參考文獻 |
REFERENCES
[1] WMO and GWP, “Management of Flash Floods,” Integr. Flood Manag. Tools Ser. Manag. flash flood, no. 16, p. 44, 2012.
[2] M. Sˇpitalar, J. J. Gourley, C. Lutoff, P. E. Kirstetter, M. Brilly, and N. Carr, “Analysis of flash flood parameters and human impacts in the US from 2006 to 2012,” J. Hydrol., vol. 519, no. PA, pp. 863–870, 2014, doi: 10.1016/j.jhydrol.2014.07.004.
[3] C. G. Collier, “Flash flood forecasting: What are the limits of predictability?,” Q. J. R. Meteorol. Soc., vol. 133, pp. 3–23, 2007, doi: 10.1002/qj.29.
[4] I. Braud, B. Vincendon, S. Anquetin, V. Ducrocq, and J. D. Creutin, “The challenges of flash flood forecasting,” Mobil. Face Extrem. Hydrometeorol. Events 1 Defin. Relev. Scales Anal., pp. 63–88, 2018, doi: 10.1016/B978-1-78548-289-2.50003-3.
[5] WB, “The World Bank in Vietnam,” 2023. https://www.worldbank.org/en/country/vietnam/overview. [accessed 16 June,2023].
[6] R. Pizarro et al., “Inland water bodies in Chile can locally increase rainfall intensity,” J. Hydrol., vol. 481, pp. 56–63, 2013, doi: 10.1016/j.jhydrol.2012.12.012.
[7] V. B. Thao and N. T. T. Huong, “Đánh giá đặc trưng hình thái lưu vực suối đến sự hình thành lũ bùn đá khu vực miền núi phía Bắc,” Tạp chí khoa học và công nghệ thủy lợi, vol. 70, no. 1, pp. 1–16, 2022.
[8] K. Chapi et al., “A novel hybrid artificial intelligence approach for flood susceptibility assessment,” Environ. Model. Softw., vol. 95, pp. 229–245, 2017, doi: 10.1016/j.envsoft.2017.06.012.
[9] P. D. Dao and Y. A. Liou, “Object-based flood mapping and affected rice field estimation with landsat 8 OLI and MODIS data,” Remote Sens., vol. 7, no. 5, pp. 5077–5097, 2015, doi: 10.3390/rs70505077.
[10] L. C. Wang, D. V. Hoang, and Y. A. Liou, “Quantifying the Impacts of the 2020 Flood on Crop Production and Food Security in the Middle Reaches of the Yangtze River, China,” Remote Sens., vol. 14, no. 13, 2022, doi: 10.3390/rs14133140.
[11] D. T. Bui, P. Tsangaratos, P. T. T. Ngo, T. D. Pham, and B. T. Pham, “Flash flood susceptibility modeling using an optimized fuzzy rule based feature selection technique and tree based ensemble methods,” Sci. Total Environ., vol. 668, pp. 1038–1054, 2019, doi: 10.1016/j.scitotenv.2019.02.422.
[12] T. Nachappa, P. S. Tavakkoli, K. Gholamnia, O. Ghorbanzadeh, O. Rahmati, and T. Blaschke, “Flood susceptibility mapping with machine learning, multi-criteria decision analysis and ensemble using Dempster Shafer Theory,” J. Hydrol., vol. 590, p. 125275, 2020, doi: 10.1016/j.jhydrol.2020.125275.
[13] K. A. Nguyen, Y. A. Liou, and J. P. Terry, “Vulnerability of Vietnam to typhoons: A spatial assessment based on hazards, exposure and adaptive capacity,” Sci. Total Environ., vol. 682, pp. 31–46, 2019, doi: 10.1016/j.scitotenv.2019.04.069.
[14] R. Costache et al., “New neural fuzzy-based machine learning ensemble for enhancing the prediction accuracy of flood susceptibility mapping,” Hydrol. Sci. J., vol. 65, no. 16, pp. 2816–2837, 2020, doi: 10.1080/02626667.2020.1842412.
[15] C. Cao, P. Xu, Y. Wang, J. Chen, L. Zheng, and C. Niu, “Flash flood hazard susceptibility mapping using frequency ratio and statistical index methods in coalmine subsidence areas,” Sustain., vol. 8, no. 9, 2016, doi: 10.3390/su8090948.
[16] P. Roy, S. Chandra Pal, R. Chakrabortty, I. Chowdhuri, S. Malik, and B. Das, “Threats of climate and land use change on future flood susceptibility,” J. Clean. Prod., vol. 272, p. 122757, 2020, doi: 10.1016/j.jclepro.2020.122757.
[17] R. Madhuri, S. Sistla, and K. Srinivasa Raju, “Application of machine learning algorithms for flood susceptibility assessment and risk management,” J. Water Clim. Chang., vol. 12, no. 6, pp. 2608–2623, 2021, doi: 10.2166/wcc.2021.051.
[18] M. S. Tehrany, L. Kumar, and F. Shabani, “A novel GIS-based ensemble technique for flood susceptibility mapping using evidential belief function and support vector machine: Brisbane, Australia,” PeerJ, vol. 2019, no. 10, 2019, doi: 10.7717/peerj.7653.
[19] W. Chen et al., “Modeling flood susceptibility using data-driven approaches of naïve Bayes tree, alternating decision tree, and random forest methods,” Sci. Total Environ., vol. 701, p. 134979, 2020, doi: 10.1016/j.scitotenv.2019.134979.
[20] A. Arora et al., “Optimization of state-of-the-art fuzzy-metaheuristic ANFIS-based machine learning models for flood susceptibility prediction mapping in the Middle Ganga Plain, India,” Sci. Total Environ., vol. 750, p. 141565, 2021, doi: 10.1016/j.scitotenv.2020.141565.
[21] H. D. Nguyen, “Spatial modeling of flood hazard using machine learning and GIS in Ha Tinh province, Vietnam,” J. Water Clim. Chang., vol. 14, no. 1, pp. 200–222, 2023, doi: 10.2166/wcc.2022.257.
[22] N. T. T. Linh et al., “Flood susceptibility modeling based on new hybrid intelligence model: Optimization of XGboost model using GA metaheuristic algorithm,” Adv. Sp. Res., vol. 69, no. 9, pp. 3301–3318, 2022, doi: 10.1016/j.asr.2022.02.027.
[23] R. Abedi, R. Costache, H. Shafizadeh-Moghadam, and Q. B. Pham, “Flash-flood susceptibility mapping based on XGBoost, random forest and boosted regression trees,” Geocarto Int., vol. 37, no. 19, pp. 5479–5496, 2021, doi: 10.1080/10106049.2021.1920636.
[24] T. S. V. Razavi, A. Kornejady, H. R. Pourghasemi, and S. Keesstra, “Flood susceptibility mapping using novel ensembles of adaptive neuro fuzzy inference system and metaheuristic algorithms,” Sci. Total Environ., vol. 615, pp. 438–451, 2018, doi: 10.1016/j.scitotenv.2017.09.262.
[25] Q. T. Bui, Q. H. Nguyen, X. L. Nguyen, V. D. Pham, H. D. Nguyen, and V. M. Pham, “Verification of novel integrations of swarm intelligence algorithms into deep learning neural network for flood susceptibility mapping,” J. Hydrol., vol. 581, p. 124379, 2020, doi: 10.1016/j.jhydrol.2019.124379.
[26] H. D. Vinh and Y.-A. Liou, “Assessing the influence of human activities on flash flood susceptibility in mountainous regions of Vietnam,” Ecol. Indic., vol. 158, no. November 2023, p. 111417, 2024, doi: 10.1016/j.ecolind.2023.111417.
[27] M. B. Kia, S. Pirasteh, B. Pradhan, A. R. Mahmud, W. N. A. Sulaiman, and A. Moradi, “An artificial neural network model for flood simulation using GIS: Johor River Basin, Malaysia,” Environ. Earth Sci., vol. 67, no. 1, pp. 251–264, 2012, doi: 10.1007/s12665-011-1504-z.
[28] M. S. Tehrany, S. Jones, and F. Shabani, “Identifying the essential flood conditioning factors for flood prone area mapping using machine learning techniques,” Catena, vol. 175, no. December 2018, pp. 174–192, 2019, doi: 10.1016/j.catena.2018.12.011.
[29] S. Lee, J. C. Kim, H. S. Jung, M. J. Lee, and S. Lee, “Spatial prediction of flood susceptibility using random-forest and boosted-tree models in Seoul metropolitan city, Korea,” Geomatics, Nat. Hazards Risk, vol. 8, no. 2, pp. 1185–1203, 2017, doi: 10.1080/19475705.2017.1308971.
[30] Moore et al., “Digital terrain modelling: A review of hydrological, geomorphological, and biological applications,” Hydrol. Process., vol. 5, no. 1, pp. 3–30, 1991, doi: 10.1002/hyp.3360050103.
[31] P. P. Santos, E. Reis, S. Pereira, and M. Santos, “A flood susceptibility model at the national scale based on multicriteria analysis,” Sci. Total Environ., vol. 667, pp. 325–337, 2019, doi: 10.1016/j.scitotenv.2019.02.328.
[32] I. Chowdhuri, S. C. Pal, and R. Chakrabortty, “Flood susceptibility mapping by ensemble evidential belief function and binomial logistic regression model on river basin of eastern India,” Adv. Sp. Res., vol. 65, no. 5, pp. 1466–1489, 2020, doi: 10.1016/j.asr.2019.12.003.
[33] M. Panahi et al., “Flood spatial prediction modeling using a hybrid of meta-optimization and support vector regression modeling,” Catena, vol. 199, no. December 2020, p. 105114, 2021, doi: 10.1016/j.catena.2020.105114.
[34] E. Dodangeh et al., “Integrated machine learning methods with resampling algorithms for flood susceptibility prediction,” Sci. Total Environ., vol. 705, p. 135983, 2020, doi: 10.1016/j.scitotenv.2019.135983.
[35] M. H. Shafizadeh, R. Valavi, H. Shahabi, K. Chapi, and A. Shirzadi, “Novel forecasting approaches using combination of machine learning and statistical models for flood susceptibility mapping,” J. Environ. Manage., vol. 217, pp. 1–11, 2018, doi: 10.1016/j.jenvman.2018.03.089.
[36] G. Zhao, B. Pang, Z. Xu, D. Peng, and L. Xu, “Assessment of urban flood susceptibility using semi-supervised machine learning model,” Sci. Total Environ., vol. 659, pp. 940–949, 2019, doi: 10.1016/j.scitotenv.2018.12.217.
[37] O. Rahmati, H. Zeinivand, and M. Besharat, “Flood hazard zoning in Yasooj region, Iran, using GIS and multi-criteria decision analysis,” Geomatics, Nat. Hazards Risk, vol. 7, no. 3, pp. 1000–1017, 2016, doi: 10.1080/19475705.2015.1045043.
[38] T. Gudiyangada Nachappa, S. Tavakkoli Piralilou, K. Gholamnia, O. Ghorbanzadeh, O. Rahmati, and T. Blaschke, “Flood susceptibility mapping with machine learning, multi-criteria decision analysis and ensemble using Dempster Shafer Theory,” J. Hydrol., vol. 590, no. July, p. 125275, 2020, doi: 10.1016/j.jhydrol.2020.125275.
[39] H. Hong, P. Tsangaratos, I. Ilia, J. Liu, A. X. Zhu, and W. Chen, “Application of fuzzy weight of evidence and data mining techniques in construction of flood susceptibility map of Poyang County, China,” Sci. Total Environ., vol. 625, pp. 575–588, 2018, doi: 10.1016/j.scitotenv.2017.12.256.
[40] M. Sahana and P. P. Patel, “A comparison of frequency ratio and fuzzy logic models for flood susceptibility assessment of the lower Kosi River Basin in India,” Environ. Earth Sci., vol. 78, no. 10, pp. 1–27, 2019, doi: 10.1007/s12665-019-8285-1.
[41] A. E. M. Al-Juaidi, A. M. Nassar, and O. E. M. Al-Juaidi, “Evaluation of flood susceptibility mapping using logistic regression and GIS conditioning factors,” Arab. J. Geosci., vol. 11, no. 24, pp. 1–10, 2018, doi: 10.1007/s12517-018-4095-0.
[42] M. Shafapour Tehrany, F. Shabani, M. Neamah Jebur, H. Hong, W. Chen, and X. Xie, “GIS-based spatial prediction of flood prone areas using standalone frequency ratio, logistic regression, weight of evidence and their ensemble techniques,” Geomatics, Nat. Hazards Risk, vol. 8, no. 2, pp. 1538–1561, 2017, doi: 10.1080/19475705.2017.1362038.
[43] H. Hong, Y. Miao, J. Liu, and A. X. Zhu, “Exploring the effects of the design and quantity of absence data on the performance of random forest-based landslide susceptibility mapping,” Catena, vol. 176, no. December 2018, pp. 45–64, 2019, doi: 10.1016/j.catena.2018.12.035.
[44] B. Sahoo, C. Chatterjee, N. S. Raghuwanshi, R. Singh, and R. Kumar, “Flood Estimation by GIUH-Based Clark and Nash Models,” J. Hydrol. Eng., vol. 11, no. 6, pp. 515–525, 2006, doi: 10.1061/(asce)1084-0699(2006)11:6(515).
[45] A. Mosavi, P. Ozturk, and K. W. Chau, “Flood prediction using machine learning models: Literature review,” Water (Switzerland), vol. 10, no. 11, pp. 1–40, 2018, doi: 10.3390/w10111536.
[46] Z. Wang, C. Qin, B. Wan, and W. W. Song, “A comparative study of common nature‐inspired algorithms for continuous function optimization,” Entropy, vol. 23, no. 7, pp. 1–40, 2021, doi: 10.3390/e23070874.
[47] A. Arabameri et al., “Flood susceptibility mapping using meta-heuristic algorithms,” Geomatics, Nat. Hazards Risk, vol. 13, no. 1, pp. 949–974, 2022, doi: 10.1080/19475705.2022.2060138.
[48] S. Talukdar, P. Singha, S. Mahato, S. Pal, Y. Liou, and R. A., “Land-Use Land-Cover Classification by Machine Learning Classifiers for Satellite Observations — A Review,” Remote Sens., vol. 12(7):1135, 2020, [Online]. Available: https://doi.org/10.%0A3390/rs12071135.
[49] Y. A. Liou, Q. V. Nguyen, D. V. Hoang, and D. P. Tran, “Prediction of soil erosion and sediment transport in a mountainous basin of Taiwan,” Prog. Earth Planet. Sci., vol. 9, no. 1, 2022, doi: 10.1186/s40645-022-00512-4.
[50] D. P. Roy et al., “Characterization of Landsat-7 to Landsat-8 reflective wavelength and normalized difference vegetation index continuity,” Remote Sens. Environ., vol. 185, pp. 57–70, 2016, doi: 10.1016/j.rse.2015.12.024.
[51] J. Ju and J. G. Masek, “The vegetation greenness trend in Canada and US Alaska from 1984-2012 Landsat data,” Remote Sens. Environ., vol. 176, pp. 1–16, 2016, doi: 10.1016/j.rse.2016.01.001.
[52] Z. Pironkova, R. Whaley, and K. Lan, “Time series analysis of Landsat NDVI composites with Google Earth Engine and Science and Research Technical Manual TM-06,” Sci. Res. Tech. Man. TM-06 Time, no. December, p. 39, 2018, doi: 10.13140/RG.2.2.16830.95040.
[53] F. E. Fassnacht, C. Schiller, T. Kattenborn, X. Zhao, and J. Qu, “A Landsat-based vegetation trend product of the Tibetan Plateau for the time-period 1990–2018,” Sci. Data, vol. 6, no. 1, pp. 1–11, 2019, doi: 10.1038/s41597-019-0075-9.
[54] G. F. Bonham-Carter, Geographic information systems for geoscientists-modeling with GIS., Computer m. Pergamon, 1994.
[55] R. Frank, “The Perceptron: a Probabilistic Model for Information Storage and Organization in the Brain,” Psychol. Rev., vol. 65, no. 6, pp. 386–408, 1958.
[56] H. M. Rizeei, B. Pradhan, and M. A. Saharkhiz, “Allocation of emergency response centres in response to pluvial flooding-prone demand points using integrated multiple layer perceptron and maximum coverage location problem models,” Int. J. Disaster Risk Reduct., vol. 38, p. 101205, 2019, doi: 10.1016/j.ijdrr.2019.101205.
[57] G. H. John and P. Langley, “Estimating Continuous Distributions in Bayesian Classifiers,” Proc. Elev. Conf. Uncertain. Artif. Intell., pp. 338–345, 1995, [Online]. Available: http://arxiv.org/abs/1302.4964.
[58] B. Boser, I. Guyon, V. V.-P. of the 5th, and U. 2003, “A training algorithm for optimal margin classifiers,” Gautampendse.Com, pp. 144–152., 1992.
[59] K. N. Stevens, T. M. Cover, and P. E. Hart, “Nearest Neighbor pattern classification,” IEEE Trans. Inf. theory, vol. IT-13, no. No.1, pp. 21–27, 1967, doi: 10.1007/springerreference_62518.
[60] H. Shahabi et al., “Flood detection and susceptibility mapping using Sentinel-1 remote sensing data and a machine learning approach: Hybrid intelligence of bagging ensemble based on K-Nearest Neighbor classifier,” Remote Sens., vol. 12, no. 2, 2020, doi: 10.3390/rs12020266.
[61] T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting system,” Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data Min., vol. 13-17-Augu, pp. 785–794, 2016, doi: 10.1145/2939672.2939785.
[62] J. Kennedy and E. Russell, “Particle Swarm Optimization,” TIn Proc. IEEE Int. Conf. neural networks, no. 4 pp, pp. 1942–1948, 1995, doi: 10.1007/978-3-319-46173-1_2.
[63] A. Sheta, “A Comparsion between Genetic Algorithms and Sequential Quadratic Programming in Solving Constrained Optimization Problems,” AIML J., vol. 6, no. January, pp. 67–74, 2006.
[64] S. N. Sivanandam and S. N. Deepa, Introduction to genetic algorithms. 2008.
[65] J. Hair, W. C. Black, B. J. Babin, and R. E. Anderson, Multivariate Data Analysis 7th Edition, 7th ed. Prentice Hall, New York, 2010.
[66] B. Feizizadeh and T. Blaschke, “GIS-multicriteria decision analysis for landslide susceptibility mapping: Comparing three methods for the Urmia lake basin, Iran,” Nat. Hazards, vol. 65, no. 3, pp. 2105–2128, 2013, doi: 10.1007/s11069-012-0463-3.
[67] D. Lallemant, P. Hamel, M. Balbi, T. N. Lim, R. Schmitt, and S. Win, “Nature-based solutions for flood risk reduction: A probabilistic modeling framework,” One Earth, vol. 4, no. 9, pp. 1310–1321, 2021, doi: 10.1016/j.oneear.2021.08.010.
[68] A. Beckers et al., “Contribution of land use changes to future flood damage along the river Meuse in the Walloon region,” Nat. Hazards Earth Syst. Sci., vol. 13, no. 9, pp. 2301–2318, 2013, doi: 10.5194/nhess-13-2301-2013. |