參考文獻 |
[1] https://public.wmo.int/en/greenhouse-gas-bulletin
[2] https://library.wmo.int/doc_num.php?explnum_id=11352
[3] https://www.ipcc.ch/site/assets/uploads/sites/2/2019/06/SR15_Full_Report_High_Res.pdf
[4] https://zerotracker.net/
[5] https://www.iea.org/reports/net-zero-by-2050
[6] https://www.iea.org/reports/hydrogen
[7] https://www.asme.org/topics-resources/content/advancing-battery-technology-for-moderninnovations
[8] B. Shadidi, G. Najafi, T. Yusaf, “A review of hydrogen as a fuel in internal combustion engines,” Energies, Vol. 14, pp. 6209, 2021.
[9] https://h2tools.org/hyarc/calculator-tools/lower-and-higher-heating-values-fuels
[10] 張文昇, 「 國內外氫能發展現況和碳捕集再利用技術介紹 」 ,工業技
術研究院, ,2021
[11] https://www.ndc.gov.tw/Content_List.aspx?n=DEE68AAD8B38BD76
[12] 廖俊智 「 臺灣淨零科技研發政策建議書 」 中央研究院, 2022
[13] https://rsprc.ntu.edu.tw/zh-tw/m01-3/en-trans/1693-0425-new-energy.html
[14] https://www.energy.gov/eere/fuelcells/hydrogen-production-pathways
[15] Fuel Cells and Hydrogen 2 Joint Undertaking, Hydrogen roadmap Europe—A sustainable pathway for the European energy transition, Publications Office, 2019.
[16] B. Coelho, A.C. Oliveira, A. Mendes, “Concentrated solar power for renewable electricity and hydrogen production from water—a review,” Energy & Environmental Science, Vol. 10, pp. 1398-1405, 2010.
[17] P. J. Megía, A. J. Vizcaíno, J. A. Calles, A. Carrero, “Hydrogen production technologies: From fossil fuels toward renewable sources. A mini review,” Energy Fuels, Vol. 35, pp, 16403–16415, 2021.
[18] P. Nikolaidis, A. Poullikkas, “A comparative overview of hydrogen production processes,” Renewable Sustainable Energy Rev, Vol. 67, pp. 597−611, 2017.
[19] R. Ma, B. Xu, X. Zhang, “Catalytic partial oxidation (CPOX) of natural gas and renewable hydrocarbons/oxygenated hydrocarbons—A review,” Catalysis Today, Vol.338, pp. 18−30, 2019.
[20] R. Baruah, M. Dixit, P. Basarkar, D. Parikh, A. Bhargav, “Advances in ethanol autothermal reforming,” Renewable Sustainable Energy Rev, Vol. 51, pp. 1345−1353, 2015.
[21] H.F. Abbas & W.M.A. Wan Daud, “Hydrogen production by methane decomposition: A Review,” International Journal of Hydrogen Energy, Vol. 35, pp. 1160−1190, 2010.
[22] S. S. Seyitoglu, I. Dincer, A. Kilicarslan, “Energy and exergy analyses of hydrogen production by coal gasification,” International Journal of Hydrogen Energy, Vol. 42, pp. 2592−2600, 2017.
[23] T. M. I. Mahlia and S. M. Ashrafur, “An overview of recent developments in biomass pyrolysis technologies,” Energies, Vol. 11, pp. 3115, 2018.
[24] S.E. Hosseini, & M.A. Wahid, “Hydrogen production from renewable and sustainable energy resources: Promising green energy carrier for clean development,” Renewable Sustainable Energy Rev, Vol. 57, pp. 850−866, 2016.
[25] J. Chi, & H. Yu, “Water electrolysis based on renewable energy for hydrogen production,” Chin. J. Catal, Vol. 39, pp. 390−394, 2018.
[26] H. Ju, S. Badwal, S. Giddey, “A comprehensive review of carbon and hydrocarbon assisted water electrolysis for hydrogen production,” Applied Energy, Vol. 231, pp. 502–533, 2018.
[27] S. S. Kumar, & V. Himabindu, “Hydrogen production by PEM water electrolysis—A Review,” Materials Science for Energy Technologies, Vol. 2, pp. 442-454, 2019.
[28] https://www.nedo.go.jp/english/news/AA5en_100422.html
[29] https://www.sunfire.de/en/hydrogen
[30] A. Ajanovic, M. Sayer, R. Haas, “The economics and the environmental benignity of different colors of hydrogen,” International Journal of Hydrogen Energy, Vol. 47, pp. 24136-24154, 2022.
[31] https://www.energy.gov/sites/default/files/2021-09/h2-shot-summit-panel2-methane-pyrolysis.pdf
[32] https://power.mhi.com/special/hydrogen/article_1
[33] G. Maag, G. Zanganeh, A. Steinfeld, “Solar thermal cracking of methane in a particle-flow reactor for the co-production of hydrogen and carbon,” International Journal of Hydrogen Energy, Vol. 34, pp. 7676–7685, 2009.
[34] S. Rodat, S. Abanades, J. L. Sans, G. Flamant, “A pilot-scale solar reactor for the production of hydrogen and carbon black from methane splitting,”International Journal of Hydrogen Energy, Vol. 35, pp. 7748–7758, 2010.
[35] https://report.basf.com/2020/en/managements-report/responsibility-along-the-value-chain/environmental-protection-health-and-safety/carbon-management.html
[36] https://www.basf.com/hk/en/who-we-are/sustainability/weproduce-safely-and-efficiently/energy-and-climate-protection/carbon-management/innovations-fora-climate-friendly-chemical-production.html
[37] https://www.kit.edu/kit/english/pi_2013_12783.php
[38] A. Abanades, E. Ruiz, E. M. Ferruelo, F. Herna´ndez, A. Cabanillas, J. M. Martı´nez-Val, J. A. Rubio, C. Lo´pez, R. Gavela, G. Barrera, C. Rubbia, D. Salmieri, E. Rodilla, D. Gutie´rrez, “Experimental analysis of direct thermal methane cracking,” International Journal of Hydrogen Energy, Vol. 36, pp. 12877–12886, 2011.
[39] J. R. Fincke, R. P. Anderson, T. A. Hyde, B. A. Detering, “Plasma pyrolysis of methane to hydrogen and carbon black,” Industrial & Engineering Chemistry Research, Vol. 4, pp. 1425–1435, 2002.
[40] M. Garduño, M. Pacheco, J. Pacheco, R. Valdivia, A. Santana, B. Lefort, N. Estrada, C. Rivera, “Hydrogen production from methane conversion in a gliding arc,” Journal of Renewable and Sustainable Energy, Vol. 4, pp. 021202, 2012.
[41] https://monolith-corp.com/methane-pyrolysis
[42] E. Sada, H. Kumazawa, M. Kudsy, “Pyrolysis of lignins in molten salt media,” Ind. Eng. Chem. Res, Vol. 31, pp. 612–616, 1992.
[43] A. Abánades, C. Rubbia, D. Salmieri, “Technological challenges for industrial development of hydrogen production based on methane cracking,” Energy , Vol. 46, pp. 359–363, 2012.
[44] D. Chester Upham, Vishal Agarwal, Alexander Khechfe, Zachary R. Snodgrass, Michael J. Gordon, Horia Metiu, Eric W. McFarland. “Catalytic molten metals for the direct conversion of methane to hydrogen and separable carbon,” Science, Vol. 358, pp. 917–921, 2017.
[45] Richard Sarsfield-Hall, Benedikt Unger, Hydrogen from Natural Gas—The Key to Deep Decarbonisation, Pöyry Management Consulting, 2019.
[46] M. Steinberg, “Fossil fuel decarbonization technology for mitigating global warming,” International Journal of Hydrogen Energy, Vol. 24, pp. 771-777, 1999. [47] A. Kogan, M. Kogan, “The tornado flow configuration—An effective method for screening of a solar reactor window,” Journal of Solar Energy Engineering, Vol. 124, pp. 206–214, 2002.
[48] D. Hirsch, A. Steinfeld, “Solar hydrogen production by thermal decomposition of natural gas using a vortex-flow reactor,” International Journal of Hydrogen Energy, Vol. 29, pp. 47–55, 2004.
[49] D. Hirsch, A. Steinfeld, “Radiative transfer in a solar chemical reactor for the co-production of hydrogen and carbon by thermal decomposition of methane,” Chemical Engineering Science, Vol. 59, pp. 5771–5778, 2004. [50] D. Trommer, D. Hirsch, A. Steinfeld, “Kinetic investigation of the thermal decomposition of CH4 by direct irradiation of a vortex-flow laden with carbon particles,” International Journal of Hydrogen Energy, Vol. 29, pp. 627–633, 2004.
[51] S. Abanades, & G. Flamant, “Hydrogen production from solar thermal dissociation of methane in a high-temperature fluid-wall chemical reactor,” Chemical Engineering and Processing: Process Intensification, Vol. 47, pp. 490–498, 2008.
[52] G. Maag, W. Lipiński, & A. Steinfeld, “Particle–gas reacting flow under concentrated solar irradiation,” International Journal of Heat and Mass Transfer, Vol. 52, pp. 4997–5004, 2009.
[53] H. Chen, Y. Chen, H. T. Hsieh, N. Siegel, “Computational fluid dynamics modeling of gas-particle flow within a solid-particle solar receiver,” Journal of Solar Energy Engineering, Vol. 129, pp. 160–170, 2007.
[54] C. Caliot, S. Abanades, A. Soufiani, & G. Flamant, “Effects of non-gray thermal radiation on the heating of a methane laminar flow at high temperature,” Fuel, Vol. 88, pp. 617–624, 2009.
[55] N. Ozalp, D. JayaKrishna, “CFD analysis on the influence of helical carving in a vortex flow solar reactor,” International Journal of Hydrogen Energy, Vol. 35, pp. 6248–6260, 2010.
[56] N. Ozalp, Anoop K, “A CFD study on the effect of carbon particle seeding for the improvement of solar reactor performance,” Journal of Heat transfer, Vol. 132, pp. 122901, 2010.
[57] J. Costandy, N. E. Ghazal, M. T. Mohamed, A. Menon, V. Shilapuram, N. Ozalp, “Effect of reactor geometry on the temperature distribution of hydrogen producing solar reactors ,“ International Journal of Hydrogen Energy, Vol. 37, pp. 16581–16590, 2012.
[58] M. Msheik, S. Rodat, S. Abanades, “CFD simulation of a hybrid solar/electric reactor for hydrogen and carbon production from methane cracking,” Fluids, Vol. 8, pp. 18-39, 2023.
[59] K. Sopian, Supranto, W. R. W. Daud, B. Yatim, M. Y. Othman, “Thermal performance of the double-pass solar collector with and without porous media,” Renewable Energy, Vol. 18, pp. 557-564, 1999.
[60] Z. Wu, C. Caliot, G. Flamant, Z. Wang, “Numerical simulation of convective heat transfer between air flow and ceramic foams to optimise volumetric solar air receiver performances,” International Journal of Heat and Mass Transfer, Vol. 54, pp. 1527–1537, 2011.
[61] H. I. Villafán-Vidales, S. Abanades, C. Caliot, H. Romero-Paredes, “Heat transfer simulation in a thermochemical solar reactor based on a volumetric porous receiver,” Applied Thermal Engineering, Vol. 31, pp. 3377–3386, 2011.
[62] X. Chen, X. L. Xia, H. Liu, Y. Li, Bo. Liu, “Heat transfer analysis of a volumetric solar receiver by coupling the solar radiation transport and internal heat transfer,” Energy Conversion and Management, Vol. 114, pp. 20–27, 2016.
[63] B. G. Lougou, Y. Shuai, R. Pan, G. Chaffa, H. Tan, “Heat transfer and fluid flow analysis of porous medium solar thermochemical reactor with quartz glass cover,” International Journal of Heat and Mass Transfer, Vol. 127, pp. 61–74, 2018.
[64] G. Barreto, P. Canhoto, M. Collares-Pereira, “Three-dimensional CFD modelling and thermal performance analysis of porous volumetric receivers coupled to solar concentration systems,” Applied Energy, Vol. 252, pp. 602-614, 2019.
[65] FLUENT 12.0 User’s Guide, Fluent Inc., 2009.
[66] D. Ting, Basics of engineering turbulence, Academic Press, 2016.
[67] Y. A. Cengel & J. M. Cimbala, Fluid mechanics-fundamentals and applications, McGraw Hill, 2013.
[68] A. Holmen, O. Olsvik, O. A. Rokstad, “Pyrolysis of natural gas: chemistry and process concepts,” Fuel Processing Technology, Vol. 42, pp. 249–267, 1995.
[69] R. Bertocchi, A. Kribus, J. Karni, “Experimental determined optical properties of a poly dispersed carbon black cloud fora solar particle receiver,” Journal of Solar Energy Engineering, Vol. 126, pp. 833-841, 2004.
[70] C. F. Bohren, D. K. Huffman, Absorption and scattering of light by small particles, Wiley-Vch, 1983.
[71] X. Xia, X. Chen, C. Sun, Z. Li, & B. Liu, “Experiment on the convective heat transfer from airflow to skeleton in open-cell porous foams,” International Journal of Heat and Mass Transfer, Vol. 106, pp. 83–90, 2017.
[72] K. Vafai, Handbook of Porous Media, second ed, Boca Raton, 2005. |