參考文獻 |
Allen, H. K., Donato, J., Wang, H. H., Cloud-Hansen, K. A., Davies, J., & Handelsman, J. (2010). Call of the wild: antibiotic resistance genes in natural environments. Nature Reviews. Microbiology, 8(4), 251–259.
Arthurson, V. (2009). Closing the Global Energy and Nutrient Cycles through Application of Biogas Residue to Agricultural Land – Potential Benefits and Drawback. Energies, 2(2), 226-242. https://doi.org/10.3390/en20200226
Baker-Austin, C., Wright, M. S., Stepanauskas, R., & McArthur, J. V. (2006). Co-selection of antibiotic and metal resistance. Trends in Microbiology, 14(4), 176–182.
Barłóg, P., Hlisnikovský, L., & Kunzová, E. (2020). Effect of Digestate on Soil Organic Carbon and Plant-Available Nutrient Content Compared to Cattle Slurry and Mineral Fertilization. Agronomy, 10(3). https://doi.org/10.3390/agronomy10030379
Bennett, P. M. (2008). Plasmid encoded antibiotic resistance: acquisition and transfer of antibiotic resistance genes in bacteria. Br J Pharmacol, 153 Suppl1(Suppl 1), S347-357.https://doi.org/10.1038/sj.bjp.0707607
Bush, K. (2013). Proliferation and significance of clinically relevant β-lactamases. Annals of the New York Academy of Sciences, 1277, 84–90. Bastian, M., Heymann, S., & Jacomy, M. (2009). Gephi: An Open Source Software for Exploring and Manipulating Networks. Proceedings of the International AAAI Conference on Web and Social Media, 3(1), 361-362. https://doi.org/10.1609/icwsm.v3i1.13937
Cao, J., Yang, G., Mai, Q., Zhuang, Z., & Zhuang, L. (2020). Co-selection of antibiotic-resistant bacteria in a paddy soil exposed to As(III) contamination with an emphasis on potential pathogens. Science of The Total Environment (Vol. 725, p.138367).https://doi.org/10.1016/j.scitotenv.2020.138367
Cha, J. S., Park, S. H., Jung, S. C., Ryu, C., Jeon, J. K., Shin, M. C., & Park, Y. K. (2016). Production and utilization of biochar: A review. Journal of Industrial and Engineering Chemistry, 40, 1-15.
Chanda, S., & Rakholiya, K. (2011). Combination therapy: Synergism between natural plant extracts and antibiotics against infectious diseases. Science against Microbial Pathogens: Communicating Current Research and Technological Advances.
Chen, B., Yuan, K., Chen, X., Yang, Y., Zhang, T., Wang, Y., Luan, T., Zou, S., & Li, X. (2016). Metagenomic Analysis Revealing Antibiotic Resistance Genes (ARGs) and Their Genetic Compartments in the Tibetan Environment. Environmental Science & Technology, 50(13), 6670–6679.
Chen, Q.-L., Fan, X.-T., Zhu, D., An, X.-L., Su, J.-Q., & Cui, L. (2018). Effect of biochar amendment on the alleviation of antibiotic resistance in soil and phyllosphere of Brassica chinensis L. In Soil Biology and Biochemistry (Vol. 119, pp. 74–82). https://doi.org/10.1016/j.soilbio.2018.01.015
Chen, Z., Shen, J., Xu, X., Feng, H., & Wang, M. (2023). Adsorption of antibiotic, heavy metal and antibiotic plasmid by a wet-state silicon-rich biochar/ferrihydrite composite to inhibit antibiotic resistance gene proliferation/transformation. Chemosphere, 324, 138356. https://doi.org/10.1016/j.chemosphere.2023.138356
Claoston, N., Samsuri, A. W., Husni, M. H. A., & Amran, M. S. M. (2014). Effects of pyrolysis temperature on the physicochemical properties of empty fruit bunch and rice husk biochars. In Waste Management & Research: The Journal for a Sustainable Circular Economy (Vol. 32, Issue 4, pp. 331–339). https://doi.org/10.1177/0734242x14525822
Cui, E.-P., Gao, F., Liu, Y., Fan, X.-Y., Li, Z.-Y., Du, Z.-J., Hu, C., & Neal, A. L. (2018). Amendment soil with biochar to control antibiotic resistance genes under unconventional water resources irrigation: Proceed with caution. Environmental Pollution , 240, 475–484.
Cui, E., Wu, Y., Zuo, Y., & Chen, H. (2016). Effect of different biochars on antibiotic resistance genes and bacterial community during chicken manure composting. In 33 Bioresource Technology (Vol. 203, pp. 11–17). https://doi.org/10.1016/j.biortech.2015.12.030
Daful, A. G., & Chandraratne, M. R. (2020). Biochar Production From Biomass Waste-Derived Material. Encyclopedia of Renewable and Sustainable Materials (pp. 370–378).
https://doi.org/10.1016/b978-0-12-803581-8.11249-4
D’Costa, V. M., King, C. E., Kalan, L., Morar, M., Sung, W. W. L., Schwarz, C., Froese, D., Zazula, G., Calmels, F., Debruyne, R., Golding, G. B., Poinar, H. N., & Wright, G. D. (2011). Antibiotic resistance is ancient. Nature, 477(7365), 457–461.
Deng, W., Zhang, A., Chen, S., He, X., Jin, L., Yu, X., Yang, S., Li, B., Fan, L., Ji, L., Pan, X., & Zou, L. (2020). Heavy metals, antibiotics and nutrients affect the bacterial community and resistance genes in chicken manure composting and fertilized soil. Journal of Environmental Management, 257, 109980.
https://doi.org/https://doi.org/10.1016/j.jenvman.2019.109980
Ding, J., Yin, Y., Sun, A.-Q., Lassen, S. B., Li, G., Zhu, D., & Ke, X. (2019). Effects of biochar amendments on antibiotic resistome of the soil and collembolan gut. Journal of Hazardous Materials, 377, 186–194.
Ding, W., Dong, X., Ime, I. M., Gao, B., & Ma, L. Q. (2014). Pyrolytic temperatures impact lead sorption mechanisms by bagasse biochars. Chemosphere, 105, 68-74.
https://doi.org/10.1016/j.chemosphere.2013.12.042
Donohue, M. D., & Aranovich, G. L. (1998). Classification of Gibbs adsorption isotherms. Advances in Colloid and Interface Science, 76-77, 137-152.
https://doi.org/https://doi.org/10.1016/S0001-8686(98)00044-X
Duan, M., Li, H., Gu, J., Tuo, X., Sun, W., Qian, X., & Wang, X. (2017). Effects of biochar on reducing the abundance of oxytetracycline, antibiotic resistance genes, and human pathogenic bacteria in soil and lettuce. Environmental Pollution , 224, 787–795.
Fluit, A. C., & Schmitz, F. J. (1999). Class 1 Integrons, Gene Cassettes, Mobility, and Epidemiology. European Journal of Clinical Microbiology and Infectious Diseases, 18(11), 761-770. https://doi.org/10.1007/s100960050398
Gao, P., He, S., Huang, S., Li, K., Liu, Z., Xue, G., & Sun, W. (2015). Impacts of coexisting antibiotics, antibacterial residues, and heavy metals on the occurrence of erythromycin resistance genes in urban wastewater. Applied Microbiology and Biotechnology, 99(9), 3971–3980.
Garneau-Tsodikova, S., & Labby, K. J. (2016). Mechanisms of Resistance to Aminoglycoside Antibiotics: Overview and Perspectives. MedChemComm, 7(1), 11–27.
Gholami, L., & Rahimi, G. (2021). Chemical fractionation of copper and zinc after addition of carrot pulp biochar and thiourea-modified biochar to a contaminated soil. Environ Technol, 42(22), 3523-3532. https://doi.org/10.1080/09593330.2020.1733101
Gillings, M. R., Gaze, W. H., Pruden, A., Smalla, K., Tiedje, J. M., & Zhu, Y.-G. (2015). Using the class 1 integron-integrase gene as a proxy for anthropogenic pollution. The ISME Journal, 9(6), 1269–1279.
Harris, D., Horwáth, W. R., & van Kessel, C. (2001). Acid fumigation of soils to remove carbonates prior to total organic carbon or CARBON-13 isotopic analysis. Soil Science Society of America Journal, 65(6), 1853-1856. https://doi.org/10.2136/sssaj2001.1853
He, Y., Yin, X., Li, F., Wu, B., Zhu, L., Ge, D., Wang, N., Chen, A., Zhang, L., Yan, B., Huang, H., Luo, L., Wu, G., & Zhang, J. (2023). Response characteristics of antibiotic resistance genes and bacterial communities during agricultural waste composting: Focusing on biogas residue combined with biochar amendments. Bioresource Technology, 372, 128636. https://doi.org/10.1016/j.biortech.2023.128636
Huang, L., Xu, Y., Xu, J., Ling, J., Zheng, L., Zhou, X., & Xie, G. (2019). Dissemination of antibiotic resistance genes (ARGs) by rainfall on a cyclic economic breeding livestock farm. In International Biodeterioration & Biodegradation (Vol. 138, pp. 114–121). https://doi.org/10.1016/j.ibiod.2019.01.009
Huang, H., Reddy, N. G., Huang, X., Chen, P., Wang, P., Zhang, Y., Huang, Y., Lin, P., & Garg, A. (2021). Effects of pyrolysis temperature, feedstock type and compaction on water retention of biochar amended soil. Sci Rep, 11(1), 7419. https://doi.org/10.1038/s41598-021-86701-5
Hurst, J. J., Oliver, J. P., Schueler, J., Gooch, C., Lansing, S., Crossette, E., Wigginton, K., Raskin, L., Aga, D. S., & Sassoubre, L. M. (2019). Trends in Antimicrobial Resistance Genes in Manure Blend Pits and Long-Term Storage Across Dairy Farms with Comparisons to Antimicrobial Usage and Residual Concentrations. Environmental Science & Technology, 53(5), 2405–2415.
Inyang, M., & Dickenson, E. (2015). The potential role of biochar in the removal of organic and microbial contaminants from potable and reuse water: A review. Chemosphere (Vol. 134, pp. 232–240). https://doi.org/10.1016/j.chemosphere.2015.03.072
Jauregi, L., Gonzalez, A., Garbisu, C., & Epelde, L. (2023). Organic amendment treatments for antimicrobial resistance and mobile element genes risk reduction in soil-crop systems. Sci Rep, 13(1), 863. https://doi.org/10.1038/s41598-023-27840-9
Jayakumar, A., Wurzer, C., Soldatou, S., Edwards, C., Lawton, L. A., & Mašek, O. (2021). New directions and challenges in engineering biologically-enhanced biochar for biological water treatment. The Science of the Total Environment, 796, 148977.
Karkman, A., Pärnänen, K., & Larsson, D. G. J. (2019). Fecal pollution can explain antibiotic resistance gene abundances in anthropogenically impacted environments. Nature Communications, 10(1), 80.
Keiluweit, M., Nico, P. S., Johnson, M. G., & Kleber, M. (2010). Dynamic Molecular Structure of Plant Biomass-Derived Black Carbon (Biochar). Environmental Science & Technology, 44(4), 1247-1253. https://doi.org/10.1021/es9031419
Knapp, C. W., Callan, A. C., Aitken, B., Shearn, R., Koenders, A., & Hinwood, A. (2017). Relationship between antibiotic resistance genes and metals in residential soil samples from Western Australia. Environmental Science and Pollution Research International, 24(3), 2484–2494.
Knapp, C. W., Dolfing, J., Ehlert, P. A. I., & Graham, D. W. (2010). Evidence of increasing antibiotic resistance gene abundances in archived soils since 1940. Environmental Science & Technology, 44(2), 580–587.
Kui, H., Jingyang, C., Mengxin, G., Hui, X., & Li, L. (2020). Effects of biochars on the fate of antibiotics and their resistance genes during vermicomposting of dewatered sludge. Journal of Hazardous Materials, 397, 122767.
Lian, F., Yu, W., Zhou, Q., Gu, S., Wang, Z., & Xing, B. (2020). Size Matters: Nano-Biochar Triggers Decomposition and Transformation Inhibition of Antibiotic Resistance Genes in Aqueous Environments. Environmental Science & Technology, 54(14), 8821–8829.
Liang, J., Li, X., Yu, Z., Zeng, G., Luo, Y., Jiang, L., Yang, Z., Qian, Y., & Wu, H. (2017). Amorphous MnO2 Modified Biochar Derived from Aerobically Composted Swine Manure for Adsorption of Pb(II) and Cd(II). ACS Sustainable Chemistry & Engineering, 5(6), 5049-5058. https://doi.org/10.1021/acssuschemeng.7b00434
Li, H., Dong, X., da Silva, E. B., de Oliveira, L. M., Chen, Y., & Ma, L. Q. (2017). Mechanisms of metal sorption by biochars: Biochar characteristics and modifications. Chemosphere, 178, 466-478. https://doi.org/10.1016/j.chemosphere.2017.03.072
Li, H., Duan, M., Gu, J., Zhang, Y., Qian, X., Ma, J., Zhang, R., & Wang, X. (2017). Effects of bamboo charcoal on antibiotic resistance genes during chicken manure composting. Ecotoxicology and Environmental Safety, 140, 1–6.
Li, H., Wang, X., Tan, L., Li, Q., Zhang, C., Wei, X., Wang, Q., Zheng, X., & Xu, Y. (2022). Coconut shell and its biochar as fertilizer amendment applied with organic fertilizer: Efficacy and course of actions on eliminating antibiotic resistance genes in agricultural soil. J Hazard Mater, 437, 129322. https://doi.org/10.1016/j.jhazmat.2022.129322
Li, J., Fan, J., Zhang, J., Hu, Z., & Liang, S. (2018). Preparation and evaluation of wetland plant-based biochar for nitrogen removal enhancement in surface flow constructed wetlands. Environmental Science and Pollution Research International, 25(14), 13929–13937.
Liu, B., Cai, Z., Zhang, Y., Liu, G., Luo, X., & Zheng, H. (2019). Comparison of efficacies of peanut shell biochar and biochar-based compost on two leafy vegetable productivity in an infertile land. In Chemosphere (Vol. 224, pp. 151–161).
https://doi.org/10.1016/j.chemosphere.2019.02.100
Li, X.-Z., & Nikaido, H. (2009). Efflux-mediated drug resistance in bacteria: an update. Drugs, 69(12), 1555–1623.
Li, Y., Wang, X., Li, J., Wang, Y., Song, J., Xia, S., Jing, H., & Zhao, J. (2019). Effects of struvite-humic acid loaded biochar/bentonite composite amendment on Zn(II) and antibiotic resistance genes in manure-soil. Chemical Engineering Journal, 375. https://doi.org/10.1016/j.cej.2019.122013
Li, Y., Wang, X., Wang, Y., Wang, F., Xia, S., & Zhao, J. (2020). Struvite-supported biochar composite effectively lowers Cu bio-availability and the abundance of antibiotic-resistance genes in soil. Sci Total Environ, 724, 138294. https://doi.org/10.1016/j.scitotenv.2020.138294
Lu, H. P., Li, Z. A., Gasco, G., Mendez, A., Shen, Y., & Paz-Ferreiro, J. (2018). Use of magnetic biochars for the immobilization of heavy metals in a multi-contaminated soil. Sci Total Environ, 622-623, 892-899. https://doi.org/10.1016/j.scitotenv.2017.12.056
Luo, C., Lü, F., Shao, L., & He, P. (2015). Application of eco-compatible biochar in anaerobic digestion to relieve acid stress and promote the selective colonization of functional microbes. Water Research, 68, 710–718.
Ma, L., Li, A.-D., Yin, X.-L., & Zhang, T. (2017). The Prevalence of Integrons as the Carrier of Antibiotic Resistance Genes in Natural and Man-Made Environments. Environmental Science & Technology, 51(10), 5721–5728.
Maneechakr, P., & Karnjanakom, S. (2019). Environmental surface chemistries and adsorption behaviors of metal cations (Fe3 , Fe2 , Ca2 and Zn2 ) on manganese dioxide-modified green biochar. RSC Advances (Vol. 9, Issue 42, pp. 24074–24086).
https://doi.org/10.1039/c9ra03112j
Martinez, J. L. (2008). Antibiotics and Antibiotic Resistance Genes in Natural Environments. Science (Vol. 321, Issue 5887, pp. 365–367). https://doi.org/10.1126/science.1159483
McKenzie, G. J., Harris, R. S., Lee, P. L., & Rosenberg, S. M. (2000). The SOS response regulates adaptive mutation. Proceedings of the National Academy of Sciences of the United States of America, 97(12), 6646–6651.
Medha, I., Chandra, S., Vanapalli, K. R., Samal, B., Bhattacharya, J., & Das, B. K. (2021). (3-Aminopropyl)triethoxysilane and iron rice straw biochar composites for the sorption of Cr (VI) and Zn (II) using the extract of heavy metals contaminated soil. The Science of the Total Environment, 771, 144764.
Min Jang, H., Choi, S., Shin, J., Kan, E., & Mo Kim, Y. (2019). Additional reduction of antibiotic resistance genes and human bacterial pathogens via thermophilic aerobic digestion of anaerobically digested sludge. Bioresour Technol, 273, 259-268. https://doi.org/10.1016/j.biortech.2018.11.027
Mukherjee, A., Zimmerman, A. R., & Harris, W. (2011). Surface chemistry variations among a series of laboratory-produced biochars. In Geoderma (Vol. 163, Issues 3-4, pp. 247–255).https://doi.org/10.1016/j.geoderma.2011.04.021
Ouyang, W., Gao, B., Cheng, H., Zhang, L., Wang, Y., Lin, C., & Chen, J. (2020). Airborne bacterial communities and antibiotic resistance gene dynamics in PM2.5 during rainfall. In Environment International (Vol. 134, p. 105318).
https://doi.org/10.1016/j.envint.2019.105318
Pueyo, M., Rauret, G., Luck, D., Yli-Halla, M., Muntau, H., Quevauviller, P., & Lopez-Sanchez, J. F. (2001). Certification of the extractable contents of Cd, Cr, Cu, Ni, Pb and Zn in a freshwater sediment following a collaboratively tested and optimised three-step sequential extraction procedure. J Environ Monit, 3(2), 243-250.https://doi.org/10.1039/b010235k
Qian, X., Gu, J., Sun, W., Wang, X.-J., Su, J.-Q., & Stedfeld, R. (2018). Diversity, abundance, and persistence of antibiotic resistance genes in various types of animal manure following industrial composting. Journal of Hazardous Materials, 344, 716–722.
Review on Antimicrobial Resistance. (2014). Antimicrobial Resistance: Tackling a Crisis for the Health and Wealth of Nations.
de los Santos, E., Laviña, M., & Poey, M. E. (2021). Strict relationship between class 1 integrons and resistance to sulfamethoxazole in Escherichia coli. Microbial Pathogenesis, 161, 105206. https://doi.org/10.1016/j.micpath.2021.105206
Sarmah, A. K., Meyer, M. T., & Boxall, A. B. A. (2006). A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere, 65(5), 725–759.
Seiler, C., & Berendonk, T. U. (2012). Heavy metal driven co-selection of antibiotic resistance in soil and water bodies impacted by agriculture and aquaculture. Frontiers in Microbiology, 3, 399.
Selvam, A., Xu, D., Zhao, Z., & Wong, J. W. C. (2012). Fate of tetracycline, sulfonamide and fluoroquinolone resistance genes and the changes in bacterial diversity during composting of swine manure. Bioresource Technology, 126, 383–390.
Shaw, J. L. A., Ernakovich, J. G., Judy, J. D., Farrell, M., Whatmuff, M., & Kirby, J. (2020). Long-term effects of copper exposure to agricultural soil function and microbial community structure at a controlled and experimental field site. Environ Pollut, 263(Pt A), 114411. https://doi.org/10.1016/j.envpol.2020.114411
Shinogi, Y., & Kanri, Y. (2003). Pyrolysis of plant, animal and human waste: physical and chemical characterization of the pyrolytic products. Bioresource Technology, 90(3), 241-247. https://doi.org/https://doi.org/10.1016/S0960-8524(03)00147-0
Song, J., Rensing, C., Holm, P. E., Virta, M., & Brandt, K. K. (2017). Comparison of Metals and Tetracycline as Selective Agents for Development of Tetracycline Resistant Bacterial Communities in Agricultural Soil. Environmental Science & Technology, 51(5), 3040–3047.
Stepanauskas, R., Glenn, T. C., Jagoe, C. H., Tuckfield, R. C., Lindell, A. H., King, C. J., & McArthur, J. V. (2006). Coselection for microbial resistance to metals and antibiotics in freshwater microcosms. Environmental Microbiology, 8(9), 1510–1514.
Subbiah, M., Top, E. M., Shah, D. H., & Call, D. R. (2011). Selection pressure required for long-term persistence of blaCMY-2-positive IncA/C plasmids. Appl Environ Microbiol, 77(13), 4486-4493. https://doi.org/10.1128/AEM.02788-10
Sun, W., Qian, X., Gu, J., Wang, X.-J., & Duan, M.-L. (2016). Mechanism and Effect of Temperature on Variations in Antibiotic Resistance Genes during Anaerobic Digestion of Dairy Manure. Scientific Reports, 6(1), 30237. https://doi.org/10.1038/srep30237
Tan, X., Wei, W., Xu, C., Meng, Y., Bai, W., Yang, W., & Lin, A. (2020). Manganese-modified biochar for highly efficient sorption of cadmium. Environ Sci Pollut Res Int, 27(9), 9126-9134. https://doi.org/10.1007/s11356-019-07059-w
Tomczyk, A., Sokołowska, Z., & Boguta, P. (2020). Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects. In Reviews in Environmental Science and Bio/Technology (Vol. 19, Issue 1, pp. 191–215). https://doi.org/10.1007/s11157-020-09523-3
Thommes, M., Kaneko, K., Neimark, A. V., Olivier, J. P., Rodriguez-Reinoso, F., Rouquerol, J., & Sing, K. S. W. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 87(9-10), 1051-1069. https://doi.org/doi:10.1515/pac-2014-1117
Van Boeckel, T. P., Pires, J., Silvester, R., Zhao, C., Song, J., Criscuolo, N. G., Gilbert, M., Bonhoeffer, S., & Laxminarayan, R. (2019). Global trends in antimicrobial resistance in animals in low- and middle-income countries. Science, 365(6459). https://doi.org/10.1126/science.aaw1944
Ventola, C. L. (2015). The antibiotic resistance crisis: part 1: causes and threats. P & T: A Peer-Reviewed Journal for Formulary Management, 40(4), 277–283.
Vikesland, P. J., Pruden, A., Alvarez, P. J. J., Aga, D., Bürgmann, H., Li, X.-D., Manaia, C. M., Nambi, I., Wigginton, K., Zhang, T., & Zhu, Y.-G. (2017). Toward a Comprehensive Strategy to Mitigate Dissemination of Environmental Sources of Antibiotic Resistance. In Environmental Science & Technology (Vol. 51, Issue 22, pp. 13061–13069). https://doi.org/10.1021/acs.est.7b03623
Wales, A. D., & Davies, R. H. (2015). Co-Selection of Resistance to Antibiotics, Biocides and Heavy Metals, and Its Relevance to Foodborne Pathogens. Antibiotics (Basel, Switzerland), 4(4), 567–604.
Wang, B., Lan, J., Bo, C., Gong, B., & Ou, J. (2023). Adsorption of heavy metal onto biomass-derived activated carbon: review. RSC Adv, 13(7), 4275-4302.
https://doi.org/10.1039/d2ra07911a
Wang, G., Kong, Y., Yang, Y., Ma, R., Li, L., Li, G., & Yuan, J. (2022). Composting temperature directly affects the removal of antibiotic resistance genes and mobile genetic elements in livestock manure. Environmental Pollution, 303, 119174.
https://doi.org/https://doi.org/10.1016/j.envpol.2022.119174
Wang, J., Wang, L., Zhu, L., Wang, J., & Xing, B. (2020). Antibiotic resistance in agricultural soils: Source, fate, mechanism and attenuation strategy. In Critical Reviews in Environmental Science and Technology (pp. 1–43). https://doi.org/10.1080/10643389.2020.1835438
Walthert, L., Graf, U., Kammer, A., Luster, J., Pezzotta, D., Zimmermann, S., & Hagedorn, F. (2010). Determination of organic and inorganic carbon, δ 13 C, and nitrogen in soils containing carbonates after acid fumigation with HCl. Journal of Plant Nutrition and Soil Science, 173(2), 207-216. https://doi.org/10.1002/jpln.200900158
Wang, Z., Liu, G., Zheng, H., Li, F., Ngo, H. H., Guo, W., Liu, C., Chen, L., & Xing, B. (2015). Investigating the mechanisms of biochar’s removal of lead from solution. Bioresource Technology, 177, 308–317.
Wojewódzki, P., Lemanowicz, J., Debska, B., Haddad, S. A., & Tobiasova, E. (2022). The Application of Biochar from Waste Biomass to Improve Soil Fertility and Soil Enzyme Activity and Increase Carbon Sequestration. Energies, 16(1).
https://doi.org/10.3390/en16010380
Woolhouse, M. E. J., & Ward, M. J. (2013). Sources of Antimicrobial Resistance. Science, 341(6153), 1460–1461.
Wright, G. D. (2011). Molecular mechanisms of antibiotic resistance. In Chemical Communications (Vol. 47, Issue 14, p. 4055). https://doi.org/10.1039/c0cc05111j
Wright, G. D., & Poinar, H. (2012). Antibiotic resistance is ancient: implications for drug discovery. Trends in Microbiology, 20(4), 157–159.
Xiao, X., Chen, B., Chen, Z., Zhu, L., & Schnoor, J. L. (2018). Insight into Multiple and Multilevel Structures of Biochars and Their Potential Environmental Applications: A Critical Review. Environmental Science & Technology, 52(9), 5027–5047.
Xie, S., Wu, N., Tian, J., Liu, X., Wu, S., Mo, Q., & Lu, S. (2019). Review on the removal of antibiotic resistance genes from livestock manure by composting. IOP Conference Series: Earth and Environmental Science, 237(5), 052010. https://doi.org/10.1088/1755-1315/237/5/052010
Xu, Y., Xu, J., Mao, D., & Luo, Y. (2017). Effect of the selective pressure of sub-lethal level of heavy metals on the fate and distribution of ARGs in the catchment scale. Environmental Pollution , 220(Pt B), 900–908.
Ye, M., Sun, M., Feng, Y., Wan, J., Xie, S., Tian, D., Zhao, Y., Wu, J., Hu, F., Li, H., & Jiang, X. (2016). Effect of biochar amendment on the control of soil sulfonamides, antibiotic-resistant bacteria, and gene enrichment in lettuce tissues. Journal of Hazardous Materials, 309, 219–227.
Youngquist, C. P., Mitchell, S. M., & Cogger, C. G. (2016). Fate of Antibiotics and Antibiotic Resistance during Digestion and Composting: A Review. Journal of Environmental Quality, 45(2), 537-545. https://doi.org/https://doi.org/10.2134/jeq2015.05.0256
Yu, M., & Zhao, Y. (2019). Comparative resistomic analyses of Lysobacter species with high intrinsic multidrug resistance. Journal of Global Antimicrobial Resistance, 19, 320-327. https://doi.org/https://doi.org/10.1016/j.jgar.2019.05.008
Yue, Z., Zhang, J., Zhou, Z., Ding, C., Zhang, T., Wan, L., & Wang, X. (2022). Antibiotic degradation dominates the removal of antibiotic resistance genes during composting. Bioresource Technology, 344, 126229.
https://doi.org/https://doi.org/10.1016/j.biortech.2021.126229
Zammit, I., Marano, R. B. M., Vaiano, V., Cytryn, E., & Rizzo, L. (2020). Changes in Antibiotic Resistance Gene Levels in Soil after Irrigation with Treated Wastewater: A Comparison between Heterogeneous Photocatalysis and Chlorination. Environmental Science & Technology, 54(12), 7677–7686.
Zhang, H., Feng, X., Larssen, T., Shang, L., & Li, P. (2010). Bioaccumulation of Methylmercury versus Inorganic Mercury in Rice (Oryza sativa L.) Grain. Environmental Science & Technology, 44(12), 4499-4504.
https://doi.org/10.1021/es903565t
Zhang, W., Sturm, B. S. M., Knapp, C. W., & Graham, D. W. (2009). Accumulation of Tetracycline Resistance Genes in Aquatic Biofilms Due to Periodic Waste Loadings from Swine Lagoons. Environmental Science & Technology, 43(20), 7643-7650.
https://doi.org/10.1021/es9014508
Zhao, Y., Wang, X., Yao, G., Lin, Z., Xu, L., Jiang, Y., Jin, Z., Shan, S., & Ping, L. (2022). Advances in the Effects of Biochar on Microbial Ecological Function in Soil and Crop Quality. Sustainability, 14(16). https://doi.org/10.3390/su141610411
Zheng, H., Wang, X., Chen, L., Wang, Z., Xia, Y., Zhang, Y., Wang, H., Luo, X., & Xing, B. (2018). Enhanced growth of halophyte plants in biochar-amended coastal soil: roles of nutrient availability and rhizosphere microbial modulation. Plant, Cell & Environment, 41(3), 517–532.
Zheng, H., Wang, Z., Deng, X., Zhao, J., Luo, Y., Novak, J., Herbert, S., & Xing, B. (2013). Characteristics and nutrient values of biochars produced from giant reed at different temperatures. In Bioresource Technology (Vol. 130, pp. 463–471).
https://doi.org/10.1016/j.biortech.2012.12.044
Zheng, X., Fan, J., Xu, L., & Zhou, J. (2017). Effects of Combined Application of Biogas Slurry and Chemical Fertilizer on Soil Aggregation and C/N Distribution in an Ultisol. PLoS One, 12(1), e0170491. https://doi.org/10.1371/journal.pone.0170491
Zhou, D., Liu, D., Gao, F., Li, M., & Luo, X. (2017). Effects of Biochar-Derived Sewage Sludge on Heavy Metal Adsorption and Immobilization in Soils. Int J Environ Res Public Health, 14(7). https://doi.org/10.3390/ijerph14070681
Zhu, G., Wang, X., Yang, T., Su, J., Qin, Y., Wang, S., Gillings, M., Wang, C., Ju, F., Lan, B., Liu, C., Li, H., Long, X.-E., Wang, X., Jetten, M. S. M., Wang, Z., & Zhu, Y.-G. (2021). Air pollution could drive global dissemination of antibiotic resistance genes. The ISME Journal, 15(1), 270–281.
Zhu, Y.-G., Johnson, T. A., Su, J.-Q., Qiao, M., Guo, G.-X., Stedtfeld, R. D., Hashsham, S. A., & Tiedje, J. M. (2013). Diverse and abundant antibiotic resistance genes in Chinese swine farms. Proceedings of the National Academy of Sciences of the United States of America, 110(9), 3435–3440.
Zhu, Y.-G., Zhao, Y., Li, B., Huang, C.-L., Zhang, S.-Y., Yu, S., Chen, Y.-S., Zhang, T., Gillings, M. R., & Su, J.-Q. (2017). Continental-scale pollution of estuaries with antibiotic resistance genes. Nature Microbiology, 2, 16270.
鄧教毅,「重金屬生物有效性對於抗生素抗性基因在農地土壤的分佈與持續之影響」,國立中央大學碩士論文,2018。
張智聖,「抗生素抗性菌與抗性基因在污水處理程序中的動態變化」,國立中央大學碩士論文,2019。
陳垣維,「利用生物炭現地復育受多重重金屬污染之水稻田土壤」,國立中央大學碩士論文,2021。
鄭念媛,「不同料源製成之市售堆肥其抗生素抗性基因含量調查」,國立中央大學碩士論文,2022。
林子晞,「沼液沼渣的施用促成農地土壤抗生素抗性基因增殖的可能性探討」,國立中央大學碩士論文,2023 |