參考文獻 |
1. Lukasik, S., “Why the Arpanet Was Built,” IEEE Annals of the History of Computing, vol. 33, no. 3, pp. 4-21, 2011.
2. Forouzan, B. A., Data Communications and Networking. McGraw Hill, 2012.
3. Winzer, P. J., Neilson, D. T., and Chraplyvy, A. R.,“Fiber-optic transmission and networking: the previous 20 and the next 20 years.” Optics express, vol. 26, no.18, pp. 24190-24239, 2018.
4. Lehpamer, H., Microwave Transmission Networks. McGraw Hill, 2010.
5. Yuxuan, G., Yue, L., and Penghui, S.,“Research Status of Typical Satellite Communication Systems.” 2021 19th International Conference on Optical Communications and Networks (ICOCN). IEEE, 2021.
6. SFF Committee, “ GBIC (Gigabit Interface Converter),” 1999.
7. SFF Committee, “ SFP (Small Formfactor Pluggable) Transceiver,” 2001.
8. Abe, S., Tobita, K., Shinozaki, T., Arai, K., Takeshita, K., Tanaka, K., & Isono, Y., “Short wave SFF small form factor transceivers,” 2001 Proceedings. 51st Electronic Components and Technology Conference (Cat. No.01CH37220), IEEE, pp. 30-34, 2001.
9. Peng, Z., Guiming, H., and Liwu, Z., “1000Base-T SFP.” Proceedings of the 5th Electronics Packaging Technology Conference (EPTC 2003). IEEE, 2003.
10. SFF Committee, “ Specifications for Enhanced Small Form Factor Pluggable Module SFP+,” 2006.
11. SFF Committee, “ Quad Small Form-factor Pluggable (QSFP) Transceiver Specification,” 2006.
12. Romero, A., and Kipp, S., “Cooling 8× 100GbE switch blades with high power optical modules.” 13th InterSociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems. IEEE, 2012.
13. Hsu, M. C., and Lin, H. W., “Heat dissipation improvement design for QSFP connector.” 2015 10th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT). IEEE, 2015.
14. Mack, B., and Graham, T., “Thermal specifications for pluggable optics modules.” 2016 32nd Thermal Measurement, Modeling & Management Symposium (SEMI-THERM). IEEE, 2016.
15. Chesterfield, R., Goli, P., Querelle-Halverson, S., Sullivan, E., Hoyt, Z., Olson, K., Bre, M., Aranyosi, A., Doan, S., Le, V., “High-Durability Coating for Improved Thermal Management of Pluggable Optical Modules.” Optical Fiber Communication Conference. Optica Publishing Group, 2020.
16. Dogruoz, B., Giobbio, G., Nowell, M., Nering, R., Tsai, A., Aranyosi, A., Maki, J., Ali, H., Kapuscinski, C., Shah, V., Sommers, S., Daou, F., Daou, H., Best, B., and Cheng, N., “ Optimizing QSFP-DD Systems to Achieve at Least 25 Watt Thermal Port Performance.” QSFP-DD MSA, 2021.
17. Raghupathy, A. P., Boundary-condition-independent reduced-order modeling for thermal analysis of complex electronics packages. University of Cincinnati, 2009.
18. JEDEC Standard JESD15-1, “Compact Thermal Model Overview.” 2008.
19. Bar-Cohen, A., Elperin, T. and Eliasi, R. “θjc Characterisation of Chip Packages—Justification, Limitations, and Future.” CHMT Trans, IEEE, vol. 12, pp. 724-731, 1989.
20. Bar-Cohen, A., and Krueger, W. B., ”Determination of the weighted-average case temperature for a single chip package.” Cooling of Electronic systems, pp. 789-809, 1994.
21. JEDEC Standard JESD15-3, “Two-Resistor Compact Thermal Model Guideline.” 2008.
22. Shidore, S., and Lee, T. Y. T., “A comparative study of the performance of compact model topologies and their implementation in CFD for a plastic ball grid array package.” J. Electron. Packag. vol. 123, no. 13, pp. 232-237, 2001.
23. JEDEC Standard JESD15-4, “DELPHI Compact Thermal Model Guideline.” 2008.
24. Lasance, C. J. M., Vinke, H, and Rosten, H., “Thermal Characterization of Electronic Devices with Boundary Condition Independent Compact Models,” IEEE Transactions on Components, Packaging and Manufacturing Technology – Part A, vol. 18, no.4, 1995.
25. Lasance, C. J. M., “Two benchmarks to facilitate the study of compact thermal modeling phenomena.” IEEE Transactions on Components and Packaging Technologies. vol. 24, no.4, pp. 559-565, 2001.
26. Lasance, C. J. M., Den Hertog, D. and Stehouwer, P., “Creation and evaluation of compact models for thermal characterisation using dedicated optimisation software.” Fifteenth Annual IEEE Semiconductor Thermal Measurement and Management Symposium (Cat. No. 99CH36306). IEEE, 1999.
27. Aranyosi, A., Ortega, A., Evans, J., Tarter, T., Pursel, J., and Radhakrishnan, J., “Development of compact thermal models for advanced electronic packaging: Methodology and experimental validation for a single-chip CPGA package.” ITHERM 2000. The Seventh Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (Cat. No. 00CH37069). vol. 1, IEEE, 2000.
28. Aranyosi, A., Ortega, A., Griffin, R. A., West, S., and Edwards, D. R., “Compact thermal models of packages used in conduction cooled applications.” IEEE Transactions on Components and Packaging Technologies. vol. 23, no.3, pp. 470-480, 2000.
29. Assouad, Y., Gatfosse, F., and Gautier, T., “Transient Characterization and Modeling of Ceramic Packages,” Proc. 2nd THERMINIC Int. Workshop Thermal Investigations IC’s Microstruc. 1995.
30. Chen, H., Lu, Y., Gao, Y., Zhang, H., and Chen, Z., “The performance of compact thermal models for LED package.” Thermochimica Acta, vol. 488, no. 1-2, pp. 33-38, 2009.
31. Bar-Cohen, A., Encyclopedia Of Thermal Packaging, Set 2: Thermal Packaging Tools (A 4-volume Set). World Scientific, 2014.
32. Lasance, C. J. M., “The influence of various common assumptions on the boundary-condition-independence of compact thermal models.” IEEE Transactions on Components and Packaging Technologies, vol. 27, no. 3, pp. 523-529, 2004.
33. Murshed, S. M. S., “Introductory chapter: electronics cooling—An overview.” Electronics Cooling, pp.1-11, 2016.
34. Nocedal, J. and Wright, S. J., Numerical Optimization, Second Edition, Springer Verlag, 2006.
35. Schittkowski, K., “NLQPL: A FORTRAN-Subroutine Solving Constrained Nonlinear Programming Problems,” Annals of Operations Research, vol. 5, pp 485-500, 1985.
36. 陳彥瑋:〈運用田口法於光纖收發器之散熱分析〉。碩士論文,國立中央大學,民國111年。 |