vol. 8, no. 3, pp. 257–268, May 1990, doi: 10.1002/sat.4600080318.
[99] Z. S. Haddad et al., “The TRMM ‘Day-1’ Radar/Radiometer Combined Rain-Profiling Algorithm,” Journal of the Meteorological Society of Japan. Ser. II, vol. 75, no. 4, pp. 799–809, 1997, doi: 10.2151/jmsj1965.75.4_799.
[100] M. Grecu et al., “The GPM Combined Algorithm,” Journal of Atmospheric and Oceanic Technology, vol. 33, no. 10, pp. 2225–2245, Oct. 2016, doi: 10.1175/JTECH-D-16-0019.1.
[101] C. Kidd, D. R. Kniveton, M. C. Todd, and T. J. Bellerby, “Satellite Rainfall Estimation Using Combined Passive Microwave and Infrared Algorithms,” Journal of Hydrometeorology, vol. 4, no. 6, pp. 1088–1104, Dec. 2003, doi: 10.1175/1525-7541(2003)004<1088:SREUCP>2.0.CO;2.
[102] R. J. Kuligowski, “A Self-Calibrating Real-Time GOES Rainfall Algorithm for Short-Term Rainfall Estimates,” Journal of Hydrometeorology, vol. 3, no. 2, pp. 112–130, Apr. 2002, doi: 10.1175/1525-7541(2002)003<0112:ASCRTG>2.0.CO;2.
[103] R. J. Joyce and P. Xie, “Kalman Filter–Based CMORPH,” Journal of Hydrometeorology, vol. 12, no. 6, pp. 1547–1563, 2011, doi: 10.1175/jhm-d-11-022.1.
[104] G. J. Huffman et al., “Algorithm Theoretical Basis Document (ATBD) Version 06 NASA Global Precipitation Measurement (GPM) Integrated Multi-satellitE Retrievals for GPM (IMERG),” National Aeronautics and Space Administration (NASA), no. March, pp. 1–34, 2019, [Online]. Available: https://pmm.nasa.gov/sites/default/files/document_files/IMERG_ATBD_V06.pdf.
[105] L. Brocca, T. Moramarco, F. Melone, and W. Wagner, “A new method for rainfall estimation through soil moisture observations,” Geophysical Research Letters, vol. 40, no. 5, pp. 853–858, 2013, doi: 10.1002/grl.50173.
[106] N. Carr et al., “The Influence of Surface and Precipitation Characteristics on TRMM Microwave Imager Rainfall Retrieval Uncertainty,” Journal of Hydrometeorology, vol. 16, no. 4, pp. 1596–1614, Aug. 2015, doi: 10.1175/JHM-D-14-0194.1.
[107] M. Gebremichael, W. F. Krajewski, M. L. Morrissey, G. J. Huffman, and R. F. Adler, “A Detailed Evaluation of GPCP 1° Daily Rainfall Estimates over the Mississippi River Basin,” Journal of Applied Meteorology, vol. 44, no. 5, pp. 665–681, 2005, doi: 10.1175/jam2233.1.
[108] E. E. Ebert, “Methods for Verifying Satellite Precipitation Estimates,” in Measuring Precipitation from Space: EURAINSAT and the Future, Springer, 2007, pp. 345–356.
[109] F. C. Dai and C. F. Lee, “Landslide characteristics and slope instability modeling using GIS, Lantau Island, Hong Kong,” Geomorphology, vol. 42, no. 3–4, pp. 213–228, Jan. 2002, doi: 10.1016/S0169-555X(01)00087-3.
[110] L. Piciullo et al., “Definition and performance of a threshold-based regional early warning model for rainfall-induced landslides,” Landslides, vol. 14, no. 3, pp. 995–1008, Jun. 2017, doi: 10.1007/s10346-016-0750-2.
[111] J. Weichselgartner and P. Pigeon, “The Role of Knowledge in Disaster Risk Reduction,” International Journal of Disaster Risk Science, vol. 6, no. 2, pp. 107–116, Jun. 2015, doi: 10.1007/s13753-015-0052-7.
[112] E. Canli, M. Mergili, B. Thiebes, and T. Glade, “Probabilistic landslide ensemble prediction systems: lessons to be learned from hydrology,” Natural Hazards and Earth System Sciences, vol. 18, no. 8, pp. 2183–2202, Aug. 2018, doi: 10.5194/nhess-18-2183-2018.
[113] E. M. Schmaltz, L. P. H. Van Beek, T. A. Bogaard, S. Kraushaar, S. Steger, and T. Glade, “Strategies to improve the explanatory power of a dynamic slope stability model by enhancing land cover parameterisation and model complexity,” Earth Surface Processes and Landforms, vol. 44, no. 6, pp. 1259–1273, May 2019, doi: 10.1002/esp.4570.
[114] F. Guzzetti, S. Peruccacci, M. Rossi, and C. P. Stark, “Rainfall thresholds for the initiation of landslides in central and southern Europe,” Meteorology and Atmospheric Physics, vol. 98, no. 3–4, pp. 239–267, Dec. 2007, doi: 10.1007/s00703-007-0262-7.
[115] A. Rosi, V. Canavesi, S. Segoni, T. Dias Nery, F. Catani, and N. Casagli, “Landslides in the Mountain Region of Rio de Janeiro: A Proposal for the Semi-Automated Definition of Multiple Rainfall Thresholds,” Geosciences, vol. 9, no. 5, p. 203, May 2019, doi: 10.3390/geosciences9050203.
[116] S. Peruccacci, M. T. Brunetti, S. Luciani, C. Vennari, and F. Guzzetti, “Lithological and seasonal control on rainfall thresholds for the possible initiation of landslides in central Italy,” Geomorphology, vol. 139–140, pp. 79–90, Feb. 2012, doi: 10.1016/j.geomorph.2011.10.005.
[117] S. Segoni, A. Rosi, G. Rossi, F. Catani, and N. Casagli, “Analysing the relationship between rainfalls and landslides to define a mosaic of triggering thresholds for regional-scale warning systems,” Natural Hazards and Earth System Sciences, vol. 14, no. 9, pp. 2637–2648, Sep. 2014, doi: 10.5194/nhess-14-2637-2014.
[118] N. Caine, “The Rainfall Intensity: Duration Control of Shallow Landslides and Debris Flows,” Geografiska Annaler. Series A, Physical Geography, vol. 62, no. 1/2, p. 23, 1980, doi: 10.2307/520449.
[119] J. L. Innes, “Debris flows,” Progress in Physical Geography: Earth and Environment, vol. 7, no. 4, pp. 469–501, Dec. 1983, doi: 10.1177/030913338300700401.
[120] G. B. Crosta and P. Frattini, “Rainfall thresholds for triggering soil slips and debris flow,” in Proceedings of the 2nd EGS Plinius Conference on Mediterranean Storms, 2001, pp. 463–487.
[121] R. K. Dahal and S. Hasegawa, “Representative rainfall thresholds for landslides in the Nepal Himalaya,” Geomorphology, vol. 100, no. 3–4, pp. 429–443, Aug. 2008, doi: 10.1016/j.geomorph.2008.01.014.
[122] H. Saito, D. Nakayama, and H. Matsuyama, “Relationship between the initiation of a shallow landslide and rainfall intensity—duration thresholds in Japan,” Geomorphology, vol. 118, no. 1–2, pp. 167–175, May 2010, doi: 10.1016/j.geomorph.2009.12.016.
[123] C.-W. Chen, H. Saito, and T. Oguchi, “Rainfall intensity–duration conditions for mass movements in Taiwan,” Progress in Earth and Planetary Science, vol. 2, no. 1, p. 14, Dec. 2015, doi: 10.1186/s40645-015-0049-2.
[124] M. Hong, J. Kim, and S. Jeong, “Rainfall intensity-duration thresholds for landslide prediction in South Korea by considering the effects of antecedent rainfall,” Landslides, vol. 15, no. 3, pp. 523–534, Mar. 2018, doi: 10.1007/s10346-017-0892-x.
[125] A. M. A. M. Maturidi, N. Kasim, K. A. Taib, W. N. A. W. Azahar, and H. B. A. Tajuddin, “Empirically Based Rainfall Threshold for Landslides Occurrence in Peninsular Malaysia,” KSCE Journal of Civil Engineering, vol. 25, no. 12, pp. 4552–4566, Dec. 2021, doi: 10.1007/s12205-021-1586-4.
[126] H.-W. Chen and C.-Y. Chen, “Warning Models for Landslide and Channelized Debris Flow under Climate Change Conditions in Taiwan,” Water, vol. 14, no. 5, p. 695, Feb. 2022, doi: 10.3390/w14050695.
[127] S. Peruccacci, M. T. Brunetti, S. L. Gariano, M. Melillo, M. Rossi, and F. Guzzetti, “Rainfall thresholds for possible landslide occurrence in Italy,” Geomorphology, vol. 290, pp. 39–57, Aug. 2017, doi: 10.1016/j.geomorph.2017.03.031.
[128] A. Dikshit, R. Sarkar, B. Pradhan, S. Acharya, and K. Dorji, “Estimating Rainfall Thresholds for Landslide Occurrence in the Bhutan Himalayas,” Water, vol. 11, no. 8, p. 1616, Aug. 2019, doi: 10.3390/w11081616.
[129] R. Hidayat, S. J. Sutanto, A. Hidayah, B. Ridwan, and A. Mulyana, “Development of a Landslide Early Warning System in Indonesia,” Geosciences, vol. 9, no. 10, p. 451, Oct. 2019, doi: 10.3390/geosciences9100451.
[130] S. Lee, J.-S. Won, S. W. Jeon, I. Park, and M. J. Lee, “Spatial Landslide Hazard Prediction Using Rainfall Probability and a Logistic Regression Model,” Mathematical Geosciences, vol. 47, no. 5, pp. 565–589, Jul. 2015, doi: 10.1007/s11004-014-9560-z.
[131] E. E. Chikalamo, O. C. Mavrouli, J. Ettema, C. J. van Westen, A. S. Muntohar, and A. Mustofa, “Satellite-derived rainfall thresholds for landslide early warning in Bogowonto Catchment, Central Java, Indonesia,” International Journal of Applied Earth Observation and Geoinformation, vol. 89, p. 102093, Jul. 2020, doi: 10.1016/j.jag.2020.102093.
[132] S. Karki et al., “A remote-sensing-based intensity–duration threshold, Faifa Mountains, Saudi Arabia,” Natural Hazards and Earth System Sciences, vol. 19, no. 6, pp. 1235–1249, Jun. 2019, doi: 10.5194/nhess-19-1235-2019.
[133] W. Li et al., “Spatio-temporal analysis and simulation on shallow rainfall-induced landslides in China using landslide susceptibility dynamics and rainfall I-D thresholds,” Science China Earth Sciences, vol. 60, no. 4, pp. 720–732, Apr. 2017, doi: 10.1007/s11430-016-9008-4.
[134] J. L. Bell, L. C. Sloan, and M. A. Snyder, “Regional changes in extreme climatic events: A future climate scenario,” Journal of Climate, vol. 17, no. 1, pp. 81–87, 2004, doi: 10.1175/1520-0442(2004)017<0081:RCIECE>2.0.CO;2.
[135] D. Wang, X. Wang, L. Liu, D. Wang, H. Huang, and C. Pan, “Evaluation of CMPA precipitation estimate in the evolution of typhoon-related storm rainfall in Guangdong, China,” Journal of Hydroinformatics, vol. 18, no. 6, pp. 1055–1068, 2016, doi: 10.2166/hydro.2016.241.
[136] M. Lonfat, R. Rogers, T. Marchok, and F. D. Marks, “A parametric model for predicting hurricane rainfall,” Monthly Weather Review, vol. 135, no. 9, pp. 3086–3097, 2007, doi: 10.1175/MWR3433.1.
[137] S. K. Kimball, “Structure and evolution of rainfall in numerically simulated landfalling hurricanes,” Monthly Weather Review, vol. 136, no. 10, pp. 3822–3847, 2008, doi: 10.1175/2008MWR2304.1.
[138] R. J. Ross and Y. Kurihara, “A Numerical Study on Influences of Hurricane Gloria (1985) on the Environment,” Monthly Weather Review, vol. 123, pp. 332–346, 1995, [Online]. Available: http://library1.nida.ac.th/termpaper6/sd/2554/19755.pdf.
[139] C. Yokoyama and Y. N. Takayabu, “A statistical study on rain characteristics of tropical cyclones using TRMM satellite data,” Monthly Weather Review, vol. 136, no. 10, pp. 3848–3862, 2008, doi: 10.1175/2008MWR2408.1.
[140] Y. Wang, Y. Wang, and H. Fudeyasu, “The role of Typhoon Songda (2004) in producing distantly located heavy rainfall in Japan,” Monthly Weather Review, vol. 137, no. 11, pp. 3699–3716, 2009, doi: 10.1175/2009MWR2933.1.
[141] K. Cheung et al., “Recent Advances in Research and Forecasting of Tropical Cyclone Rainfall,” Tropical Cyclone Research and Review, vol. 7, no. 2, pp. 106–127, 2018, doi: 10.6057/2018TCRR02.03.
[142] Y. C. Huang and Y. L. Lin, “A study on the structure and precipitation of Morakot (2009) induced by the Central Mountain Range of Taiwan,” Meteorology and Atmospheric Physics, vol. 123, no. 3–4, pp. 115–141, 2014, doi: 10.1007/s00703-013-0290-4.
[143] K.-K. Hon, “Tropical cyclone track prediction using a large-area WRF model at the Hong Kong Observatory,” Tropical Cyclone Research and Review, vol. 9, no. 1, pp. 67–74, 2020, doi: 10.1016/j.tcrr.2020.03.002.
[144] S. C. Jones et al., “The extratropical transition of tropical cyclones: Forecast challenges, current understanding, and future directions,” Weather and Forecasting, vol. 18, no. 6, pp. 1052–1092, 2003, doi: 10.1175/1520-0434(2003)018<1052:TETOTC>2.0.CO;2.
[145] C. C. Wu, K. K. W. Cheung, and Y. Y. Lo, “Numerical study of the rainfall event due to the interaction of typhoon Babs (1998) and the northeasterly monsoon,” Monthly Weather Review, vol. 137, no. 7, pp. 2049–2064, 2009, doi: 10.1175/2009MWR2757.1.
[146] M. J. Yang, S. A. Braun, and D. S. Chen, “Water budget of Typhoon Nari (2001),” Monthly Weather Review, vol. 139, no. 12, pp. 3809–3828, 2011, doi: 10.1175/MWR-D-10-05090.1.
[147] C.-K. Yu and L. W. Cheng, “Distribution and mechanisms of orographic precipitation associated with typhoon morakot (2009),” Journal of the Atmospheric Sciences, vol. 70, no. 9, pp. 2894–2915, 2013, doi: 10.1175/JAS-D-12-0340.1.
[148] F. Zhang, Y. Weng, Y. H. Kuo, J. S. Whitaker, and B. Xie, “Predicting typhoon morakot’s catastrophic rainfall with a convection-permitting mesoscale ensemble system,” Weather and Forecasting, vol. 25, no. 6, pp. 1816–1825, 2010, doi: 10.1175/2010WAF2222414.1.
[149] C. Huang et al., “How Well Can IMERG Products Capture Typhoon Extreme Precipitation Events over Southern China?,” Remote Sensing, vol. 11, no. 1, p. 70, 2019, doi: 10.3390/rs11010070.
[150] J. Liu, J. Xia, D. She, L. Li, Q. Wang, and L. Zou, “Evaluation of six satellite-based precipitation products and their ability for capturing characteristics of extreme precipitation events over a climate transition area in China,” Remote Sensing, vol. 11, no. 12. 2019, doi: 10.3390/rs11121477.
[151] Z. Duan, J. Liu, Y. Tuo, G. Chiogna, and M. Disse, “Evaluation of eight high spatial resolution gridded precipitation products in Adige Basin (Italy) at multiple temporal and spatial scales,” Science of the Total Environment, vol. 573, pp. 1536–1553, 2016, doi: 10.1016/j.scitotenv.2016.08.213.
[152] S. Javanmard, A. Yatagai, M. I. Nodzu, J. Bodaghjamali, and H. Kawamoto, “Comparing high-resolution gridded precipitation data with satellite rainfall estimates of TRMM-3B42 over Iran,” Advances in Geosciences, vol. 25, pp. 119–125, 2010, doi: 10.5194/adgeo-25-119-2010.
[153] M. S. Nashwan, S. Shahid, A. Dewan, T. Ismail, and N. Alias, “Performance of five high resolution satellite-based precipitation products in arid region of Egypt: An evaluation,” Atmospheric Research, vol. 236, no. December 2019, p. 104809, 2020, doi: 10.1016/j.atmosres.2019.104809.
[154] Y. Wu, Z. Zhang, Y. Huang, Q. Jin, X. Chen, and J. Chang, “Evaluation of the GPM IMERG v5 and TRMM 3B42 v7 precipitation products in the Yangtze River basin, China,” Water (Switzerland), vol. 11, no. 7, 2019, doi: 10.3390/w11071459.
[155] E. da S. Freitas et al., “The performance of the IMERG satellite-based product in identifying sub-daily rainfall events and their properties,” Journal of Hydrology, vol. 589, p. 125128, Oct. 2020, doi: 10.1016/j.jhydrol.2020.125128.
[156] X. Huang, D. Wang, Y. Liu, Z. Feng, and D. Wang, “Evaluation of extreme precipitation based on satellite retrievals over China,” Frontiers of Earth Science, vol. 12, no. 4, pp. 846–861, 2018, doi: 10.1007/s11707-017-0643-2.
[157] R. S. A. Palharini et al., “Assessment of the Extreme Precipitation by Satellite Estimates over South America,” Remote Sensing, vol. 12, no. 13, p. 2085, Jun. 2020, doi: 10.3390/rs12132085.
[158] B. R. Parida, S. N. Behera, O. Bakimchandra, A. C. Pandey, and N. Singh, “Evaluation of satellite-derived rainfall estimates for an extreme rainfall event over Uttarakhand, Western Himalayas,” Hydrology, vol. 4, no. 2, pp. 1–18, 2017, doi: 10.3390/hydrology4020022.
[159] S. Pombo and R. P. de Oliveira, “Evaluation of extreme precipitation estimates from TRMM in Angola,” Journal of Hydrology, vol. 523, pp. 663–679, 2015, doi: 10.1016/j.jhydrol.2015.02.014.
[160] I. Rashid, A. A. Parray, and S. A. Romshoo, “Evaluating the Performance of Remotely Sensed Precipitation Estimates against In-Situ Observations during the September 2014 Mega-Flood in the Kashmir Valley,” Asia-Pacific Journal of Atmospheric Sciences, vol. 55, no. 2, pp. 209–219, 2018, doi: 10.1007/s13143-018-0071-6.
[161] T. Tashima, T. Kubota, T. Mega, T. Ushio, and R. Oki, “Precipitation Extremes Monitoring Using the Near-Real-Time GSMaP Product,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 13, pp. 5640–5651, 2020, doi: 10.1109/jstars.2020.3014881.
[162] W.-R. Huang, P.-Y. Liu, Y.-H. Chang, and C.-A. Lee, “Evaluation of IMERG Level-3 Products in Depicting the July to October Rainfall over Taiwan: Typhoon Versus Non-Typhoon,” Remote Sensing, vol. 13, no. 4, p. 622, Feb. 2021, doi: 10.3390/rs13040622.
[163] R. Ramadhan et al., “Capability of GPM IMERG Products for Extreme Precipitation Analysis over the Indonesian Maritime Continent,” Remote Sensing, vol. 14, no. 2, p. 412, Jan. 2022, doi: 10.3390/rs14020412.
[164] S. Shige, S. Kida, H. Ashiwake, T. Kubota, and K. Aonashi, “Improvement of TMI Rain Retrievals in Mountainous Areas,” Journal of Applied Meteorology and Climatology, vol. 52, no. 1, pp. 242–254, Jan. 2013, doi: 10.1175/JAMC-D-12-074.1.
[165] D. Lu and B. Yong, “Evaluation and Hydrological Utility of the Latest GPM IMERG V5 and GSMaP V7 Precipitation Products over the Tibetan Plateau,” Remote Sensing, vol. 10, no. 12, p. 2022, Dec. 2018, doi: 10.3390/rs10122022.
[166] M. K. Thakur, T. V. L. Kumar, K. Koteswara Rao, H. Barbosa, and V. B. Rao, “A new perspective in understanding rainfall from satellites over a complex topographic region of India,” Scientific Reports, vol. 9, no. 1, p. 15610, Dec. 2019, doi: 10.1038/s41598-019-52075-y.
[167] Wang and Yong, “Quasi-Global Evaluation of IMERG and GSMaP Precipitation Products over Land Using Gauge Observations,” Water, vol. 12, no. 1, p. 243, Jan. 2020, doi: 10.3390/w12010243.
[168] S. Chen et al., “Performance evaluation of radar and satellite rainfalls for Typhoon Morakot over Taiwan: Are remote-sensing products ready for gauge denial scenario of extreme events?,” Journal of Hydrology, vol. 506, pp. 4–13, 2013, doi: 10.1016/j.jhydrol.2012.12.026.
[169] N. T. T. Pham and H. H. Vu, “Characteristics of Tropical Cyclone Precipitating System Along Central Coastal Region of Vietnam by TRMM and GSMAP Data,” in The 10th International Conference on Asian and Pacific Coasts (APAC) 2019, 2020, pp. 87–91, doi: 10.1007/978-981-15-0291-0_13.
[170] Z. Yu, H. Yu, P. Chen, C. Qian, and C. Yue, “Verification of tropical cyclone-related satellite precipitation estimates in mainland China,” Journal of Applied Meteorology and Climatology, vol. 48, no. 11, pp. 2227–2241, 2009, doi: 10.1175/2009JAMC2143.1.
[171] J. C. Bregy, J. T. Maxwell, S. M. Robeson, J. T. Ortegren, P. T. Soulé, and P. A. Knapp, “Spatiotemporal Variability of Tropical Cyclone Precipitation Using a High-Resolution, Gridded (0.25° × 0.25°) Dataset for the Eastern United States, 1948–2015,” Journal of Climate, vol. 33, no. 5, pp. 1803–1819, Mar. 2020, doi: 10.1175/JCLI-D-18-0885.1.
[172] G. Bagtasa, “Contribution of tropical cyclones to rainfall in the Philippines,” Journal of Climate, vol. 30, no. 10, pp. 3621–3633, 2017, doi: 10.1175/JCLI-D-16-0150.1.
[173] J. Weinkle, R. Maue, and R. Pielke, “Historical global tropical cyclone landfalls,” Journal of Climate, vol. 25, no. 13, pp. 4729–4735, 2012, doi: 10.1175/JCLI-D-11-00719.1.
[174] T. A. Cinco et al., “Observed trends and impacts of tropical cyclones in the Philippines,” International Journal of Climatology, vol. 36, no. 14, pp. 4638–4650, 2016, doi: 10.1002/joc.4659.
[175] D. Li, X. Min, J. Xu, J. Xue, and Z. Shi, “Assessment of three gridded satellite-based precipitation products and their performance variabilities during typhoons over Zhejiang, southeastern China,” Journal of Hydrology, vol. 610, p. 127985, Jul. 2022, doi: 10.1016/j.jhydrol.2022.127985.
[176] M. V. Reddy, A. K. Mitra, I. M. Momin, and U. V. M. Krishna, “How Accurately Satellite Precipitation Products Capture the Tropical Cyclone Rainfall?,” Journal of the Indian Society of Remote Sensing, Jun. 2022, doi: 10.1007/s12524-022-01572-1.
[177] J. R. P. Sutton, A. Jakobsen, K. Lanyon, and V. Lakshmi, “Comparing Precipitation during Typhoons in the Western North Pacific Using Satellite and In Situ Observations,” Remote Sensing, vol. 14, no. 4, p. 877, Feb. 2022, doi: 10.3390/rs14040877.
[178] L. Bautista, “Philippine territorial boundaries: internal tensions, colonial baggage, ambivalent conformity,” JATI : Journal of Southeast Asian Studies, vol. 16, pp. 35–53, 2011.
[179] PAGASA, “Climate of the Philippines.” http://bagong.pagasa.dost.gov.ph/information/climate-philippines# (accessed Oct. 10, 2020).
[180] H. Kubota and B. Wang, “How much do tropical cyclones affect seasonal and interannual rainfall variability over the western North Pacific?,” Journal of Climate, vol. 22, no. 20, pp. 5495–5510, 2009, doi: 10.1175/2009JCLI2646.1.
[181] P. Aryastana, C.-Y. Liu, B. Jong‐Dao Jou, E. Cayanan, J. P. Punay, and Y. Chen, “Assessment of Satellite Precipitation Data Sets for High Variability and Rapid Evolution of Typhoon Precipitation Events in the Philippines,” Earth and Space Science, vol. 9, no. 9, Sep. 2022, doi: 10.1029/2022EA002382.
[182] K. R. Knapp, M. C. Kruk, D. H. Levinson, H. J. Diamond, and C. J. Neumann, “The international best track archive for climate stewardship (IBTrACS),” Bulletin of the American Meteorological Society, vol. 91, no. 3, pp. 363–376, 2010, doi: 10.1175/2009BAMS2755.1.
[183] G. J. Huffman et al., “Integrated Multi-satellite Retrievals for the Global Precipitation Measurement (GPM) Mission (IMERG),” 2020, pp. 343–353.
[184] T. Kubota et al., “Global Satellite Mapping of Precipitation (GSMaP) Products in the GPM Era,” 2020, pp. 355–373.
[185] H. Hersbach et al., “The ERA5 global reanalysis,” Quarterly Journal of the Royal Meteorological Society, vol. 146, no. 730, pp. 1999–2049, Jul. 2020, doi: 10.1002/qj.3803.
[186] J. Olauson, “ERA5: The new champion of wind power modelling?,” Renewable Energy, vol. 126, pp. 322–331, Oct. 2018, doi: 10.1016/j.renene.2018.03.056.
[187] J. Ramon, L. Lledó, V. Torralba, A. Soret, and F. J. Doblas‐Reyes, “What global reanalysis best represents near‐surface winds?,” Quarterly Journal of the Royal Meteorological Society, vol. 145, no. 724, pp. 3236–3251, Oct. 2019, doi: 10.1002/qj.3616.
[188] D. P. Dee et al., “The ERA-Interim reanalysis: configuration and performance of the data assimilation system,” Quarterly Journal of the Royal Meteorological Society, vol. 137, no. 656, pp. 553–597, Apr. 2011, doi: 10.1002/qj.828.
[189] D. Ostrenga, “Derive Wind Speed and Direction With MERRA-2 Wind Components,” GES DISC, 2019. https://disc.gsfc.nasa.gov/information/data-in-action?title=Derive Wind Speed and Direction With MERRA-2 Wind Components (accessed Jun. 23, 2022).
[190] A. A. Fenta et al., “Evaluation of satellite rainfall estimates over the Lake Tana basin at the source region of the Blue Nile River,” Atmospheric Research, vol. 212, no. May, pp. 43–53, 2018, doi: 10.1016/j.atmosres.2018.05.009.
[191] J. Liu, Z. Duan, J. Jiang, and A.-X. Zhu, “Evaluation of Three Satellite Precipitation Products TRMM 3B42, CMORPH, and PERSIANN over a Subtropical Watershed in China,” Advances in Meteorology, vol. 2015, pp. 1–13, 2015, doi: 10.1155/2015/151239.
[192] M. L. Tan, A. L. Ibrahim, Z. Duan, A. P. Cracknell, and V. Chaplot, “Evaluation of six high-resolution satellite and ground-based precipitation products over Malaysia,” Remote Sensing, vol. 7, no. 2, pp. 1504–1528, 2015, doi: 10.3390/rs70201504.
[193] W.-R. Huang, P.-Y. Liu, Y.-H. Chang, and C.-Y. Liu, “Evaluation and application of satellite precipitation products in studying the summer precipitation variations over Taiwan,” Remote Sensing, vol. 12, no. 3, p. 347, Jan. 2020, doi: 10.3390/rs12030347.
[194] M. T. Brunetti et al., “Satellite rainfall products outperform ground observations for landslide prediction in India,” Hydrology and Earth System Sciences, vol. 25, no. 6, pp. 3267–3279, Jun. 2021, doi: 10.5194/hess-25-3267-2021.
[195] G. R. Filho, V. R. Coelho, E. S. Freitas, Y. Xuan, L. Brocca, and C. N. Almeida, “Regional-scale evaluation of 14 satellite-based precipitation products in characterising extreme events and delineating rainfall thresholds for flood hazards,” Atmospheric Research, vol. 276, p. 106259, Oct. 2022, doi: 10.1016/j.atmosres.2022.106259.
[196] P. J. Roebber, “Visualizing multiple measures of forecast quality,” Weather and Forecasting, vol. 24, no. 2, pp. 601–608, 2009, doi: 10.1175/2008WAF2222159.1.
[197] A. K. Dezfuli et al., “Validation of IMERG Precipitation in Africa,” Journal of Hydrometeorology, vol. 18, no. 10, pp. 2817–2825, Oct. 2017, doi: 10.1175/JHM-D-17-0139.1.
[198] C.-Y. Liu et al., “Optimal Use of Space-Borne Advanced Infrared and Microwave Soundings for Regional Numerical Weather Prediction,” Remote Sensing, vol. 8, no. 10, p. 816, Sep. 2016, doi: 10.3390/rs8100816.
[199] C.-Y. Liu, J. Li, S.-P. Ho, G.-R. Liu, T.-H. Lin, and C.-C. Young, “Retrieval of Atmospheric Thermodynamic State from Synergistic Use of Radio Occultation and Hyperspectral Infrared Radiances Observations,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 9, no. 2, pp. 744–756, Feb. 2016, doi: 10.1109/JSTARS.2015.2444274.
[200] H. Chen, B. Yong, Y. Shen, J. Liu, Y. Hong, and J. Zhang, “Comparison analysis of six purely satellite-derived global precipitation estimates,” Journal of Hydrology, vol. 581, p. 124376, Feb. 2020, doi: 10.1016/j.jhydrol.2019.124376.
[201] R. Sun, H. Yuan, X. Liu, and X. Jiang, “Evaluation of the latest satellite–gauge precipitation products and their hydrologic applications over the Huaihe River basin,” Journal of Hydrology, vol. 536, pp. 302–319, May 2016, doi: 10.1016/j.jhydrol.2016.02.054.
[202] K.-O. Lee, H. Uyeda, and D.-I. Lee, “Microphysical structures associated with enhancement of convective cells over Mt. Halla, Jeju Island, Korea on 6 July 2007,” Atmospheric Research, vol. 135–136, pp. 76–90, Jan. 2014, doi: 10.1016/j.atmosres.2013.08.012.
[203] C. Chen et al., “Performance of multiple satellite precipitation estimates over a typical arid mountainous area of China: Spatiotemporal patterns and extremes,” Journal of Hydrometeorology, vol. 21, no. 3, pp. 533–550, 2020, doi: 10.1175/JHM-D-19-0167.1.
[204] M. K. Yamamoto and S. Shige, “Implementation of an orographic/nonorographic rainfall classification scheme in the GSMaP algorithm for microwave radiometers,” Atmospheric Research, vol. 163, pp. 36–47, 2015, doi: 10.1016/j.atmosres.2014.07.024.
[205] P. Nguyen et al., “The PERSIANN family of global satellite precipitation data: A review and evaluation of products,” Hydrology and Earth System Sciences, vol. 22, no. 11, pp. 5801–5816, 2018, doi: 10.5194/hess-22-5801-2018.
[206] N. Bloemendaal, H. de Moel, S. Muis, I. D. Haigh, and J. C. J. H. Aerts, “Estimation of global tropical cyclone wind speed probabilities using the STORM dataset,” Scientific Data, vol. 7, no. 1, pp. 1–11, 2020, doi: 10.1038/s41597-020-00720-x.
[207] S. Q. Kidder, S. J. Kusselson, J. A. Knaff, R. R. Ferraro, R. J. Kuligowski, and M. Turk, “The tropical rainfall potential (TRaP) technique. Part I: Description and examples,” Weather and Forecasting, vol. 20, no. 4, pp. 456–464, 2005, doi: 10.1175/WAF860.1.
[208] A. Y. Hou, G. Skofronick-Jackson, C. D. Kummerow, and J. M. Shepherd, “Global precipitation measurement,” Precipitation: Advances in Measurement, Estimation and Prediction, pp. 131–169, 2008, doi: 10.1007/978-3-540-77655-0_6.
[209] P. A. Kucera et al., “Precipitation from Space: Advancing Earth System Science,” Bulletin of the American Meteorological Society, vol. 94, no. 3, pp. 365–375, 2013, doi: 10.1175/bams-d-11-00171.1.
[210] C. Toté, D. Patricio, H. Boogaard, R. van der Wijngaart, E. Tarnavsky, and C. Funk, “Evaluation of satellite rainfall estimates for drought and flood monitoring in Mozambique,” Remote Sensing, vol. 7, no. 2, pp. 1758–1776, 2015, doi: 10.3390/rs70201758.
[211] C. C. Ummenhofer and M. H. England, “Interannual extremes in New Zealand precipitation linked to modes of Southern Hemisphere climate variability,” Journal of Climate, vol. 20, no. 21, pp. 5418–5440, 2007, doi: 10.1175/2007JCLI1430.1.
[212] H. Feidas, G. Kokolatos, A. Negri, M. Manyin, N. Chrysoulakis, and Y. Kamarianakis, “Validation of an infrared-based satellite algorithm to estimate accumulated rainfall over the Mediterranean basin,” Theoretical and Applied Climatology, vol. 95, no. 1–2, pp. 91–109, 2009, doi: 10.1007/s00704-007-0360-y.
[213] S. Prakash, “Performance assessment of CHIRPS, MSWEP, SM2RAIN-CCI, and TMPA precipitation products across India,” Journal of Hydrology, vol. 571, no. January, pp. 50–59, 2019, doi: 10.1016/j.jhydrol.2019.01.036.
[214] J. A. Rivera, G. Marianetti, and S. Hinrichs, “Validation of CHIRPS precipitation dataset along the Central Andes of Argentina,” Atmospheric Research, vol. 213, no. June, pp. 437–449, 2018, doi: 10.1016/j.atmosres.2018.06.023.
[215] D. P. Y. Suseno and T. J. Yamada, “Geostationary satellite based rainfall estimation and validation: a case study of Java island, Indonesia,” Journal of Japan Society of Civile Engineers, vol. 67, no. 4, pp. 43–48, 2011.
[216] R. Prasetia, A. R. As-syakur, and T. Osawa, “Validation of TRMM Precipitation Radar satellite data over the Indonesian region,” Theoretical and Applied Climatology, vol. 112, no. 3–4, pp. 575–587, 2013, doi: 10.1007/s00704-012-0756-1.
[217] A. B. Sekaranom, E. Nurjani, M. P. Hadi, and M. A. Marfai, “Comparsion of TRMM Precipitation Satellite Data over Central Java Region – Indonesia,” Quaestiones Geographicae, vol. 37, no. 3, pp. 97–114, 2018, doi: 10.2478/quageo-2018-0028.
[218] I. Sofiati and L. Q. Avia, “Analysis of Rainfall Data based on GSMaP and TRMM towards Observations Data in Yogyakarta,” IOP Conference Series: Earth and Environmental Science, vol. 166, no. 1, 2018, doi: 10.1088/1755-1315/166/1/012031.
[219] E. Aldrian, L. D. Gates, and F. H. Widodo, “Report No. 346 : Variability of Indonesian Rainfall and the Influence of ENSO and Resolution in ECHAM4 Simulations and in the Reanalyses,” MPI Report, no. 346, 2003.
[220] G. J. Huffman et al., “Algorithm Theoretical Basis Document (ATBD) Version 5.2 NASA Global Precipitation Measurement (GPM) Integrated Multi-satellitE Retrievals for GPM (IMERG),” 2018. https://pmm.nasa.gov/sites/default/files/document_files/IMERG_ATBD_V5.2.pdf.
[221] J. Crétat, E. K. Vizy, and K. H. Cook, “The relationship between African easterly waves and daily rainfall over West Africa: observations and regional climate simulations,” Climate Dynamics, vol. 44, no. 1–2, pp. 385–404, 2014, doi: 10.1007/s00382-014-2120-x.
[222] F. Satgé et al., “Comparative assessments of the latest GPM mission’s spatially enhanced satellite rainfall products over the main bolivian watersheds,” Remote Sensing, vol. 9, no. 4, pp. 1–16, 2017, doi: 10.3390/rs9040369.
[223] M. Zambrano-Bigiarini, A. Nauditt, C. Birkel, K. Verbist, and L. Ribbe, “Temporal and spatial evaluation of satellite-based rainfall estimates across the complex topographical and climatic gradients of Chile,” Hydrology and Earth System Sciences, vol. 21, no. 2, pp. 1295–1320, 2017, doi: 10.5194/hess-21-1295-2017.
[224] F. J. Paredes-Trejo, H. A. Barbosa, M. A. Peñaloza-Murillo, M. Alejandra Moreno, and A. Farías, “Intercomparison of improved satellite rainfall estimation with CHIRPS gridded product and rain gauge data over Venezuela,” Atmosfera, vol. 29, no. 4, pp. 323–342, 2016, doi: 10.20937/ATM.2016.29.04.04.
[225] A. M. E. Kenawy, J. I. Lopez-Moreno, M. F. McCabe, and S. M. Vicente-Serrano, “Evaluation of the TMPA-3B42 precipitation product using a high-density rain gauge network over complex terrain in northeastern Iberia,” Global and Planetary Change, vol. 133, pp. 188–200, 2015, doi: 10.1016/j.gloplacha.2015.08.013.
[226] Y. Ma et al., “Comprehensive evaluation of Ensemble Multi-Satellite Precipitation Dataset using the Dynamic Bayesian Model Averaging scheme over the Tibetan plateau,” Journal of Hydrology, vol. 556, pp. 634–644, 2018, doi: 10.1016/j.jhydrol.2017.11.050.
[227] P. Deng, M. Zhang, H. Guo, C. Xu, J. Bing, and J. Jia, “Error analysis and correction of the daily GSMaP products over Hanjiang River Basin of China,” Atmospheric Research, vol. 214, no. April, pp. 121–134, 2018, doi: 10.1016/j.atmosres.2018.07.022.
[228] L. Ciabatta et al., “Assessing the impact of climate-change scenarios on landslide occurrence in Umbria Region, Italy,” Journal of Hydrology, vol. 541, pp. 285–295, Oct. 2016, doi: 10.1016/j.jhydrol.2016.02.007.
[229] E. M. Fischer and R. Knutti, “Anthropogenic contribution to global occurrence of heavy-precipitation and high-temperature extremes,” Nature Climate Change, vol. 5, no. 6, pp. 560–564, Jun. 2015, doi: 10.1038/nclimate2617.
[230] N. Sultana and S. Tan, “Landslide mitigation strategies in southeast Bangladesh: Lessons learned from the institutional responses,” International Journal of Disaster Risk Reduction, vol. 62, p. 102402, Aug. 2021, doi: 10.1016/j.ijdrr.2021.102402.
[231] Z. Li et al., “Two-decades of GPM IMERG early and final run products intercomparison: Similarity and difference in climatology, rates, and extremes,” Journal of Hydrology, vol. 594, p. 125975, Mar. 2021, doi: 10.1016/j.jhydrol.2021.125975.
[232] A. AghaKouchak, A. Bárdossy, and E. Habib, “Conditional simulation of remotely sensed rainfall data using a non-Gaussian v-transformed copula,” Advances in Water Resources, vol. 33, no. 6, pp. 624–634, Jun. 2010, doi: 10.1016/j.advwatres.2010.02.010.
[233] H. Chen, B. Yong, P.-E. Kirstetter, L. Wang, and Y. Hong, “Global component analysis of errors in three satellite-only global precipitation estimates,” Hydrology and Earth System Sciences, vol. 25, no. 6, pp. 3087–3104, Jun. 2021, doi: 10.5194/hess-25-3087-2021.
[234] Q. Dai, D. Han, M. Rico-Ramirez, and P. K. Srivastava, “Multivariate distributed ensemble generator: A new scheme for ensemble radar precipitation estimation over temperate maritime climate,” Journal of Hydrology, vol. 511, pp. 17–27, Apr. 2014, doi: 10.1016/j.jhydrol.2014.01.016.
[235] T.-L. Tsai and H.-F. Chen, “Effects of degree of saturation on shallow landslides triggered by rainfall,” Environmental Earth Sciences, vol. 59, no. 6, pp. 1285–1295, Jan. 2010, doi: 10.1007/s12665-009-0116-3.
[236] M. G. Persichillo et al., “Shallow landslides susceptibility assessment in different environments,” Geomatics, Natural Hazards and Risk, vol. 8, no. 2, pp. 748–771, Dec. 2017, doi: 10.1080/19475705.2016.1265011.
[237] H. Lee, “General Rainfall Patterns in Indonesia and the Potential Impacts of Local Seas on Rainfall Intensity,” Water, vol. 7, no. 12, pp. 1751–1768, 2015, doi: 10.3390/w7041751.
[238] H. Kutiel and R. M. Trigo, “The rainfall regime in Lisbon in the last 150 years,” Theoretical and Applied Climatology, vol. 118, no. 3, pp. 387–403, Nov. 2014, doi: 10.1007/s00704-013-1066-y.
[239] T. Vaz, J. L. Zêzere, S. Pereira, S. C. Oliveira, R. A. C. Garcia, and I. Quaresma, “Regional rainfall thresholds for landslide occurrence using a centenary database,” Natural Hazards and Earth System Sciences, vol. 18, no. 4, pp. 1037–1054, Apr. 2018, doi: 10.5194/nhess-18-1037-2018.
[240] P. Frattini, G. Crosta, and A. Carrara, “Techniques for evaluating the performance of landslide susceptibility models,” Engineering Geology, vol. 111, no. 1–4, pp. 62–72, Feb. 2010, doi: 10.1016/j.enggeo.2009.12.004.
[241] T. Fawcett, “An introduction to ROC analysis,” Pattern Recognition Letters, vol. 27, no. 8, pp. 861–874, Jun. 2006, doi: 10.1016/j.patrec.2005.10.010.
[242] S. W. Kim, K. W. Chun, M. Kim, F. Catani, B. Choi, and J. Il Seo, “Effect of antecedent rainfall conditions and their variations on shallow landslide-triggering rainfall thresholds in South Korea,” Landslides, vol. 18, no. 2, pp. 569–582, Feb. 2021, doi: 10.1007/s10346-020-01505-4.
[243] G. F. Wieczorek and T. Glade, “Climatic factors influencing occurrence of debris flows,” in Debris-flow Hazards and Related Phenomena, M. Jakob and O. Hunger, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp. 325–362.
[244] L. Fan, P. Lehmann, C. Zheng, and D. Or, “Rainfall Intensity Temporal Patterns Affect Shallow Landslide Triggering and Hazard Evolution,” Geophysical Research Letters, vol. 47, no. 1, Jan. 2020, doi: 10.1029/2019GL085994.

指導教授 陳映濃 劉千義(Ying-Nong Chen, Ph.D. Chian-Yi Liu, Ph.D.) 審核日期 2023-1-5
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明