參考文獻 |
Åmand, L., & Carlsson, B. (2012). Optimal aeration control in a nitrifying activated sludge process. Water Research, 46(7), 2101-2110. https://doi.org/https://doi.org/10.1016/j.watres.2012.01.023
Arias-Navarro, M., Villen-Guzman, M., Perez-Recuerda, R., & Rodriguez-Maroto, J. M. (2019). The use of respirometry as a tool for the diagnosis of waste water treatment plants. A real case study in Southern Spain. Journal of Water Process Engineering, 29, 100791.
Bracklow, U., Drews, A., Gnirss, R., Klamm, S., Lesjean, B., Stüber, J., Barjenbruch, M., & Kraume, M. (2010). Influence of sludge loadings and types of substrates on nutrients removal in MBRs. Desalination, 250(2), 734-739.
Burghate, S., & Ingole, N. (2014). Biological denitrification—A review. Journal of Environmental Science, Computer Science and Engineering & Technology, 3(1), 009-028.
Cadoret, A., Conrad, A., & Block, J.-C. (2002). Availability of low and high molecular weight substrates to extracellular enzymes in whole and dispersed activated sludges. Enzyme and Microbial Technology, 31(1), 179-186. https://doi.org/https://doi.org/10.1016/S0141-0229(02)00097-2
Campos, J. L., Garrido, J. M., Mosquera-Corral, A., & Méndez, R. (2007). Stability of a nitrifying activated sludge reactor. Biochemical Engineering Journal, 35(1), 87-92. https://doi.org/https://doi.org/10.1016/j.bej.2007.01.002
Carmen, Z., & Daniela, S. (2012). Textile organic dyes-characteristics, polluting effects and separation/elimination procedures from industrial effluents-a critical overview (Vol. 3). IntechOpen Rijeka.
Cho, K. H., Kim, J.-O., Kang, S., Park, H., Kim, S., & Kim, Y. M. (2014). Achieving enhanced nitrification in communities of nitrifying bacteria in full-scale wastewater treatment plants via optimal temperature and pH. Separation and Purification Technology, 132, 697-703. https://doi.org/https://doi.org/10.1016/j.seppur.2014.06.027
Choi, Y.-Y., Baek, S.-R., Kim, J.-I., Choi, J.-W., Hur, J., Lee, T.-U., Park, C.-J., & Lee, B. J. (2017). Characteristics and Biodegradability of Wastewater Organic Matter in Municipal Wastewater Treatment Plants Collecting Domestic Wastewater and Industrial Discharge. Water, 9(6), 409. https://www.mdpi.com/2073-4441/9/6/409
Choubert, J.-M., Racault, Y., Grasmick, A., Beck, C., & Heduit, A. (2005). Maximum nitrification rate in activated sludge processes at low temperature: key parameters, optimal value. E-Water, Official Publication of the European Water Association (EWA).
Drewnowski, J. (2014). The impact of slowly biodegradable organic compounds on the oxygen uptake rate in activated sludge systems. Water Science and Technology, 69(6), 1136-1144.
Drewnowski, J., & Makinia, J. (2013). Modeling hydrolysis of slowly biodegradable organic compounds in biological nutrient removal activated sludge systems. Water Science and Technology, 67(9), 2067-2074.
Drewnowski, J., & Makinia, J. (2014). The role of biodegradable particulate and colloidal organic compounds in biological nutrient removal activated sludge systems. International Journal of Environmental Science and Technology, 11, 1973-1988.
Drewnowski, J., Mąkinia, J., Szaja, A., Łagód, G., Kopeć, Ł., & Aguilar, J. A. (2019). Comparative Study of Balancing SRT by Using Modified ASM2d in Control and Operation Strategy at Full-Scale WWTP. Water, 11(3), 485. https://www.mdpi.com/2073-4441/11/3/485
Drewnowski, J., Szeląg, B., Xie, L., Lu, X., Ganesapillai, M., Deb, C. K., Szulżyk-Cieplak, J., & Łagód, G. (2020). The Influence of COD Fraction Forms and Molecules Size on Hydrolysis Process Developed by Comparative OUR Studies in Activated Sludge Modelling. Molecules, 25(4), 929. https://www.mdpi.com/1420-3049/25/4/929
Elefsiniotis, P., & Li, D. (2006). The effect of temperature and carbon source on denitrification using volatile fatty acids. Biochemical Engineering Journal, 28(2), 148-155. https://doi.org/https://doi.org/10.1016/j.bej.2005.10.004
Fernández, F. J., Castro, M. C., Villasenor, J., & Rodríguez, L. (2011). Agro-food wastewaters as external carbon source to enhance biological phosphorus removal. Chemical Engineering Journal, 166(2), 559-567. https://doi.org/https://doi.org/10.1016/j.cej.2010.11.023
Figuerola, E. L. M., & Erijman, L. (2010). Diversity of nitrifying bacteria in a full-scale petroleum refinery wastewater treatment plant experiencing unstable nitrification. Journal of Hazardous Materials, 181(1-3), 281-288. https://doi.org/10.1016/j.jhazmat.2010.05.009
Gao, X., Zhang, T., Wang, B., Xu, Z., Zhang, L., & Peng, Y. (2020). Advanced nitrogen removal of low C/N ratio sewage in an anaerobic/aerobic/anoxic process through enhanced post-endogenous denitrification. Chemosphere, 252, 126624. https://doi.org/https://doi.org/10.1016/j.chemosphere.2020.126624
Gatti, M., García-Usach, F., Seco, A., & Ferrer, J. (2010). Wastewater COD Characterization: Analysis of Respirometric and Physical-Chemical Methods for Determining Biodegradable Organic Matter Fractions. Journal of Chemical Technology & Biotechnology, 85, 536-544. https://doi.org/10.1002/jctb.2325
Ge, S. J., Wang, S. Y., Yang, X., Qiu, S., Li, B. K., & Peng, Y. Z. (2015). Detection of nitrifiers and evaluation of partial nitrification for wastewater treatment: A review. Chemosphere, 140, 85-98. https://doi.org/10.1016/j.chemosphere.2015.02.004
Glass, C., & Silverstein, J. (1998). Denitrification kinetics of high nitrate concentration water: pH effect on inhibition and nitrite accumulation. Water Research, 32(3), 831-839.
Guo, L., Guo, Y., Sun, M., Gao, M., Zhao, Y., & She, Z. (2018). Enhancing denitrification with waste sludge carbon source: the substrate metabolism process and mechanisms. Environ Sci Pollut Res Int, 25(13), 13079-13092. https://doi.org/10.1007/s11356-017-0836-y
He, S.-b., Xue, G., & Wang, B.-z. (2009). Factors affecting simultaneous nitrification and de-nitrification (SND) and its kinetics model in membrane bioreactor. Journal of Hazardous Materials, 168(2), 704-710. https://doi.org/https://doi.org/10.1016/j.jhazmat.2009.02.099
Hocaoglu, S. M., Atasoy, E., Baban, A., & Orhon, D. (2013). Modeling biodegradation characteristics of grey water in membrane bioreactor. Journal of Membrane Science, 429, 139-146. https://doi.org/https://doi.org/10.1016/j.memsci.2012.11.012
How, S. W., Chua, A. S. M., Ngoh, G. C., Nittami, T., & Curtis, T. P. (2019). Enhanced nitrogen removal in an anoxic-oxic-anoxic process treating low COD/N tropical wastewater: Low-dissolved oxygen nitrification and utilization of slowly-biodegradable COD for denitrification. Science of The Total Environment, 693, 133526. https://doi.org/https://doi.org/10.1016/j.scitotenv.2019.07.332
How, S. W., Sin, J. H., Wong, S. Y. Y., Lim, P. B., Mohd Aris, A., Ngoh, G. C., Shoji, T., Curtis, T. P., & Chua, A. S. M. (2020). Characterization of slowly-biodegradable organic compounds and hydrolysis kinetics in tropical wastewater for biological nitrogen removal. Water Science and Technology, 81(1), 71-80.
Hu, B., Quan, J., Huang, K., Zhao, J., Xing, G., Wu, P., Chen, Y., Ding, X., & Hu, Y. (2021). Effects of C/N ratio and dissolved oxygen on aerobic denitrification process: A mathematical modeling study. Chemosphere, 272, 129521. https://doi.org/https://doi.org/10.1016/j.chemosphere.2020.129521
Insel, G., Sözen, S., Yucel, A. B., Gökçekuş, H., & Orhon, D. (2019). Assessment of anoxic volume ratio based on hydrolysis kinetics for effective nitrogen removal: model evaluation. Journal of Chemical Technology & Biotechnology, 94(6), 1739-1751.
Kanda, R., Kishimoto, N., Hinobayashi, J., Hashimoto, T., Tanaka, S., & Murakami, Y. (2017). Influence of temperature and COD loading on biological nitrification–denitrification process using a trickling filter: an empirical modeling approach. International Journal of Environmental Research, 11, 71-82.
Kruse, M., Zumbrägel, S., Bakker, E., Spieck, E., Eggers, T., & Lipski, A. (2013). The nitrite-oxidizing community in activated sludge from a municipal wastewater treatment plant determined by fatty acid methyl ester-stable isotope probing. Systematic and Applied Microbiology, 36(7), 517-524. https://doi.org/https://doi.org/10.1016/j.syapm.2013.06.007
Kujawa, K., & Klapwijk, B. (1999). A method to estimate denitrification potential for predenitrification systems using NUR batch test. Water Research, 33(10), 2291-2300.
Li, D., Liang, X., Li, Z., Jin, Y., Zhou, R., & Wu, C. (2020). Effect of chemical oxygen demand load on the nitrification and microbial communities in activated sludge from an aerobic nitrifying reactor. Canadian journal of microbiology, 66(1), 59-70.
Li, H., Zhang, Y., Yang, M., & Kamagata, Y. (2013). Effects of hydraulic retention time on nitrification activities and population dynamics of a conventional activated sludge system. Frontiers of Environmental Science & Engineering, 7(1), 43-48. https://doi.org/10.1007/s11783-012-0397-8
Lim, C.-P., Neo, J. L., Maratusalihat, E., Zhou, Y., & Ng, W. J. (2016). Biosorption for carbon capture on acclimated sludgeProcess kinetics and microbial community. Biochemical Engineering Journal, 114, 119-129. https://doi.org/10.1016/j.bej.2016.04.022
Lim, C.-P., Zhang, S., Zhou, Y., & Ng, W. J. (2015). Enhanced carbon capture biosorption through process manipulation. Biochemical Engineering Journal, 93, 128-136. https://doi.org/10.1016/j.bej.2014.10.003
Limpiyakorn, T., Shinohara, Y., Kurisu, F., & Yagi, O. (2004). Distribution of ammonia-oxidizing bacteria in sewage activated sludge: analysis based on 16S rDNA sequence. Water Science and Technology, 50(8), 9-14.
Liu, B., Terashima, M., Quan, N. T., Ha, N. T., Van Chieu, L., Goel, R., & Yasui, H. (2018). Determination of optimal dose of allylthiourea (ATU) for the batch respirometric test of activated sludge. Water Science and Technology, 77(12), 2876-2885.
Liu, G., & Wang, J. (2014). Role of solids retention time on complete nitrification: mechanistic understanding and modeling. Journal of Environmental Engineering, 140(1), 48-56.
Liu, H., Yang, F., Shi, S., & Liu, X. (2010). Effect of substrate COD/N ratio on performance and microbial community structure of a membrane aerated biofilm reactor. Journal of Environmental Sciences, 22(4), 540-546. https://doi.org/https://doi.org/10.1016/S1001-0742(09)60143-1
Liu, H., Zhao, F., Mao, B., & Wen, X. (2012). Enhanced nitrogen removal in a wastewater treatment process characterized by carbon source manipulation with biological adsorption and sludge hydrolysis. Bioresour Technol, 114, 62-68. https://doi.org/10.1016/j.biortech.2012.02.112
Liu, Z., & Smith, S. R. (2021). Enzyme recovery from biological wastewater treatment. Waste and Biomass Valorization, 12, 4185-4211.
McIlroy, S. J., Starnawska, A., Starnawski, P., Saunders, A. M., Nierychlo, M., Nielsen, P. H., & Nielsen, J. L. (2016). Identification of active denitrifiers in full-scale nutrient removal wastewater treatment systems. Environ Microbiol, 18(1), 50-64. https://doi.org/10.1111/1462-2920.12614
Metcalf, L., Eddy, H. P., & Tchobanoglous, G. (1991). Wastewater engineering: treatment, disposal, and reuse (Vol. 4). McGraw-Hill New York.
Mikola, A., Vahala, R., & Rautiainen, J. (2011). Factors affecting the quality of the plant influent and its suitability for prefermentation and the biological nutrient removal process. Journal of Environmental Engineering, 137(12), 1185-1192.
Morgenroth, E., Kommedal, R., & Harremoës, P. (2002). Processes and modeling of hydrolysis of particulate organic matter in aerobic wastewater treatment–a review. Water Science and Technology, 45(6), 25-40.
Murat Hocaoglu, S., Insel, G., Ubay Cokgor, E., Baban, A., & Orhon, D. (2010). COD fractionation and biodegradation kinetics of segregated domestic wastewater: black and grey water fractions. Journal of Chemical Technology & Biotechnology, 85(9), 1241-1249.
Noyan, K., Allı, B., Okutman Taş, D., Sözen, S., & Orhon, D. (2017). Relationship between COD particle size distribution, COD fractionation and biodegradation characteristics in domestic sewage. Journal of Chemical Technology & Biotechnology, 92(8), 2142-2149.
Olsson, G. (2012). Waterwaterand WastewaterWastewaterOperationwateroperationWastewaterOperation: Instrumentation, Monitoring, Control and Automation. In R. A. Meyers (Ed.), Encyclopedia of Sustainability Science and Technology (pp. 11946-11960). Springer New York. https://doi.org/10.1007/978-1-4419-0851-3_330
Peng, Y.-z., Ma, Y., & Wang, S.-y. (2007). Denitrification potential enhancement by addition of external carbon sources in a pre-denitrification process. Journal of Environmental Sciences, 19(3), 284-289. https://doi.org/https://doi.org/10.1016/S1001-0742(07)60046-1
Piechna, P., & Żubrowska-Sudoł, M. (2017). Respirometric activity of activated sludge and biofilm in IFAS-MBBR system. Journal of Ecological Engineering, 18(4).
Płuciennik-Koropczuk, E., & Myszograj, S. (2019). New Approach in COD Fractionation Methods. Water, 11(7), 1484. https://www.mdpi.com/2073-4441/11/7/1484
Rahman, A., Yapuwa, H., Baserba, M. G., Rosso, D., Jimenez, J. A., Bott, C., Al-Omari, A., Murthy, S., Riffat, R., & Clippeleir, H. D. (2017). Methods for quantification of biosorption in high-rate activated sludge systems. Biochemical Engineering Journal, 128, 33-44. https://doi.org/https://doi.org/10.1016/j.bej.2017.09.006
Rittmann, B. E., & McCarty, P. L. (2001). Environmental Biotechnology:Principles and Applications.
Sivadon, P., Barnier, C., Urios, L., & Grimaud, R. (2019). Biofilm formation as a microbial strategy to assimilate particulate substrates. Environmental microbiology reports, 11(6), 749-764.
Tas, D. O., Karahan, Ö., I˙ nsel, G., Övez, S., Orhon, D., & Spanjers, H. (2009). Biodegradability and denitrification potential of settleable chemical oxygen demand in domestic wastewater. Water Environment Research, 81(7), 715-727.
Thörn, M., & Sörensson, F. (1996). Variation of nitrous oxide formation in the denitrification basin in a wastewater treatment plant with nitrogen removal. Water Research, 30(6), 1543-1547.
Tran, N. H., Ngo, H. H., Urase, T., & Gin, K. Y.-H. (2015). A critical review on characterization strategies of organic matter for wastewater and water treatment processes. Bioresource Technology, 193, 523-533. https://doi.org/https://doi.org/10.1016/j.biortech.2015.06.091
Tran, Q. L., Tu, T. T., Hai, N. D., Hung, N. Q., & Kien, D. T. (2021). Assessment of organics and nitrogen removal of aerobic granular sludge with the alternating operation of oxic–anoxic–oxic phases and different feeding mode in sequential batch reactor. SNRU Journal of Science and Technology, 13(2), 46-54.
Wagner, M., Rath, G., Amann, R., Koops, H.-P., & Schleifer, K.-H. (1995). In situ Identification of Ammonia-oxidizing Bacteria. Systematic and Applied Microbiology, 18(2), 251-264. https://doi.org/https://doi.org/10.1016/S0723-2020(11)80396-6
Wang, B.-B., Chang, Q., Peng, D.-C., Hou, Y.-P., Li, H.-J., & Pei, L.-Y. (2014). A new classification paradigm of extracellular polymeric substances (EPS) in activated sludge: separation and characterization of exopolymers between floc level and microcolony level. Water Research, 64, 53-60.
Wang, B.-B., Liu, X.-T., Chen, J.-M., Peng, D.-C., & He, F. (2018). Composition and functional group characterization of extracellular polymeric substances (EPS) in activated sludge: the impacts of polymerization degree of proteinaceous substrates. Water Research, 129, 133-142. https://doi.org/https://doi.org/10.1016/j.watres.2017.11.008
Wang, J., Ji, Y., Zhang, F., Wang, D., He, X., & Wang, C. (2019). Treatment of coking wastewater using oxic-anoxic-oxic process followed by coagulation and ozonation. Carbon Resources Conversion, 2(2), 151-156. https://doi.org/https://doi.org/10.1016/j.crcon.2019.06.001
Wingender, J., Neu, T. R., & Flemming, H.-C. (1999). What are bacterial extracellular polymeric substances? Springer.
Winkler, M., Coats, E. R., & Brinkman, C. K. (2011). Advancing post-anoxic denitrification for biological nutrient removal. Water Research, 45(18), 6119-6130.
Zhang, J., Shao, Y., Liu, G., Qi, L., Wang, H., Xu, X., & Liu, S. (2021). Wastewater COD characterization: RBCOD and SBCOD characterization analysis methods. Scientific Reports, 11(1), 1-10.
Zhang, X., Li, X., Zhang, Q., Peng, Q., Zhang, W., & Gao, F. (2014). New insight into the biological treatment by activated sludge: the role of adsorption process. Bioresour Technol, 153, 160-164. https://doi.org/10.1016/j.biortech.2013.11.084
Zhou, S. Q. (2001). Theoretical Stoichiometry of Biological Denitrifications. Environmental Technology, 22(8), 869-880. https://doi.org/10.1080/09593332208618223
Zhu, S., & Chen, S. (2001). Effects of organic carbon on nitrification rate in fixed film biofilters. Aquacultural Engineering, 25(1), 1-11. https://doi.org/https://doi.org/10.1016/S0144-8609(01)00071-1
內政部營建署. (2021). 污水處理廠設計及解說.
日本下水道協會. (1994). 高度處理施設設計マ ニュアル(案).
歐陽嶠暉. (2016). 下水道學. (台灣水環境再生協會) |