博碩士論文 110323062 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:40 、訪客IP:3.137.162.21
姓名 陳宜楷(Yi-Kai Chen)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 聚光型太陽能輔助高溫甲烷裂解產氫之研究
(Research on Concentrated Solar Power-Assisted High- Temperature Methane Cracking for Hydrogen Production)
相關論文
★ 熱塑性聚胺酯複合材料製備燃料電池 雙極板之研究★ 以穿刺實驗探討鋰電池安全性之研究
★ 金屬多孔材應用於質子交換膜燃料電池內流道的研究★ 不同表面處理之金屬發泡材於質子交換膜燃料電池內的研究
★ PEMFC電極及觸媒層之電熱流傳輸現象探討★ 熱輻射對多孔性介質爐中氫、甲烷燃燒之影響
★ 高溫衝擊流熱傳特性之研究★ 輻射傳遞對磁流體自然對流影響之研究
★ 小型燃料電池流道設計與性能分析★ 雙重溫度與濃度梯度下多孔性介質中磁流體之雙擴散對流現象
★ 氣體擴散層與微孔層對於燃料電池之影響與分析★ 應用於PEMFC陰極氧還原反應之Pt-Cu雙元觸媒製備及特性分析
★ 加熱對肌肉組織之近紅外光光學特性影響之研究★ 超音速高溫衝擊流之暫態分析
★ 質子交換膜燃料電池陰極端之兩相流模擬與研究★ 矽相關半導體材料光學模式之實驗量測儀器發展
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-9-1以後開放)
摘要(中) 甲烷熱裂解是一種 產氫技術,在高溫下將甲烷分解成碳和氫氣,被廣泛應用於許多工業領域,產生的碳為固態碳,因此不會有二氧化碳的排放,但在實際上它的商業化仍面臨一些挑戰,包括高溫條件下的能源需求和反應器耐久性。本研究對聚光型太陽能渦流反應器進行一種新型設計,透過添加多孔材結構,改變反應氣體流動及溫度分布,增進效能。本研究透過計算流體動力學(CFD)進行模擬分析,深入了解反應器內部流場,探討內部流體之熱傳、質傳、化學反應等物理現象。
本研究使用ANSYS Fluent建模,主要分為多孔材結構分析與參數靈敏度模擬分析兩大部分進行討論在多孔材結構模擬分析中發現,不論是圓柱形多孔材或是空心圓柱形多孔材,兩種設計都可以提高 CH4轉化率,當圓柱形多孔材孔隙率為 0.9時,最大CH4轉化率超過主要原因是因為多孔材的應用可以大幅提高部分區域的流體溫度,且多孔材的設計可以增加停留時間,拉長 CH4反應時間,探討停留時間和溫度對轉化率的影響。 再來是對操作參數進行靈敏度分析,找出影響溫度之主要參數取決於太陽輻射輸入功率同時 探討其他實驗參數影響溫度之原因。
摘要(英) Methane pyrolysis is a hydrogen production technology that involves the decomposition of methane into carbon and hydrogen gas at high temperatures. It is widely applied in various industrial sectors. The produced carbon is in solid form, resulting in no emissions of carbon dioxide. However, the commercialization of this technology still faces challenges, including the energy requirements and durability of the reactor under high-temperature conditions.
In this study, a new design of a concentrating solar-powered vortex reactor with the addition of a porous material structure is proposed to enhance the efficiency. By modifying the gas flow and temperature distribution within the reactor, the performance can be improved. Computational fluid dynamics (CFD) simulations are employed to gain insights into the flow field and to study the thermal transfer, mass transfer, and chemical reactions within the reactor.
ANSYS Fluent is used for modeling in this study, which is divided into two main parts: analysis of the porous material structure and simulation of parameter sensitivity. In the analysis of the porous material structure, it is found that both cylindrical and hollow cylindrical porous materials can enhance CH4 conversion rates. When the porosity of the cylindrical porous material is 0.9, the maximum CH4 conversion rate exceeds 98%. This is mainly due to the application of the porous material, which significantly increases the fluid temperature in certain regions and extends the residence time, thereby prolonging the CH4 reaction time. The influence of residence time and temperature on conversion rates is investigated. Sensitivity analysis of operational parameters is also performed to identify the main factors affecting temperature, which are found to be dependent on solar radiation input power. Additionally, the reasons behind the influence of other experimental parameters on temperature are explored.Overall, this study proposes a novel design for a concentrating solar-powered vortex reactor with a porous material structure to enhance the efficiency of methane thermal cracking. Computational fluid dynamics simulations are used to gain insights into the internal flow field and investigate various physical phenomena such as heat transfer, mass transfer, and chemical reactions.
關鍵字(中) ★ 多孔材
★ 甲烷
★ 熱裂解
★ 數值分析
★ 太陽能
★ 氫氣
關鍵字(英)
論文目次 摘要i
Abstract ii
誌謝iv
目錄v
圖目錄viii
表目錄xiii
符號表xiv
第一章 緒論 1
1.1 前言 1
1.2 研 究背景 3
1.2.1 氫能 3
1.2.2 產氫技術 5
1.2.3 天然氣無氧裂解 14
1.3 研究動機與目的 18
第二章 文獻回顧 19
2.1 太陽能甲烷裂解 19
2.2 計算流體力學應用於太陽渦流反應器 21
2.3 多孔材熱傳研究 23
第三章 理論分析 27
3.1 問題描述與假設 27
3.2 紊流模型 28
3.3 統御方程式 30
3.4 甲烷 32
3.4.1 反應速率 33
3.4.2 輻射吸收與散射係數 33
3.5 多孔介質 34
3.5.1 達西定律 34
3.5.2 熱傳模型 34
3.6 輻射模型 35
3.7 數值演算法 36
第四章 模型建立與條件設定 41
4.1 CFD模擬分析 41
4.1.1 幾何模型介紹 41
4.1.2 邊界條件 43
4.1.3 參數設定 44
4.1.4 網格收斂性分析 46
4.2 多孔材 模擬 分析 49
4.2.1 多孔材幾何設計 49
4.2.2 孔隙率 50
4.3 參數靈敏度 模擬 分析 51
第五章 結果與討論 53
5.1 CFD模擬分析 53
5.1.1 文獻驗證 53
5.1.2 太陽能甲烷熱裂解模擬分析 54
5.2 多孔結構模擬分析 60
5.2.1 多孔材形狀設計 60
5.2.2 多孔材 孔隙率 69
5.2.3 停留時間與溫度對轉化率影響分析 87
5.3 參數靈敏度模擬分析 88
第六章 結論與未來建議 91
6.1 結論 91
6.2 未來建議 92
參考文獻 93
參考文獻 [1] https://public.wmo.int/en/greenhouse-gas-bulletin
[2] https://library.wmo.int/doc_num.php?explnum_id=11352
[3] https://www.ipcc.ch/site/assets/uploads/sites/2/2019/06/SR15_Full_Report_High_Res.pdf
[4] https://zerotracker.net/
[5] https://www.iea.org/reports/net-zero-by-2050
[6] https://www.iea.org/reports/hydrogen
[7] https://www.asme.org/topics-resources/content/advancing-battery-technology-for-moderninnovations
[8] B. Shadidi, G. Najafi, T. Yusaf, “A review of hydrogen as a fuel in internal combustion engines,” Energies, Vol. 14, pp. 6209, 2021.
[9] https://h2tools.org/hyarc/calculator-tools/lower-and-higher-heating-values-fuels
[10] 張文昇, 「 國內外氫能發展現況和碳捕集再利用技術介紹 」 ,工業技
術研究院, ,2021
[11] https://www.ndc.gov.tw/Content_List.aspx?n=DEE68AAD8B38BD76
[12] 廖俊智 「 臺灣淨零科技研發政策建議書 」 中央研究院, 2022
[13] https://rsprc.ntu.edu.tw/zh-tw/m01-3/en-trans/1693-0425-new-energy.html
[14] https://www.energy.gov/eere/fuelcells/hydrogen-production-pathways
[15] Fuel Cells and Hydrogen 2 Joint Undertaking, Hydrogen roadmap Europe—A sustainable pathway for the European energy transition, Publications Office, 2019.
[16] B. Coelho, A.C. Oliveira, A. Mendes, “Concentrated solar power for renewable electricity and hydrogen production from water—a review,” Energy & Environmental Science, Vol. 10, pp. 1398-1405, 2010.
[17] P. J. Megía, A. J. Vizcaíno, J. A. Calles, A. Carrero, “Hydrogen production technologies: From fossil fuels toward renewable sources. A mini review,” Energy Fuels, Vol. 35, pp, 16403–16415, 2021.
[18] P. Nikolaidis, A. Poullikkas, “A comparative overview of hydrogen production processes,” Renewable Sustainable Energy Rev, Vol. 67, pp. 597−611, 2017.
[19] R. Ma, B. Xu, X. Zhang, “Catalytic partial oxidation (CPOX) of natural gas and renewable hydrocarbons/oxygenated hydrocarbons—A review,” Catalysis Today, Vol.338, pp. 18−30, 2019.
[20] R. Baruah, M. Dixit, P. Basarkar, D. Parikh, A. Bhargav, “Advances in ethanol autothermal reforming,” Renewable Sustainable Energy Rev, Vol. 51, pp. 1345−1353, 2015.
[21] H.F. Abbas & W.M.A. Wan Daud, “Hydrogen production by methane decomposition: A Review,” International Journal of Hydrogen Energy, Vol. 35, pp. 1160−1190, 2010.
[22] S. S. Seyitoglu, I. Dincer, A. Kilicarslan, “Energy and exergy analyses of hydrogen production by coal gasification,” International Journal of Hydrogen Energy, Vol. 42, pp. 2592−2600, 2017.
[23] T. M. I. Mahlia and S. M. Ashrafur, “An overview of recent developments in biomass pyrolysis technologies,” Energies, Vol. 11, pp. 3115, 2018.
[24] S.E. Hosseini, & M.A. Wahid, “Hydrogen production from renewable and sustainable energy resources: Promising green energy carrier for clean development,” Renewable Sustainable Energy Rev, Vol. 57, pp. 850−866, 2016.
[25] J. Chi, & H. Yu, “Water electrolysis based on renewable energy for hydrogen production,” Chin. J. Catal, Vol. 39, pp. 390−394, 2018.
[26] H. Ju, S. Badwal, S. Giddey, “A comprehensive review of carbon and hydrocarbon assisted water electrolysis for hydrogen production,” Applied Energy, Vol. 231, pp. 502–533, 2018.
[27] S. S. Kumar, & V. Himabindu, “Hydrogen production by PEM water electrolysis—A Review,” Materials Science for Energy Technologies, Vol. 2, pp. 442-454, 2019.
[28] https://www.nedo.go.jp/english/news/AA5en_100422.html
[29] https://www.sunfire.de/en/hydrogen
[30] A. Ajanovic, M. Sayer, R. Haas, “The economics and the environmental benignity of different colors of hydrogen,” International Journal of Hydrogen Energy, Vol. 47, pp. 24136-24154, 2022.
[31] https://www.energy.gov/sites/default/files/2021-09/h2-shot-summit-panel2-methane-pyrolysis.pdf
[32] https://power.mhi.com/special/hydrogen/article_1
[33] G. Maag, G. Zanganeh, A. Steinfeld, “Solar thermal cracking of methane in a particle-flow reactor for the co-production of hydrogen and carbon,” International Journal of Hydrogen Energy, Vol. 34, pp. 7676–7685, 2009.
[34] S. Rodat, S. Abanades, J. L. Sans, G. Flamant, “A pilot-scale solar reactor for the production of hydrogen and carbon black from methane splitting,”International Journal of Hydrogen Energy, Vol. 35, pp. 7748–7758, 2010.
[35] https://report.basf.com/2020/en/managements-report/responsibility-along-the-value-chain/environmental-protection-health-and-safety/carbon-management.html
[36] https://www.basf.com/hk/en/who-we-are/sustainability/weproduce-safely-and-efficiently/energy-and-climate-protection/carbon-management/innovations-fora-climate-friendly-chemical-production.html
[37] https://www.kit.edu/kit/english/pi_2013_12783.php
[38] A. Abanades, E. Ruiz, E. M. Ferruelo, F. Herna´ndez, A. Cabanillas, J. M. Martı´nez-Val, J. A. Rubio, C. Lo´pez, R. Gavela, G. Barrera, C. Rubbia, D. Salmieri, E. Rodilla, D. Gutie´rrez, “Experimental analysis of direct thermal methane cracking,” International Journal of Hydrogen Energy, Vol. 36, pp. 12877–12886, 2011.
[39] J. R. Fincke, R. P. Anderson, T. A. Hyde, B. A. Detering, “Plasma pyrolysis of methane to hydrogen and carbon black,” Industrial & Engineering Chemistry Research, Vol. 4, pp. 1425–1435, 2002.
[40] M. Garduño, M. Pacheco, J. Pacheco, R. Valdivia, A. Santana, B. Lefort, N. Estrada, C. Rivera, “Hydrogen production from methane conversion in a gliding arc,” Journal of Renewable and Sustainable Energy, Vol. 4, pp. 021202, 2012.
[41] https://monolith-corp.com/methane-pyrolysis
[42] E. Sada, H. Kumazawa, M. Kudsy, “Pyrolysis of lignins in molten salt media,” Ind. Eng. Chem. Res, Vol. 31, pp. 612–616, 1992.
[43] A. Abánades, C. Rubbia, D. Salmieri, “Technological challenges for industrial development of hydrogen production based on methane cracking,” Energy , Vol. 46, pp. 359–363, 2012.
[44] D. Chester Upham, Vishal Agarwal, Alexander Khechfe, Zachary R. Snodgrass, Michael J. Gordon, Horia Metiu, Eric W. McFarland. “Catalytic molten metals for the direct conversion of methane to hydrogen and separable carbon,” Science, Vol. 358, pp. 917–921, 2017.
[45] Richard Sarsfield-Hall, Benedikt Unger, Hydrogen from Natural Gas—The Key to Deep Decarbonisation, Pöyry Management Consulting, 2019.
[46] M. Steinberg, “Fossil fuel decarbonization technology for mitigating global warming,” International Journal of Hydrogen Energy, Vol. 24, pp. 771-777, 1999. [47] A. Kogan, M. Kogan, “The tornado flow configuration—An effective method for screening of a solar reactor window,” Journal of Solar Energy Engineering, Vol. 124, pp. 206–214, 2002.
[48] D. Hirsch, A. Steinfeld, “Solar hydrogen production by thermal decomposition of natural gas using a vortex-flow reactor,” International Journal of Hydrogen Energy, Vol. 29, pp. 47–55, 2004.
[49] D. Hirsch, A. Steinfeld, “Radiative transfer in a solar chemical reactor for the co-production of hydrogen and carbon by thermal decomposition of methane,” Chemical Engineering Science, Vol. 59, pp. 5771–5778, 2004. [50] D. Trommer, D. Hirsch, A. Steinfeld, “Kinetic investigation of the thermal decomposition of CH4 by direct irradiation of a vortex-flow laden with carbon particles,” International Journal of Hydrogen Energy, Vol. 29, pp. 627–633, 2004.
[51] S. Abanades, & G. Flamant, “Hydrogen production from solar thermal dissociation of methane in a high-temperature fluid-wall chemical reactor,” Chemical Engineering and Processing: Process Intensification, Vol. 47, pp. 490–498, 2008.
[52] G. Maag, W. Lipiński, & A. Steinfeld, “Particle–gas reacting flow under concentrated solar irradiation,” International Journal of Heat and Mass Transfer, Vol. 52, pp. 4997–5004, 2009.
[53] H. Chen, Y. Chen, H. T. Hsieh, N. Siegel, “Computational fluid dynamics modeling of gas-particle flow within a solid-particle solar receiver,” Journal of Solar Energy Engineering, Vol. 129, pp. 160–170, 2007.
[54] C. Caliot, S. Abanades, A. Soufiani, & G. Flamant, “Effects of non-gray thermal radiation on the heating of a methane laminar flow at high temperature,” Fuel, Vol. 88, pp. 617–624, 2009.
[55] N. Ozalp, D. JayaKrishna, “CFD analysis on the influence of helical carving in a vortex flow solar reactor,” International Journal of Hydrogen Energy, Vol. 35, pp. 6248–6260, 2010.
[56] N. Ozalp, Anoop K, “A CFD study on the effect of carbon particle seeding for the improvement of solar reactor performance,” Journal of Heat transfer, Vol. 132, pp. 122901, 2010.
[57] J. Costandy, N. E. Ghazal, M. T. Mohamed, A. Menon, V. Shilapuram, N. Ozalp, “Effect of reactor geometry on the temperature distribution of hydrogen producing solar reactors ,“ International Journal of Hydrogen Energy, Vol. 37, pp. 16581–16590, 2012.
[58] M. Msheik, S. Rodat, S. Abanades, “CFD simulation of a hybrid solar/electric reactor for hydrogen and carbon production from methane cracking,” Fluids, Vol. 8, pp. 18-39, 2023.
[59] K. Sopian, Supranto, W. R. W. Daud, B. Yatim, M. Y. Othman, “Thermal performance of the double-pass solar collector with and without porous media,” Renewable Energy, Vol. 18, pp. 557-564, 1999.
[60] Z. Wu, C. Caliot, G. Flamant, Z. Wang, “Numerical simulation of convective heat transfer between air flow and ceramic foams to optimise volumetric solar air receiver performances,” International Journal of Heat and Mass Transfer, Vol. 54, pp. 1527–1537, 2011.
[61] H. I. Villafán-Vidales, S. Abanades, C. Caliot, H. Romero-Paredes, “Heat transfer simulation in a thermochemical solar reactor based on a volumetric porous receiver,” Applied Thermal Engineering, Vol. 31, pp. 3377–3386, 2011.
[62] X. Chen, X. L. Xia, H. Liu, Y. Li, Bo. Liu, “Heat transfer analysis of a volumetric solar receiver by coupling the solar radiation transport and internal heat transfer,” Energy Conversion and Management, Vol. 114, pp. 20–27, 2016.
[63] B. G. Lougou, Y. Shuai, R. Pan, G. Chaffa, H. Tan, “Heat transfer and fluid flow analysis of porous medium solar thermochemical reactor with quartz glass cover,” International Journal of Heat and Mass Transfer, Vol. 127, pp. 61–74, 2018.
[64] G. Barreto, P. Canhoto, M. Collares-Pereira, “Three-dimensional CFD modelling and thermal performance analysis of porous volumetric receivers coupled to solar concentration systems,” Applied Energy, Vol. 252, pp. 602-614, 2019.
[65] FLUENT 12.0 User’s Guide, Fluent Inc., 2009.
[66] D. Ting, Basics of engineering turbulence, Academic Press, 2016.
[67] Y. A. Cengel & J. M. Cimbala, Fluid mechanics-fundamentals and applications, McGraw Hill, 2013.
[68] A. Holmen, O. Olsvik, O. A. Rokstad, “Pyrolysis of natural gas: chemistry and process concepts,” Fuel Processing Technology, Vol. 42, pp. 249–267, 1995.
[69] R. Bertocchi, A. Kribus, J. Karni, “Experimental determined optical properties of a poly dispersed carbon black cloud fora solar particle receiver,” Journal of Solar Energy Engineering, Vol. 126, pp. 833-841, 2004.
[70] C. F. Bohren, D. K. Huffman, Absorption and scattering of light by small particles, Wiley-Vch, 1983.
[71] X. Xia, X. Chen, C. Sun, Z. Li, & B. Liu, “Experiment on the convective heat transfer from airflow to skeleton in open-cell porous foams,” International Journal of Heat and Mass Transfer, Vol. 106, pp. 83–90, 2017.
[72] K. Vafai, Handbook of Porous Media, second ed, Boca Raton, 2005.
指導教授 曾重仁(Chung-Jen Tseng) 審核日期 2023-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明