博碩士論文 110323040 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:106 、訪客IP:3.137.173.98
姓名 范萬加(Wan-Jia Fan)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 選擇性雷射熔融 Inconel 718合金之疲勞裂縫成長評估模式研究
相關論文
★ 三次元量床之虛擬儀器教學與訓練系統之設計與開發★ 駕駛模擬器技術開發及其在駕駛行為研究之應用
★ 電源模組老化因子與加速試驗模型之研究★ 應用駕駛模擬器探討語音防撞警示系統 對駕駛行為之影響
★ 遠距健康監測與復健系統之開發與研究★ 藥柱低週疲勞特性與壽限評估模式之研究
★ 非接觸式電子經緯儀電腦模擬教學系統之研究★ 適應性巡航控制系統對於駕駛績效影響之研究
★ 車輛零組件路況模擬系統之開發研究★ 應用殘障駕駛模擬器探討失衡路況對人體重心影響之研究
★ 聚縮醛(POM)機械性質之射出成型條件最佳化研究★ 駕駛模擬儀之開發驗證及應用於駕駛疲勞之研究
★ 即時眼部狀態偵測系統之研究★ 短玻璃纖維強化聚縮醛射出成型條件最佳化與機械性質之研究
★ 手推輪椅虛擬實境系統開發之研究★ 應用駕駛績效預測車輛碰撞風險之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-7-31以後開放)
摘要(中) 本研究針對選擇性雷射熔融製造(SLM)的 Inconel 718工件,探討應力比、超載負荷及裂縫閉合等因素對於疲勞裂縫成長之影響、評估不同疲勞裂縫成長預測模式之適用性及準確性,並且分析破壞機構與疲勞裂縫成長之因果關係。
結果顯示,本研究的SLM Inconel 718工件的破壞韌性可達179 MPa√("m" ),比此合金的鍛造件還高。固定負荷振幅疲勞裂縫成長速率在高應力比的環境下裂縫成長速率較快,且起始裂縫成長應力強度因子範圍(ΔK)較低。超載負荷比大於2.0時,疲勞裂縫成長速率才開始有明顯的延遲現象。當負荷歷程的最大應力強度因子小於30 MPa√m時,利用Wheeler模式進行疲勞裂縫成長修正時,材料參數p 值可採用 1.01。大於30 MPa√("m" )後,p值隋著應力強度因子的提高而增大。在裂縫閉合模式中,裂縫閉合因子會隨著應力比或ΔK上升而提高,關係式為U = 0.014ΔK + 0.579R + 0.377。承受變動負荷振幅歷程時,裂縫成長壽命以裂縫閉合模式(包括Elber、Schijve及本研究)的預測結果較佳,平均誤差約25%。當ΔK低於33 MPa MPa√("m" )時,利用本研究所提出的裂縫閉合因子公式所預測的疲勞裂縫成長曲線最佳。在負荷次序效應的實驗中,若負荷歷程的應力比從大到小排列,由於先出現的高應力會降低後續小應力的疲勞損傷,其疲勞壽命提高。若應力比從小到大排列,則疲勞壽命降低。在疲勞破斷面上,可看出固定振幅負荷、變動振幅負荷及超載負荷所產生疲勞紋間距有明顯差異。SLM工件內的冶金缺陷對於裂縫成長速率及破斷面的影響,亦可明顯觀察到。
摘要(英) This study focuses on the fatigue crack growth properties of Inconel 718 workpieces fabricated by Selective Laser Melting (SLM). It investigates the effects of stress ratio (R), overload load, and crack closure on fatigue crack growth. Additionally, the study evaluates the applicability and accuracy of different fatigue crack growth prediction models. Furthermore, it analyzes the causal relationship between failure mechanisms and fatigue crack growth.
The results demonstrate that the fracture toughness of SLM Inconel 718 workpieces in this study can achieve 179 MPa√("m" ), which is higher than that of the forged Inconel 718 alloy. The fatigue crack growth rate under constant amplitude load increases with stress ratio. The fatigue crack growth rate begins to show a noticeable retardation phenomenon when the overload ratio is greater than 2.0. When the maximum stress intensity factor of the load history is less than 30 MPa√("m" ), the average material coefficient p in Wheeler model equals to 1.01. While maximum stress intensity factor higher than 30 MPa√("m" ), the p value increases with increasing stress intensity factor (ΔK). In the crack closure model, the crack closure factor increases with the rise of stress ratio or ΔK, and the relationship is expressed as U = 0.014ΔK + 0.579R + 0.377. Under variable amplitude loading, the predicted fatigue crack growth life is better by crack closure models (including Elber, Schijve, and the proposed model in this study), with an average error of about 25%. When ΔK is below 33 MPa√("m" ), the fatigue crack growth curve predicted using proposed model shows the best fit with experimental data. With respect to the load sequence effect, the load history with arranging stress ratio in a decreasing order has smaller fatigue damage. The reason for this is that the first high stress will induce compressive residual stress and reduce the fatigue damage of the subsequent low stress. Conversely, arranging the stress ratio in an increasing order leads to a decrease in fatigue life. On the fatigue fracture surfaces, it can be seen that there are obvious differences in the spacing of fatigue striation caused by constant amplitude load, variable amplitude load and overload load. The influence of metallurgical defects within SLM workpieces on crack growth rate and fracture surfaces is also visibly evident. The effect of the metallurgical defects in the SLM workpiece on the crack growth rate and fracture surface can also be clearly observed.
關鍵字(中) ★ 選擇性雷射熔融製造
★ 積層製造
★ Inconel 718
★ 疲勞裂縫成長
★ 壽命評估
關鍵字(英) ★ selective laser melting
★ additive manufacturing
★ Inconel 718
★ fatigue crack growth
★ life evaluation
論文目次 摘要 i
ABSTRACT ii
誌謝 iii
目錄 iv
圖目錄 vii
表目錄 xi
符號說明 xii
第一章 緒論 1
1.1研究背景 1
1.2 鎳基超合金積層製造 4
1.3疲勞設計與分析方法 5
1.4研究目的 8
第二章 文獻回顧 10
2.1金屬積層製造簡介 10
2.2 積層製造鎳基超合金之金相組織 11
2.3積層製造鎳基超合金之抗拉強度及韌性性質 12
2.4積層製造鎳基超合金之疲勞性質 12
第三章、研究方法 15
3.1 研究流程 15
3.2 Inconel 718合金 15
3.3 選擇性雷射熔融試片製作 17
3.4 熱處理條件 18
3.5 機械性質測試 18
3.5.1破壞韌性( JIC )實驗 18
3.5.2 固定負荷振幅疲勞裂縫成長實驗 21
3.5.3 超載負荷振幅疲勞裂縫成長實驗 22
3.5.4 疲勞裂縫閉合量測實驗 24
3.5.5 變動負荷振幅疲勞裂縫成長實驗 26
3.6疲勞裂縫成長分析 30
3.6.1 疲勞裂縫成長速率方程式 30
3.6.2 疲勞裂縫成長修正模式 32
3.7破斷面觀察 39
第四章 結果與討論 40
4.1 金相組織及拉伸性質 40
4.1.1 金相組織觀察 40
4.1.2 拉伸性質 42
4.2破壞韌性 45
4.2.1製造方式之影響 45
4.2.2試片方位 (Specimen Orientation)之影響 47
4.3固定負荷振幅疲勞裂縫成長 48
4.3.1 應力比值之影響 48
4.3.2 製造方式之影響 52
4.4 超載負荷對疲勞裂縫成長之影響 55
4.4.1 超載負荷後之疲勞裂縫成長曲線 55
4.4.2 超載負荷效應之預測模型 58
4.5 裂縫閉合效應 61
4.5.1 裂縫閉合因子 61
4.5.2裂縫閉合模型之有效應力強度因子 64
4.6 變動負荷振幅之下裂縫成長 66
4.6.1 變動負荷振幅下之疲勞裂縫成長 66
4.6.2疲勞裂縫成長評估分析 67
4.6.3疲勞裂縫成長之負荷次序效應 73
4.7破斷面觀察 76
4.7.1疲勞預裂區 76
4.7.2等振幅負荷裂縫成長 77
4.7.3變動負荷振幅裂縫成長 83
4.7.4超載負荷之影響 85
4.7.5缺陷對裂縫成長之影響 95
第五章、結論 100
第六章、未來研究方向 102
參考文獻 103
參考文獻 [1] R. Noorani, Rapid prototyping: principles and applications. John Wiley & Sons, ISBN: 0471730017, 2006.
[2] J. P. Kruth, "Material incress manufacturing by rapid prototyping techniques," CIRP Annals, Vol. 40, No. 2, pp. 603-614, 1991.
[3] K. V. Wong, A. Hernandez, A Review of Additive Manufacturing, ISRN Mechanical Engineering, Vol. 2012, pp.1-10, 2012.
[4] 賴維祥編譯,"3D 列印導論",新北市,台灣,全華圖書,ISBN:9789864634002,2017。
[5] Y. Zhou, X. Zhou, Q. Teng, Q. S. Wei, and Y. S. Shi, "Investigation of the scan strategy and property of 316L stainless steel-inconel 718 functionally graded materials fabricated by selective laser sintering," 2015 International Solid Freeform Fabrication Symposium, August 10-12, Austin, TX, 2001.
[6] P. L. Blackwell, "The mechanical and microstructural characteristics of laser-deposited IN718," Journal of Materials Processing Technology, Vol. 170, No. 1-2, pp. 240-246, 2005.
[7] Analysis of Additive Manufacturing materials from Wohlers and Senvol Database: https://www.pim-international.com/analysis-of-additive-manufacturing-materials-from-wohlers-and-senvol-database/
[8] DMD MORI: https://en.dmgmori.com
[9] J. P. Kruth, G. Levy, F. Klocke, and T. H. C. Childs, "Consolidation phenomena in laser and powder-bed based layered manufacturing," CIRP Annals, Vol. 56, No. 2, pp. 730-759, 2007.
[10] E. Brandl, U. Heckenberger, V. Holzinger, and D. Buchbinder, "Additive manufactured AlSi10Mg samples using Selective Laser Melting (SLM): Microstructure, high cycle fatigue, and fracture behavior," Materials & Design, Vol. 34, pp. 159-169, 2012.
[11] S. Nishida, "Failure analysis in engineering applications," Tokyo, Japan, Elsevier, ISBN: 075061065, 2014.
[12] P. Paris and F. Erdogan, "A critical analysis of crack propagation laws," Journal of Basic Engineering, Vol. 85, pp. 528-533, 1963.

[13] R. G. Forman, V. Kearney, R. Engle, "Numerical analysis of crack propagation in cyclic-loaded structures," Journal of basic Engineering Vol. 89, pp. 459-463, 1967.
[14] O. E. Wheeler, "Spectrum loading and crack growth," ASME Journal of Basic Engineering, Vol. 94, pp. 181-186, 1972.
[15] J. Willenborg, R.M Engle, H. Wood, " A crack growth retardation model using an effective stress intensity concept," Technical Report TFR 71-701 North American Rockwell, 1971.
[16] W. Elber, "Fatigue crack propagation," Ph.D. thesis; University New South Wales, Australia, 1968.
[17] I. Austen, E. Walker, "Corrosion fatigue crack growth rate information for offshore life prediction," Steel in Marine Structures–SIMS, Vol. 87, pp. 859–870, 1987.
[18] 黃俊仁,鎳基超合金Inconel 718選擇性雷射熔融製造之製程最佳化及疲勞性質研究,科技部報告,計畫編號:MOST 108-2221-E-008-098。(2021)
[19] 黃俊仁,選擇性雷射熔融製造Inconel 718鎳基超合金之疲勞裂縫成長性質及疲勞損傷評估模式研究,科技部報告,計畫編號:MOST109-2221-E-008-016。(2022)
[20] R. Ashima, A. Haleem, S. Bahl, M. Javaid, S. K. Mahla, and S. Singh, "Automation and manufacturing of smart materials in additive manufacturing technologies using internet of things towards the adoption of Industry 4.0," Materials Today: Proceedings, Vol. 45, pp. 5081-5088, 2021.
[21] I. Campbell, O. Diegel, R Huff, and J. Kowen. "Wohlers report 2020: 3D printing and additive manufacturing state of the industry," Wohlers Associates, 2020.
[22] A. J. Pinkerton and L. Li, "Modelling the geometry of a moving laser melt pool and deposition track via energy and mass balances," Journal of Physics D: Applied Physics, Vol. 37, No. 14, pp. 1885, 2004.
[23] S. C. Altıparmak and B. Xiao, "A market assessment of additive manufacturing potential for the aerospace industry," Journal of Manufacturing Processes, Vol. 68, pp. 728-738, 2021.
[24] C. F. Tey, X. Tan, S. L. Sing, W.Y. Yeong, "Additive manufacturing of multiple materials by selective laser melting: Ti-alloy to stainless steel via a Cu-alloy interlayer," Additive Manufacturing, Vol. 31, Article No. 100970, 2020.

[25] A. K. Singla et al., "Selective laser melting of Ti6Al4V alloy: Process parameters, defects and post-treatments," Journal of Manufacturing Processes, Vol. 64, pp. 161-187, 2021.
[26] Q. Teng, S. Li, Q. Wei, and Y. Shi, "Investigation on the influence of heat treatment on Inconel 718 fabricated by selective laser melting: Microstructure and high temperature tensile property," Journal of Manufacturing Processes, Vol. 61, pp. 35-45, 2021.
[27] B. Blakey-Milner et al., "Metal additive manufacturing in aerospace: A review," Materials & Design, Vol. 209, Article No. 110008, 2021.
[28] R. M. Mahamood, M. Shukla, and S. Pityana, "Laser additive manufacturing in surface modification of metals," in Surface Engineering Techniques and Applications: Research Advancements, L. Santo and J. P. Davim, Eds. Hershey, PA, USA: IGI Global, pp. 222-248, 2014.
[29] H. Jia, H. Sun, H. Wang, Y. Wu, and H. Wang, "Scanning strategy in selective laser melting (SLM): A review," The International Journal of Advanced Manufacturing Technology, Vol. 113, pp. 2413-2435, 2021.
[30] W. Zhang, M. Tong, and N. M. Harrison, "Scanning strategies effect on temperature, residual stress and deformation by multi-laser beam powder bed fusion manufacturing," Additive Manufacturing, Vol. 36, Article No. 101507, 2020.
[31] Special Metals Corporation: https://www.specialmetals.com/
[32] "Inconel alloy 718," Special Metals Corporation.
[33] X. Huang, M. C. Chaturvedi, and N. L. Richards, "Effect of homogenization heat treatment on the microstructure and heat-affected zone microfissuring in welded cast alloy 718," Metallurgical and Materials Transactions A, Vol. 27, pp. 785-790, 1996.
[34] C. Slama, C. Servant, and G. Cizeron, "Aging of the Inconel 718 alloy between 500 and 750°C," Journal of Materials Research, Vol. 12, No. 9, pp. 2298-2316, 1997.
[35] D. Deng, Additively Manufactured Inconel 718: Microstructures and Mechanical Properties. Linköping University Electronic Press, 2018.
[36] F. Liu, X. Lin, G. Yang, M. Song, J. Chen, and W. Huang, "Microstructure and residual stress of laser rapid formed Inconel 718 nickel-base superalloy," Optics & Laser Technology, Vol. 43, No. 1, pp. 208-213, 2011.
[37] K. N. Amato et al., "Microstructures and mechanical behavior of Inconel 718 fabricated by selective laser melting," Acta Materialia, Vol. 60, No. 5, pp. 2229-2239, 2012.

[38] H. Gong, K. Rafi, H. Gu, T. Starr, and B. Stucker, "Analysis of defect generation in Ti–6Al–4V parts made using powder bed fusion additive manufacturing processes," Additive Manufacturing, Vol. 1, pp. 87-98, 2014.
[39] Y. Lu, S. Wu, Y. Gan, T. Huang, C. Yang, L. Junjie, J. Lin, "Study on the microstructure, mechanical property and residual stress of SLM Inconel-718 alloy manufactured by differing island scanning strategy," Optics & Laser Technology, Vol. 75, pp. 197-206, 2015.
[40] D. Zhang, W. Niu, X. Cao, and Z. Liu, "Effect of standard heat treatment on the microstructure and mechanical properties of selective laser melting manufactured Inconel 718 superalloy," Materials Science and Engineering: A, Vol. 644, pp. 32-40, 2015.
[41] X. Yu et al., "Influence of post-heat-treatment on the microstructure and fracture toughness properties of Inconel 718 fabricated with laser directed energy deposition additive manufacturing," Materials Science and Engineering: A, Vol. 798, 2020.
[42] A. S. Johnson, S. Shao, N. Shamsaei, S. M. Thompson, and L. Bian, "Microstructure, fatigue behavior, and failure mechanisms of direct laser-deposited Inconel 718," Journal of The Minerals, Vol. 69, pp. 597-603, 2017.
[43] R. Konečná, G. Nicoletto, L. Kunz, and A. Bača, "Microstructure and directional fatigue behavior of Inconel 718 produced by selective laser melting," Procedia Structural Integrity, Vol. 2, pp. 2381-2388, 2016.
[44] D. B. Witkin, D. N. Patel, and G. E. Bean, "Notched fatigue testing of Inconel 718 prepared by selective laser melting," Fatigue & Fracture of Engineering Materials & Structures, Vol. 42, Iss.1, pp. 166-177, 2019.
[45] K. S. Sidhu, J. Shi, V. K. Vasudevan, S. R. Mannava, "Residual stress enhancement in 3d printed Inconel 718 superalloy treated by ultrasonic nano-crystal surface modification," Proceedings of the ASME 2017, 12th International Manufacturing Science and Engineering Conference, June 04–08, Los Angeles, CA, 2017.
[46] P. F. Kelley, A. Saigal, and A. Carter, "Fatigue behaviour of direct metal laser sintered Inconel 718," International Journal of Precision Technology, Vol. 6, No. 3-4, pp. 277-288, 2016.
[47] P. A. Kobryn, E. H. Moore, and S. L. Semiatin, "The effect of laser power and traverse speed on microstructure, porosity, and build height in laser-deposited Ti-6Al-4V," Scripta Materialia, Vol. 43, No. 4, pp. 299-305, 2000.

[48] P. A. Kobryn and S. L. Semiatin, "Mechanical properties of laser-deposited Ti-6Al-4V," 2001 International Solid Freeform Fabrication Symposium, August 6-8, Austin, TX, 2001.
[49] Y. Xue, A. Pascu, M. F. Horstemeyer, L. Wang, and pp. T. Wang, "Microporosity effects on cyclic plasticity and fatigue of LENS™-processed steel," Acta Materialia, Vol. 58, No. 11, pp. 4029-4038, 2010.
[50] D. Gu et al., "Densification behavior, microstructure evolution, and wear performance of selective laser melting processed commercially pure titanium," Acta materialia, Vol. 60, No. 9, pp. 3849-3860, 2012.
[51] S. Gribbin, J. Bicknell, L. Jorgensen, I. Tsukrov, and M. Knezevic, "Low cycle fatigue behavior of direct metal laser sintered Inconel alloy 718," International Journal of Fatigue, Vol. 93, pp. 156-167, 2016.
[52] M. E. Aydinöz et al., "On the microstructural and mechanical properties of post-treated additively manufactured Inconel 718 superalloy under quasi-static and cyclic loading," Materials Science and Engineering: A, Vol. 669, pp. 246-258, 2016.
[53] S. Sui, J. Chen, E. Fan, H. Yang, X. Lin, and W. Huang, "The influence of Laves phases on the high-cycle fatigue behavior of laser additive manufactured Inconel 718," Materials Science and Engineering: A, Vol. 695, pp. 6-13, 2017.
[54] R. Konečná, L. Kunz, G. Nicoletto, and A. Bača, "Long fatigue crack growth in Inconel 718 produced by selective laser melting," International Journal of Fatigue, Vol. 92, pp. 499-506, 2016.
[55] T. Brynk, Z. Pakiela, K. Ludwichowska, B. Romelczyk, R. M. Molak, M. Plocinska, J Kurzac, T. Kurzynowski, E. Chlebus, "Fatigue crack growth rate and tensile strength of Re modified Inconel 718 produced by means of selective laser melting," Materials Science and Engineering: A, Vol. 698, pp. 289-301, 2017.
[56] H. E. Ostergaard, J. D. Pribe, M. T. Hasib, A. M. Paradowska, T. Siegmund, and J. J. Kruzic, "Near-threshold fatigue crack growth in laser powder bed fusion produced alloy 718," International Journal of Fatigue, Vol. 163, Article No. 107041, 2022.
[57] "Standard Specification for Precipitation-Hardening and Cold Worked Nickel Alloy Bars, Forgings, and Forging Stock for Moderate or High Temperature Service," ASTM B637-18.
[58] M. Saufi, "Effect of Specimen Size on Fracture Toughness of Mild Steel," : http://umpir.ump.edu.my/id/eprint/4935/1/cd7299_87.pdf

[59] "Standard test method for measurement of fracture toughness," ASTM E1820-23a.
[60] "Standard Test Method for Measurement of Fatigue Crack Growth Rates," ASTM E647-15.
[61] M. Clavel and A. Pineau, "Fatigue behaviour of two nickel-base alloys I: Experimental results on low cycle fatigue, fatigue crack propagation and substructures," Materials Science and Engineering, Vol. 55, No. 2, pp. 157-171, 1982.
[62] S. Jiang, W. Zhang, X. Li, and F. Sun, "An analytical model for fatigue crack propagation prediction with overload effect," Mathematical Problems in Engineering, Vol. 2014, Article No. 713678 2014.
[63] J.A. Ballantine, J.J. Conner, J.L. Handrock, "Fundamentals of Metal Fatigue Analysis," Prentice-Hall, Inc., 1990.
[64] D. Socie, "Variable amplitude fatigue life estimation models," SAE Technical Paper, Vol. 91, pp. 2351-2369, 1982.
[65] S. M. Beden, S. Abdullah, and A. K. Ariffin, "Towards standardising the fatigue crack simulation studies on metallic materials," The International Conference on Computational & Experimental Engineering and Sciences, Apr 9-13, Phuket, Thailand, Vol.10, No.2, pp.41-50 2009.
[66] Fatigue Crack Growth. Available: https://mechanicalc.com/reference/fatigue-crack-growth#references
[67] W. J. Mills and R. W. Hertzberg, "The effect of sheet thickness on fatigue crack retardation in 2024-T3 aluminum alloy," Engineering Fracture Mechanics, Vol. 7, No. 4, pp. 705-711, 1975.
[68] Crack Closure Eeffect: https://ppt.cc/fjMVPx
[69] W. Elber, "The significance of fatigue crack closure," Damage Tolerance in Aircraft Structures, ASTM STP 486, American Society for Testing and Materials. Philadelphia, 1971.
[70] J. Schijve, "Fatigue of structures and materials," NY, USA, Springer, ISBN: 1402068077, 2009.
[71] ASM Handbook Committee, "ASM Handbook: Fatigue and fracture," ASM International, 1990.

[72] V. A. Popovich, E. V. Borisov, A. A. Popovich, V. S. Sufiiarov, D. V. Masaylo, and L. Alzina, "Impact of heat treatment on mechanical behaviour of Inconel 718 processed with tailored microstructure by selective laser melting," Materials & Design, Vol. 131, pp. 12-22, 2017.
[73] X. Mei, X. Wang, Y. Peng, H. Gu, G. Zhong, and S. Yang, "Interfacial characterization and mechanical properties of 316L stainless steel/inconel 718 manufactured by selective laser melting," Materials Science and Engineering: A, Vol. 758, pp. 185-191, 2019.
[74] B. Baufeld, "Mechanical properties of INCONEL 718 parts manufactured by shaped metal deposition (SMD)," Journal of Materials Engineering and Performance, Vol. 21, pp. 1416-1421, 2012.
[75] J.J. Schirra, "Effect of heat treatment variations on the hardness and mechanical properties of wrought inconel 718", Superalloy 718, the Minerals, Metals and Materials Society, Pittsburgh, PA, USA, 1997.
[76] M. Seifi, A. A. Salem, D. pp. Satko, R. Grylls, and J. J. Lewandowski, "Effects of post-processing on microstructure and mechanical properties of SLM-processed IN-718," Proceedings of the 9th International Symposium on Superalloy 718 & Derivatives: Energy, Aerospace, and Industrial Applications, pp. 515-526, Cham, Switzerland, Springer, 2018, ISBN: 978-3-319-89479-9
[77] J. J. Lewandowski and M. Seifi, "Metal additive manufacturing: a review of mechanical properties," Annual Review of Materials Research, Vol. 46, pp. 151-186, 2016.
[78] C. Mercer, A. B. O. Soboyejo, and W. O. Soboyejo, "Micromechanisms of fatigue crack growth in a forged Inconel 718 nickel-based superalloy," Materials Science and Engineering: A, Vol. 270, No. 2, pp. 308-322, 1999.
[79] C. Mercer, A. B. O. Soboyejo, and W. O. Soboyejo, "Micromechanisms of fatigue crack growth in a single crystal Inconel 718 nickel-based superalloy," Acta Materialia, Vol. 47, No. 9, pp. 2727-2740, 1999.
[80] J. L. Yuen, pp. Roy, and W. D. Nix, "Effect of oxidation kinetics on the near threshold fatigue crack growth behavior of a nickel base superalloy," Metallurgical Transactions A, Vol. 15, pp. 1769-1775, 1984.
[81] J. Schijve, "Four lectures on fatigue crack growth," Delft University of Technology, Department of Aerospace Engineering, Report LR-254, 1977.

[82] Y. C. Lu, F. P. Yang, and T. Chen, "Effect of single overload on fatigue crack growth in QSTE340TM steel and retardation model modification," Engineering Fracture Mechanics, Vol. 212, pp. 81-94, 2019.
[83] A. Albedah, B. B. Bouiadjra, S. Mohammed, and F. Benyahia, "Fractographic analysis of the overload effect on fatigue crack growth in 2024-T3 and 7075-T6 Al alloys," International Journal of Minerals, Metallurgy and Materials, Vol. 27, pp. 83-90, 2020.
[84] Z. Luo, Z. Wang, Z. Yan, J. Chen, S. Li, and M. Liu, "Formation of defects in selective laser melted Inconel 718 and its correlation with mechanical properties through dimensionless numbers," Science China Physics, Mechanics & Astronomy, Vol. 65, Article No. 254611, 2022.
[85] D. S. Watring, J. T. Benzing, N. Hrabe, and A. D. Spear, "Effects of laser-energy density and build orientation on the structure–property relationships in as-built Inconel 718 manufactured by laser powder bed fusion," Additive Manufacturing, Vol. 36, Article No. 101425, 2020.
[86] J. E. Ramirez, B. Han, and S. Liu, "Effect of welding variables and solidification substructure on weld metal porosity," Metallurgical and Materials Transactions A, Vol. 25, pp. 2285-2294, 1994.
[87] R. Muro-Barrios, Y. Cui, J. Lambros, and H. B. Chew, "Dual-scale porosity effects on crack growth in additively manufactured metals: 3D ductile fracture models," Journal of the Mechanics and Physics of Solids, Vol. 159, Article No. 104727, 2022.
[88] R. VanSickle, D. Foehring, H. B. Chew, and J. Lambros, "Microstructure effects on fatigue crack growth in additively manufactured Ti–6Al–4V," Materials Science and Engineering: A, Vol. 795, Article No. 139993, 2020.
指導教授 黃俊仁(Jiun-Ren Hwang) 審核日期 2023-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明