博碩士論文 108326001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:115 、訪客IP:3.147.6.176
姓名 常容(Chang Rong)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 以二氧化鈦/單壁奈米碳管/網版印刷電極 進行COD快速量測
(Rapid Detection of Chemical Oxygen Demand by Titanium Dioxide/Single-Walled Carbon Nanotubes/Screen-Printed Electrode)
相關論文
★ 偏光板TAC製程節水研究★ 應用碳足跡盤查於節能減碳策略之研究-以某太陽能多晶矽片製造廠為例
★ 不同形態擔體對流動式接觸床 (MBBR)去除氨氮效率之探討★ 以減壓蒸發法回收光阻廢液之可行性探討-以某化學材料製造廠為例
★ 行為安全執行策略探討-以某紡絲事業單位為例★ 以環保溶劑取代甲苯應用於工業用接著劑可行性之研究
★ AO+MBR+RO進行生活污水廠水再生最佳調配比例之研究-以鳳山溪污水處理廠為例★ 二氧化矽與氧化鋁廢水混合混凝處理之研究
★ 利用碳氣凝膠紙電吸附於二氯化銅水溶液現象之探討★ 非接觸式光學監測混凝系統技術之發展
★ 以光學影像連續監測銅廢水化學沉降之技術發展★ 以膠羽影像光訊號分析(FICA)技術監測高嶺土之化學混凝
★ 膠羽影像色譜分析技術 監測混凝程序之開發‒以地表原水為例★ 石門水庫分層取水對於前加氯與混凝成效之影響
★ 石門水庫分層取水對於平鎮淨水廠快濾池堵塞成因分析★ 地表水中氨氮之生物急毒性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 環境保護和水質監測是當今社會面臨的重要課題之一,化學需氧量(COD)的檢測對於評估水體中有機污染物的含量至關重要。傳統COD分析方法仍存在許多缺點,例如:分析時間長、氧化能力受限、有毒性試劑的二次污染等。而電化學方法不僅具有快速分析、高靈敏度、環境友善等優點,還可應用於現場監測及分析,使其逐漸受到關注。
本研究透過溶膠-凝膠法製備二氧化鈦/單壁奈米碳管複合材料並用於修飾電極,以線性掃描伏安法在最佳掃描條件(電解質為0.1 M氯化鈉緩衝溶液、掃描速度為0.15 V s–1)下進行水樣之COD分析,包括模擬水樣及真實水樣。其中,模擬水樣分為單一水樣及複合水樣,選用的有機物包含:鄰苯二甲酸氫鉀、葡萄糖、乙醇胺、水楊酸、二甲基甲醯胺。理論需氧量(ThOD)線性範圍介於20–100 mg L–1。此外,選用了其中三種有機物倆倆混合成不同比例的複合水樣,以探討有機物間彼此的相互作用。結果顯示,分析所得的峰值電流與ThOD皆呈現正相關。對於修飾電極的再現性分析,相對標準偏差為4.93%。真實水樣的部分則是將製備的修飾電極用於測定平鎮工業區污水廠之放流水,結果表明良好的線性特性使其在真實水樣中的應用變得更為實際。因此,證實了二氧化鈦/單壁奈米碳管/網版印刷電極在COD量測方面具有良好的潛力,使其在環境監測、水質管理和相關領域中具有廣泛的應用前景。
摘要(英) Environmental protection and water quality monitoring are one of the important issues facing today′s society. The detection of chemical oxygen demand (COD) is crucial for assessing the content of organic pollutants in water bodies. Traditional COD analysis methods still have many shortcomings, such as long analysis time, limited oxidation capacity, and secondary pollution from toxic reagents. The electrochemical method not only has the advantages of rapid analysis, high sensitivity, and environmental friendliness, but can also be applied to on-site monitoring and analysis, making it gradually attract attention.
In this study, titanium dioxide/single-walled carbon nanotube composites were prepared by the sol-gel method and used to modify screen-printed electrodes (SPE). Linear scan voltammetry (LSV) was used under optimal scanning conditions (the electrolyte was 0.1 M sodium chloride buffer solution, COD analysis of water samples, including simulated water samples and real water samples, is performed at a scanning speed of 0.15 V s–1). Among them, simulated water samples are divided into single water samples and composite water samples. The selected organic substances include: potassium hydrogen phthalate, glucose, ethanolamine, salicylic acid, and dimethylformamide. The theoretical oxygen demand (ThOD) linear range is between 20–100 mg L–1. In addition, three of the organic compounds were mixed into composite water samples in different proportions to explore the interaction between the organic compounds. The results showed that the peak current analyzed and ThOD showed a positive correlation. For the reproducibility analysis of the modified electrode, the relative standard deviation was 4.93%. For real water samples, the prepared modified electrode was used to measure the discharge water from the sewage treatment plant in Pingzhen Industrial Zone. The results showed that the good linear characteristics made its application in real water samples more practical. Therefore, it is confirmed that the TiO2/SWCNT/SPE has good potential in COD measurement, making it have broad application prospects in environmental monitoring, water quality management, and related fields.
關鍵字(中) ★ 化學需氧量
★ 線性掃描伏安法
★ 二氧化鈦
★ 單壁奈米碳管
★ 網版印刷電極
關鍵字(英) ★ chemical oxygen demand
★ linear sweep voltammetry
★ titanium dioxide
★ single-walled carbon nanotube
★ screen-printed electrode
論文目次 Contents
摘要 i
Abstract i
Contents iii
List of Figures v
List of Tables vii
Chapter 1 Introduction 1
1.1 Background 1
1.2 Objectives 3
Chapter 2 Literature Reviews 6
2.1 Detection method of organic compounds 6
2.1.1 Chemical oxygen demand (COD) 7
2.1.2 Detection of COD by electrochemical analysis method 7
2.1.3 Theoretical oxygen demand (ThOD) 9
2.2 Electrochemical analysis technology 10
2.2.1 Electrochemical reaction 10
2.2.2 Electrochemical system and principle 11
2.2.3 Voltammetric reactions and principles 14
2.3 Electrode modified materials for COD analysis 20
2.3.1 Carbon nanotube (CNT) 21
2.3.2 Titanium dioxide (TiO2) 25
2.3.3 Synergy of titanium dioxide and single-walled carbon nanotubes 31
2.4 Electrochemical analysis of organic matter 32
Chapter 3 Materials and Methods 34
3.1 Instrumentation 34
3.2 Materials and Chemicals 35
3.2.1 TiO2/SWCNT/SPE 35
3.2.2 Analyte for voltammetric analysis 36
3.3 Modification of working electrode (TiO2/SWCNT/SPE) 37
3.3.1 Functionalized SWCNT 37
3.3.2 Synthesis of TiO2/SWCNT composite 37
3.3.3 Preparation of TiO2/SWCNT /SPE 39
3.4 Characterization analysis of the TiO2/SWCNT composite 39
3.5 Electrochemical performance analysis 39
3.5.1 Optimizing the parameters of modified electrode 39
3.5.2 COD detection of single-compound simulated water sample 40
3.5.3 COD detection of multiple-compounds simulated water samples 41
3.5.4 Real water sample analysis 41
Chapter 4 Results and Discussion 42
4.1 Crystal phase analysis of composite (XRD) 43
4.2 Effect of scan rate on COD determination 44
4.3 COD analysis of TiO2/SWCNT/SPE in simulated water samples 46
4.3.1 Analysis of single-compound simulated water 46
4.3.2 Analysis of multi-compounds simulated water 57
4.4 Reproducibility of modified electrode 68
4.5 COD analysis of real water samples 69
Chapter 5 Conclusions and Suggestions 71
5.1 Conclusions 71
5.2 Suggestions 72
Reference 73
Appendix 86

List of Figures
Figure 1-1 Framework of this research 5

Figure 2-1 Effects of the electrochemical reaction for variables 11
Figure 2-2 Scheme of three-electrode system 12
Figure 2-3 The relationship between scan time and potential of different voltammetry 15
Figure 2-4 Typical cyclic voltammogram 16
Figure 2-5 Diffusion-controlled and adsorption-controlled of cyclic voltammetry 18
Figure 2-6 Linear sweep voltammogram, linear potential sweep starting Ei vs. time and resulting i-E curve 20
Figure 2-7 The diagram of single-walled carbon nanotubes and multi-walled carbon nanotubes (MWCNTs) 22
Figure 2-8 Crystal structures of TiO2 anatase, rutile, brookite and TiO2 (B) 26
Figure 2-9 The phase diagram of TiO2 27
Figure 2-10 The process of the sol-gel method for synthesizing crystalline TiO2 metal oxide 30

Figure 3-1 Purification processes of SWCNT 37

Figure 4-1 XRD pattern of SWCNT and TiO2/SWCNT composite. 43
Figure 4-2 The LSV response of TiO2/SWCNT/SPE in 50 mg L-1 of KHP in 0.1 M NaCl with different scan rate 46
Figure 4-3 The LSV response of KHP and the correlation between oxidation peak current and KHP of 20 to 100 mg L–1 48
Figure 4-4 The LSV response of glucose and the correlation between oxidation peak current and glucose of 20 to 100 mg L–1 50
Figure 4-5 The LSV response of SA and the correlation between oxidation peak current and SA of 20 to 100 mg L–1 52
Figure 4-6 The LSV response of MEA and the correlation between oxidation peak current and MEA of 20 to 100 mg L–1 54
Figure 4-7 The LSV response of DMF and the correlation between oxidation peak current and DMF of 20 to 100 mg L–1 56
Figure 4-8 The LSV response in the mixture of MEA and KHP with different ratio of ThOD 60
Figure 4-9 Peak current trends of MEA and KHP mixed water samples at different ratio. 61
Figure 4-10 The LSV response in the mixture of MEA and SA with different ratio of ThOD 62
Figure 4-11 Peak current trends of MEA and SA mixed water samples at different ratio. 63
Figure 4-12 The LSV response in the mixture of KHP and SA with different ratio of ThOD 65
Figure 4-13 Peak current trends of KHP and SA mixed water samples at different ratio. 66
Figure 4-14 Reproducibility of six modified electrode in 0.1 M NaCl containing KHP with 50 mg L–1 68
Figure 4-15 The correlation between peak current and COD of four outflow water 69
Figure 4-16 Blind sample test results using effluent from the sewage treatment plant in Pingzhen Industrial Park. 70

List of Tables
Table 4-1 The fitting equation and adjusted R2 in the mixture of MEA and KHP with five different ThOD ratios. 61
Table 4-2 The fitting equation and adjusted R2 in the mixture of MEA and SA with five different ThOD ratios. 64
Table 4-3 The fitting equation and adjusted R2 in the mixture of KHP and SA with five different ThOD ratios. 67
參考文獻 Reference
Ana, M.D.P., "Chemical Functionalization of Carbon Nanotubes with Polymers: A Brief Overview", Macromal, 1, 64-83(2021).
Aqel, A., Abou El-Nour, K.M.M., Ammar, R.A.A., and Al-Warthan, A.,"Carbon nanotubes, science and technology part (I) structure, synthesis and characterisation", Arabian Journal of Chemistry, 5, 1-23(2012).
Arvinte, A., Mahosenaho, M., Pinteala, M., Sesay, A.M., and Virtanen, V.,"Electrochemical oxidation of p-nitrophenol using graphene-modified electrodes, and a comparison to the performance of MWNT-based electrodes", Microchimica Acta, 174, 337-343(2011).
Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K., and Taga, Y.,"Visible-light photocatalysis in nitrogen-doped titanium oxides", Science, 293, 269-271(2001).
Asmatulu, R.,"Nanocoatings for corrosion protection of aerospace alloys", Corrosion Protection and Control Using Nanomaterials, 357-374(2012).
Badr, I.H.A., Hassan, H.H., Hamed, E., and Abdel-Aziz, A.M.,"Sensitive and Green Method for Determination of Chemical Oxygen Demand Using a Nano-copper Based Electrochemical Sensor", Electroanalysis, 29, 2401-2409(2017).
Bagheri, S., Shameli, K., and Abd Hamid, S.B.,"Synthesis and Characterization of Anatase Titanium Dioxide Nanoparticles Using Egg White Solution via Sol-Gel Method", Journal of Chemistry, 2013, 5(2013).
Bai, J., and Zhou, B.,"Titanium dioxide nanomaterials for sensor applications", Chemical Reviews, 114, 10131-10176(2014).
Baker, J.R., Milke, M.W., and Mihelcic, J.R.,"Relationship between chemical and theoretical oxygen demand for specific classes of organic chemicals", Water Research, 33, 327-334(1999).
Banerjee, S., and Wong, S.S.,"Synthesis and characterization of carbon nanotube-nanocrystal heterostructures", Nano Letters, 2, 195-200(2002).
Baojian, Z., Liming, H., Meihua, T., Kenneth, W., Hunter, Y.F., Qianwen, S., Jikui, W., Guosong, C.,"A nickel nanoparticle/nafion-graphene oxide modified screen-printed electrode for amperometric determination of chemical oxygen demands", Microchimica Acta, 185, 385(2018).
Bard, A.J., and Faulkner, L.R.,"Electrochemical Methods: Fundamentals and Applications", Springer, New York(2001).
Baro, M., Hussain, A.A., and Pal, A.R.,"Enhanced light sensing performance of a hybrid device developed using as-grown vertically aligned multiwalled carbon nanotubes on TCO substrates", Rsc Advances, 4, 46970-46975(2014).
Bilgil, H.,"New grey forecasting model with its application and computer code [J]", AIMS Mathematics, 6, 1497-1514(2021).
Carp, O., Huisman, C.L., and Reller, A.,"Photoinduced reactivity of titanium dioxide", Progress in Solid State Chemistry, 32, 33-177(2004).
Cesarino, I., Cesarino, V., Moraes, F.C., Ferreira, T.C.R., Lanza, M.R.V., Mascaro, L.H., and Machado, S.A.S.,"Electrochemical degradation of benzene in natural water using silver nanoparticle-decorated carbon nanotubes", Materials Chemistry and Physics, 141, 304-309(2013).
Chang, S.T., Lin, K.Y.A., and Lu, C.S.,"Efficient adsorptive removal of Tetramethylammonium hydroxide (TMAH) from water using graphene oxide", Separation and Purification Technology, 133, 99-107(2014).
Chang, S.T., Lu, C.Y., and Lin, K.Y.A.,"Comparisons of kinetics, thermodynamics and regeneration of tetramethylammonium hydroxide adsorption in aqueous solution with graphene oxide, zeolite and activated carbon", Applied Surface Science, 326, 187-194(2015).
Chen, H., Zhang, J., Chen, Q., Li, J., Li, D., Dong, C., Liu, Y., Zhou, B., Shang, S., and Cai, W.,"Assessment of a COD analytical method based on the photoelectrocatalysis of a TiO2 nanotube array sensor", Analytical Methods, 4, (2012).
Chen, H.C., Zhang, J.L., Chen, Q.P., Li, J.H., Li, D., Dong, C.P., Liu, Y.B., Zhou, B.X., Shang, S.C., and Cai, W.M.,"Assessment of a COD analytical method based on the photoelectrocatalysis of a TiO2 nanotube array sensor", Analytical Methods, 4, 1790-1796(2012).
Chen, J.S., Zhang, J.D., Xian, Y.Z., Ying, X.Y., Liu, M.C., and Jin, L.T.,"Preparation and application of TiO2 photocatalytic sensor for chemical oxygen demand determination in water research", Water Research, 39, 1340-1346(2005).
Christopher, P., Ehsan, A., Muhammad, A., Mohammed, P., "DFT Studies on Thermal and Oxidative Degradation of Monoethanolamine", Industrial & Engineering Chemistry Research, 59, 15121-15392(2020).
Dayakar, T., Rao, K.V., Vinodkumar, M., Bikshalu, K., Chakradhar, B., and Rao, K.R.,"Novel synthesis and characterization of Ag@ TiO2 core shell nanostructure for non-enzymatic glucose sensor", Applied Surface Science, 435, 216-224(2018).
Denuault, G., Sosna, M., and Williams, K.J.,"Handbook of electrochemistry" Classical experiments, Elsevier, 431-469(2007).
Detpisuttitham, W., Phanthong, C., Ngamchana, S., Rijiravanich, P., and Surareungchai, W.,"Electrochemical Detection of Salicylic Acid in Pickled Fruit/Vegetable and Juice", Journal of Analysis and Testing, 4, 291–297(2020).
Dhorabe, P.T., Lataye, D.H., and Ingole, R.S.,"Removal of 4-nitrophenol from aqueous solution by adsorption onto activated carbon prepared from Acacia glauca sawdust", Water Science and Technology, 73, 955-966(2016).
Diantoro, M., Kusumaatmaja, A., and Triyana, K.,"Study on photocatalytic properties of TiO2 nanoparticle in various pH condition", Journal of Physics: Conference Series, 1011, 012069(2018).
Diana, R.E., Muhamad, D.P., Lintang, K.S., Geometry, A.U.S., Sahrul, H., Takahiro, T., Nobuhiro, K., Iman, R., "Heterophase Polymorph of TiO2 (Anatase, Rutile, Brookite, TiO2 (B)) for Efficient Photocatalyst: Fabrication and Activity", MDPI, 13, 704(2023).
Duong, T.T., Nguyen, Q.D., Hong, S.K., Kim, D., Yoon, S.G., and Pham, T.H.,"Enhanced Photoelectrochemical Activity of the TiO2 /ITO Nanocomposites Grown onto Single-Walled Carbon Nanotubes at a Low Temperature by Nanocluster Deposition", Advanced Materials, 23, 5557-5574(2011).
Elgrishi, N., Rountree, K.J., McCarthy, B.D., Rountree, E.S., Eisenhart, T.T., and Dempsey, J.L.,"A Practical Beginner′s Guide to Cyclic Voltammetry", Journal of Chemical Education, 95, 197-206(2018).
Elsa, M.M., Ademar, W., Tayane, A.F., Ronaldo, C.F., Osvaldo, N.O.J.,"A sensitive electrochemical detection of metronidazole in synthetic serum and urine samples using low-cost screen-printed electrodes modified with reduced graphene oxide and C60", Journal of Pharmaceutical Analysis, 11, 646-652(2021).
Enache, T.A., and Oliveira-Brett, A.M.,"Phenol and para-substituted phenols electrochemical oxidation pathways", Journal of Electroanalytical Chemistry, 655, 9-16(2011).
Farzan, H., Mohammad, R.K., Ali, A.I., Sina, M., Babak, K.,"LED-assisted sonocatalysis of sulfathiazole and pharmaceutical wastewater using N,Fe co-doped TiO2@SWCNT: Optimization, performance and reaction mechanism studies", Journal of Water Process Engineering, 38, 101693(2020).
Gao, G., Jeevarajan, J.A., and Kispert, L.D.,"Cyclic voltammetry and spectroelectrochemical studies of cation radical and dication adsorption behavior for 7,7′-diphenyl-7,7′-diapocarotene", Journal of Electroanalytical Chemistry, 411, 51-56(1996).
Gao, T.Y., Sun, G.C., Cheng, F.Y., Dai, K., Chen, H., Deng, K.J., and Huang, Q.Y.,"Enhanced visible-light-driven photoactivities of single-walled carbon nanotubes coated with N doped TiO2 nanoparticles", Rsc Advances, 5, 28973-28979(2015).
Gooding, J.J.,"Nanostructuring electrodes with carbon nanotubes: A review on electrochemistry and applications for sensing", Electrochimica Acta, 50, 3049-3060(2005).
Guanlan, W., Huizi, Z., Yi, X., Chengzhi, W., Xing, Y., Xiaolin, Z., "A sensitive electrochemical sensor for environmental toxicity monitoring based on tungsten disulfide nanosheets/hydroxylated carbon nanotubes nanocomposite", Chemosphere, 286, 131602(2022).
Gugu, H.M., Nobanathi, W.M., Sandile, S.G., "Voltammetry", IntechOpen, 77-90(2019).
Guo, X.L., Li, D., Wan, J.F., and Yu, X.J.,"Preparation and electrochemical property of TiO2/Nano-graphite composite anode for electro-catalytic degradation of ceftriaxone sodium", Electrochimica Acta, 180, 957-964(2015).
Hamzaçebi, C.,"Primary energy sources planning based on demand forecasting: The case of Turkey", Journal of Energy in Southern Africa, 27, 1-10(2016).
Harvey, D.,"Analytical Chemistry 2.0 :Voltammetric_Methods", DePauw University, U.S.A.(2019).
Hashimoto, K., Wasada, K., Osaki, M., Shono, E., Adachi, K., Toukai, N., Kominami, H., and Kera, Y.,"Photocatalytic oxidation of nitrogen oxide over titania-zeolite composite catalyst to remove nitrogen oxides in the atmosphere", Applied Catalysis B-Environmental, 30, 429-436(2001).
Hassan, H.H., Badr, I.H.A., Abdel-Fatah, H.T.M., Elfeky, E.M.S., and Abdel-Aziz, A.M.,"Low cost chemical oxygen demand sensor based on electrodeposited nano-copper film", Arabian Journal of Chemistry, 11, 171-180(2018).
Heras, A., Colina, A., Lopez-Palacios, J., Ayala, P., Sainio, J., Ruiz, V., and Kauppinen, E.I.,"Electrochemical purification of carbon nanotube electrodes", Electrochemistry Communications, 11, 1535-1538(2009).
Hou, P.-X., Liu, C., and Cheng, H.-M.,"Purification of carbon nanotubes", Carbon, 46, 2003-2025(2008).
Huang, X.W., Zhu, Y.Y., Yang, W.Q., Jiang, A.H., Jin, X.Q., Zhang, Y.R., Yan, L., Zhang, G.S., and Liu, Z.J.,"A Self-Supported CuO/Cu Nanowire Electrode as Highly Efficient Sensor for COD Measurement", Molecules, 24, 13(2019).
Hur, J., Lee, B.M., Lee, T.H., and Park, D.H.,"Estimation of Biological Oxygen Demand and Chemical Oxygen Demand for Combined Sewer Systems Using Synchronous Fluorescence Spectra", Sensors, 10, 2460-2471(2010).
Iijima, S.,"Helical microtubules of graphitic carbon", Nature Materials, 354, 56-58(1991).
Ji, H.X., Zhao, X., Qiao, Z.H., Jung, J., Zhu, Y.W., Lu, Y.L., Zhang, L.L., MacDonald, A.H., and Ruoff, R.S.,"Capacitance of carbon-based electrical double-layer capacitors", Nature Communications, 5, 7(2014).
Jiang, R., Chai, X.S., Zhang, C., and Tang, H.L.,"A Dual-Wavelength Spectroscopic Method for the Low Chemical Oxygen Demand Determination", Spectroscopy and Spectral Analysis, 31, 2007-2010(2011).
Jin, Q.L., Fujishima, M., and Tada, H.,"Visible-Light-Active Iron Oxide-Modified Anatase Titanium(IV) Dioxide", Journal of Physical Chemistry C, 115, 6478-6483(2011).
Jung, K.H., Hong, J.S., Vittal, R., and Kim, K.J.,"Enhanced photocurrent of dye-sensitized solar cells by modification of TiO2 with carbon nanotubes", Chemistry Letters, 864-865(2002).
Kabir, H., Zhu, H.Y., Lopez, R., Nicholas, N.W., McLlroy, D.N., Echeverria, E., May, J., and Cheng, I.F.,"Electrochemical determination of chemical oxygen demand on functionalized pseudo-graphite electrode", Journal of Electroanalytical Chemistry, 851, 8(2019).
Kristi, P.C., Neogi, N., Sabbir, H.N., Tahzib, I.P.,"A mini overview of miscellaneous uses of TiO_2 based nanomaterials", Proceedings of International Exchange and Innovation Conference on Engineering & Sciences, 8, 221-227(2019).
Kruusenberg, I., Alexeyeva, N., Tammeveski, K., Kozlova, J., Matisen, L., Sammelselg, V., Solla-Gullon, J., and Feliu, J.M.,"Effect of purification of carbon nanotubes on their electrocatalytic properties for oxygen reduction in acid solution", Carbon, 49, 4031-4039(2011).
Kumaravel, A., and Chandrasekaran, M.,"A biocompatible nano TiO2/nafion composite modified glassy carbon electrode for the detection of fenitrothion", Journal of Electroanalytical Chemistry, 650, 163-170(2011).
Lettmann, C., Hildenbrand, K., Kisch, H., Macyk, W., and Maier, W.F.,"Visible light photodegradation of 4-chlorophenol with a coke-containing titanium dioxide photocatalyst", Applied Catalysis B-Environmental, 32, 215-227(2001).
Leta, T.J., Krishnaraj, R., Bulcha, B., Abel, S., Nagaraj, N., "Experimental investigation on the impacts of annealing temperatures on titanium dioxide nanoparticles structure, size and optical properties synthesized through sol-gel methods", Materials Today: Proceedings, 45, 5752-5758(2021).
Li, D.,"TiO₂ Photocatalytic Degradation of Waste Activated Sludge and Potassium Hydrogen Phthalate in Wastewater for Enhancing Biogas Production", Ph.D. thesis, Graduate School of Life and Environmental Sciences at the University of Tsukuba, Japan(2013).
Li, J., Tong, Y., Guan, L., Wu, S., and Li, D.,"Optimization of COD determination by UV–vis spectroscopy using PLS chemometrics algorithms", 174, 591-599(2018).
Li, J.M., Meng, X.G., Hu, C.W., and Du, J.,"Adsorption of phenol, p-chlorophenol and p-nitrophenol onto functional chitosan", Bioresource Technology, 100, 1168-1173(2009).
Li, L., Zhang, S., Li, G., and Zhao, H.J.A.c.a.,"Determination of chemical oxygen demand of nitrogenous organic compounds in wastewater using synergetic photoelectrocatalytic oxidation effect at TiO2 nanostructured electrode", 754, 47-53(2012).
Li, L.H., and Zhang, W.D.,"Preparation of carbon nanotubes supported platinum nanoparticles by an organic colloidal process for nonenzymatic glucose sensing", Microchimica Acta, 163, 305-311(2008).
Li, S.X., Zheng, F.Y., Cai, W.L., Han, A.Q., and Xie, Y.K.,"Surface modification of nanometer size TiO2 with salicylic acid for photocatalytic degradation of 4-nitrophenol", Journal of Hazardous Materials, 135, 431-436(2006).
Li, X.L., Lin, D.H., Lu, K.C., Chen, X., Yin, S.Y., Li, Y., Zhang, Z.Y., Tang, M.H., and Chen, G.S.,"Graphene oxide orientated by a magnetic field and application in sensitive detection of chemical oxygen demand", Analytica Chimica Acta, 1122, 31-38(2020).
Liang, Y., Sun, S., Deng, T., Ding, H., Chen, W., and Chen, Y.,"The preparation of TiO2 film by the sol-gel method and evaluation of its self-cleaning property", 11, 450(2018).
Liu, L.Q., Deng, G.Z., and Shi, X.Y.,"Adsorption characteristics and mechanism of p-nitrophenol by pine sawdust biochar samples produced at different pyrolysis temperatures", Scientific Reports, 10, 11(2020).
Lixia, Y., Yanyan, L., Liming, Y., Shenglian, L., Xubiao, L., Weili, D., Tingting, L., Yan, L., "Enhanced photocatalytic activity of hierarchical titanium dioxide microspheres with combining carbon nanotubes as “e-bridge”", Journal of Hazardous Materials, 367, 550-558(2019).
Luo, H.X., Shi, Z.J., Li, N.Q., Gu, Z.N., and Zhuang, Q.K.,"Investigation of the electrochemical and electrocatalytic behavior of single-wall carbon nanotube film on a glassy carbon electrode", Analytical Chemistry, 73, 915-920(2001).
Ma, Y.J., Tie, Z.Z., Zhou, M., Wang, N., Cao, X.J., and Xie, Y.,"Accurate determination of low-level chemical oxygen demand using a multistep chemical oxidation digestion process for treating drinking water samples", Analytical Methods, 8, 3839-3846(2016).
Manna, K., and Srivastava, S.K.,"Contrasting Role of Defect-Induced Carbon Nanotubes in Electromagnetic Interference Shielding", Journal of Physical Chemistry C, 122, 19913-19920(2018).
Meekins, B.H., and Kamat, P.V.,"Got TiO2 Nanotubes? Lithium Ion Intercalation Can Boost Their Photoelectrochemical Performance", Acs Nano, 3, 3437-3446(2009).
Mendive, C.B., Blesa, M.A., and Bahnemann, D.,"The adsorption and photodegradation of oxalic acid at the TiO2 surface", Water Science and Technology, 55, 139-145(2007).
Mironyuk, I.F., Soltys, L.M., Tatarchuk, T.R., Savka, Kh.O.,"Methods of Titanium Dioxide Synthesis (Review)", Physics and Chemistry of Solid State, 21, 3(2020).
Mohammad, A.H., Mohammad, I.H., Mohebul, A., Md, F.I.,"Recent Developments in the Utilization of Nanomaterials for Sensing Platforms", Recent Developments in Green Electrochemical Sensors: Design, Performance, and Applications, 4, 61-69(2023)
Montella, C., Tezyk, V., Effori, E., Laurencin, J., Siebert, E., "Linear sweep and cyclic voltammetry of porous mixed conducting oxygen electrode: Formal study of insertion, diffusion and chemical reaction model", Solid State Ionics, 359, 115485(2021).
Morrin, A., Killard, A.J., and Smyth, M.R.,"Electrochemical characterization of commercial and home-made screen-printed carbon electrodes", Analytical Letters, 36, 2021-2039(2003).
Mritunjaya, P., Vivek, K.S., Ranbir, S., "Metal oxides nanoparticles via sol–gel method: a review on synthesis, characterization and applications", Journal of Materials Science: Materials in Electronics, 31, 3729-3749(2020)
Nakamura, I., Negishi, N., Kutsuna, S., Ihara, T., Sugihara, S., and Takeuchi, E.,"Role of oxygen vacancy in the plasma-treated TiO2 photocatalyst with visible light activity for NO removal", Journal of Molecular Catalysis a-Chemical, 161, 205-212(2000).
Nassoko, D., Li, Y.F., Wang, H., Li, J.L., Li, Y.Z., and Yu, Y.,"Nitrogen-doped TiO2 nanoparticles by using EDTA as nitrogen source and soft template: Simple preparation, mesoporous structure, and photocatalytic activity under visible light", Journal of Alloys and Compounds, 540, 228-235(2012).
Nguyen, M.T., Nguyen, C.K., Vu, T.M.P., Duong, Q.V., Pham, T.L., and Nguyen, T.C.,"A study on carbon nanotube titanium dioxide hybrids: experiment and calculation", Advances in Natural Sciences-Nanoscience and Nanotechnology, 5, 6(2014).
Nie, X., Zhuo, S., Maeng, G., and Sohlberg, K.,"Doping of TiO2 Polymorphs for Altered Optical and Photocatalytic Properties", International Journal of Photoenergy, (2009).
Nosaka, Y., and Nosaka, A.Y.,"Generation and detection of reactive oxygen species in photocatalysis", Chemical reviews, 117, 11302-11336(2017).
Ola, O., and Maroto-Valer, M.M.,"Review of material design and reactor engineering on TiO2 photocatalysis for CO2 reduction", Journal of Photochemistry and Photobiology C-Photochemistry Reviews, 24, 16-42(2015).
Pan, B., and Xing, B.S.,"Adsorption Mechanisms of Organic Chemicals on Carbon Nanotubes", Environmental Science & Technology, 42, 9005-9013(2008).
Park, J., and Eun, C.,"Electrochemical Behavior and Determination of Salicylic Acid at Carbon-fiber Electrodes", Electrochimica Acta, 194, 346-356(2016).
Park, J., Show, Y., Quaiserova, V., Galligan, J.J., Fink, G.D., and Swain, G.M.,"Diamond microelectrodes for use in biological environments", Journal of Electroanalytical Chemistry, 583, 56-68(2005).
Pawar, M., Topcu Sendoğdular, S., and Gouma, P.,"A brief overview of TiO2 photocatalyst for organic dye remediation: case study of reaction mechanisms involved in Ce- TiO2 photocatalysts system", Journal of Nanomaterials, 2018, (2018).
Pop, A., Ilinoiu, E., Manea, F., Pisoi, I., and Burtica, G.,"Determination of organic pollutants from water by electrochemical methods", Environmental Engineering and Management Journal, 10, 75-80(2011).
Prahas, D., Liu, J.C., Ismadji, S., and Wang, M.J.,"Adsorption of Tetramethylammonium Hydroxide on Activated Carbon", Journal of Environmental Engineering-Asce, 138, 232-238(2012).
Praveen, P., Viruthagiri, G., Mugundan, S., and Shanmugam, N.,"Structural, optical and morphological analyses of pristine titanium di-oxide nanoparticles - Synthesized via sol-gel route", Spectrochimica Acta Part a-Molecular and Biomolecular Spectroscopy, 117, 622-629(2014).
Punetha, V.D., Rana, S., Yoo, H.J., Chaurasia, A., McLeskey, J.T., Ramasamy, M.S., Sahoo, N.G., and Cho, J.W.,"Functionalization of carbon nanomaterials for advanced polymer nanocomposites: A comparison study between CNT and graphene", Progress in Polymer Science, 67, 1-47(2017).
Rajendran, S., Nguyen, T.A., Kakooei, S., Li, Y., and Yeganeh, M.,"Corrosion Protection at the Nanoscale", Elsevier, (2020).
Ruggero, R., Deepak, P., Bruce, E.L., "Chronoamperometry and linear sweep voltammetry reveals the adverse impact of high carbonate buffer concentrations on anode performance in microbial fuel cells", Journal of Power Sources, 476, 228715(2020).
Sahu, A., Jain, A., and Gulbake, A.,"The role of carbon nanotubes in nanobiomedicines", International Journal of Pharmacy and Pharmaceutical Sciences, 9, (2017).
Saranya, S., Feminus, J.J., Geetha, B., and Deepa, P.N.,"Simultaneous detection of glutathione, threonine, and glycine at electrodeposited RuHCF/rGO-modified electrode", Ionics, 25, 5537-5550(2019).
Scott, K.,"Electrochemical principles and characterization of bioelectrochemical systems", Microbial Electrochemical and Fuel Cells, 29-66(2016).
Siddiqui, H.,"Modification of Physical and Chemical Properties of Titanium Dioxide (TiO2) by Ion Implantation for Dye Sensitized Solar Cells", Ion Beam Techniques and Applications, (2018).
Silva, C.G., and Faria, J.L.,"Photocatalytic oxidation of benzene derivatives in aqueous suspensions: Synergic effect induced by the introduction of carbon nanotubes in a TiO2 matrix", Applied Catalysis B-Environmental, 101, 81-89(2010).
Singh, S., and Yenkie, M.K.N.,"Scavenging of priority organic pollutants from aqueous waste using granular activated carbon", Journal of the Chinese Chemical Society, 53, 325-334(2006).
Shivsharan, M.M., Shankar, S.N., Balaji, B.M., Vijay, S.S., Shubham, J.A., Bhaskar, R.S., "Nanostructured Ce/CeO2-rGO: Highly Sensitive and Selective Electrochemical Hydrogen Sulfide (H2S) Sensor", Electrocatalysis, 14, 857-868(2023).
Srinivasan, S., and Bommaraju, T.,"Electrochemical Technologies and Applications", Fuel Cells, 93-186(2006).
Su, Y.Y., Li, X.H., Chen, H., Lv, Y., and Hou, X.D.,"Rapid, sensitive and on-line measurement of chemical oxygen demand by novel optical method based on UV photolysis and chemiluminescence", Microchemical Journal, 87, 56-61(2007).
Sugawara, H., Tajima, Y., and Ohmi, T.,"A study on reclaimed photoresist developer using an electrodialysis method", Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 41, 2374-2379(2002).
Tahir, M.B., Rafique, M., Rafique, M.S., Nawaz, T., Rizwan, M., and Tanveer, M.,"Photocatalytic nanomaterials for degradation of organic pollutants and heavy metals", Nanotechnology and Photocatalysis for Environmental Applications, 119-138(2020).
Tiwari, D., Sailo, L., Yoon, Y.Y., and Lee, S.M.,"Efficient use of ferrate(VI) in the oxidative removal of potassium hydrogen phthalate from aqueous solutions", Environmental Engineering Research, 23, 129-135(2018).
Toghill, K.E., and Compton, R.G.,"Electrochemical Non-enzymatic Glucose Sensors: A Perspective and an Evaluation", International Journal of Electrochemical Science, 5, 1246-1301(2010).
Torriero, A.A.J., Luco, J.M., Sereno, L., and Raba, J.,"Voltammetric determination of salicylic acid in pharmaceuticals formulations of acetylsalicylic acid", Talanta, 62, 247-254(2004).
Trang, N.T.H., Ali, Z., and Kang, D.J.,"Mesoporous TiO2 Spheres Interconnected by Multiwalled Carbon Nanotubes as an Anode for High-Performance Lithium Ion Batteries", Acs Applied Materials & Interfaces, 7, 3676-3683(2015).
Vera, M., Magda, Z., Hana, T., Pavel, J., Mykhailo, V., Lesia, P., Ladislav, K., "Work Function of TiO2 (Anatase, Rutile, and Brookite) Single Crystals: Effects of the Environment", The journal of physical chemistry, 125, 1902-1912(2021).
Wandelt, K.,"Encyclopedia of interfacial chemistry: surface science and electrochemistry", Elsevier, (2018).
Wang, J.J., Yin, G.P., Zhang, J., Wang, Z.B., and Gao, Y.Z.,"High utilization platinum deposition on single-walled carbon nanotubes as catalysts for direct methanol fuel cell", Electrochimica Acta, 52, 7042-7050(2007).
Wang, S., Pei, L.Z., Xie, Y.K., and Cai, Z.Y.,"Nanowire Modified Electrode for Sensitive Measurement of Nicotinic Acid", International Journal of Nanoscience, 13, (2014).
Wang, W.D., Serp, P., Kalck, P., and Faria, J.L.,"Visible light photodegradation of phenol on MWNT- TiO2 composite catalysts prepared by a modified sol-gel method", Journal of Molecular Catalysis a-Chemical, 235, 194-199(2005).
Wang, X.X., Yang, N.J., and Wan, Q.J.,"Cyclic voltammetric response of nicotinic acid and nicotinamide on a polycrystalline gold electrode", Electrochimica Acta, 52, 361-368(2006).
Wenchao, D., F. Javier del Campo, Martí G., César Fernández-Sánchez, "In-field one-step measurement of dissolved chemical oxygen demand with an integrated screen-printed electrochemical sensor", Sensors and Actuators B: Chemical, 369, 132304(2022).
Woan, K., Pyrgiotakis, G., and Sigmund, W.,"Photocatalytic carbon‐nanotube–TiO2 composites", Advanced Materials, 21, 2233-2239(2009).
Wu, C.H., Kuo, C.Y., and Chen, S.T.,"Synergistic effects between TiO2 and carbon nanotubes (CNTs) in a TiO2/CNTs system under visible light irradiation", Environmental Technology, 34, 2513-2519(2013).
Wu, J.W., Wang, Q., Umar, A., Sun, S.H., Huang, L., Wang, J.Y., and Gao, Y.S.,"Highly sensitive p-nitrophenol chemical sensor based on crystalline alpha-MnO2 nanotubes", New Journal of Chemistry, 38, 4420-4426(2014).
Wulan, T.W., Budi, R.P., Achmad, F., Desi, R., Eti, R., Rudi, H., "A Brief Review on Fabrication of Screen-Printed Carbon Electrode: Materials and Techniques", Indonesian Journal o fChemical Research, 8, 210-218(2021).
Xiong, X.X., Li, C., Yang, X.Y., Shu, Y., Jin, D.Q., Zang, Y., Shu, Y.S., Xu, Q., and Hu, X.Y.,"In situ grown TiO2 nanorod arrays functionalized by molecularly imprinted polymers for salicylic acid recognition and detection", Journal of Electroanalytical Chemistry, 873, 10(2020).
Yahaya, M.Z., Azam, M.A., Teridi, M.A.M., Singh, P.K., and Mohamad, A.A.,"Recent Characterisation of Sol-Gel Synthesised TiO2 Nanoparticles", (2017).
Yang, J.Q., Chen, J.W., Zhou, Y.K., and Wu, K.B.,"A nano-copper electrochemical sensor for sensitive detection of chemical oxygen demand", Sensors and Actuators B-Chemical, 153, 78-82(2011).
Yao, L.D., Tang, Y.W., and Huang, Z.F.,"Nicotinic acid voltammetric sensor based on molecularly imprinted polymer membrane-modified electrode", Analytical Letters, 40, 677-688(2007).
Yao, Y., Li, G., Ciston, S., Lueptow, R.M., and Gray, K.A.,"Photoreactive TiO2/carbon nanotube composites: Synthesis and reactivity", Environmental Science & Technology, 42, 4952-4957(2008).
Zhang, J.L., Zhou, B.X., Zheng, Q., Li, J.H., Bai, J., Liu, Y.B., and Cai, W.M.,"Photoelectrocatalytic COD determination method using highly ordered TiO2 nanotube array", Water Research, 43, 1986-1992(2009).
Zhang, Z.Y., Chang, X., and Chen, A.C.,"Determination of chemical oxygen demand based on photoelectrocatalysis of nanoporous TiO2 electrodes", Sensors and Actuators B-Chemical, 223, 664-670(2016).
Zhao, F.M., Yan, F., Qian, Y., Xu, Y.H., and Ma, C.,"Roughened TiO2 film electrodes for electrocatalytic reduction of oxalic acid to glyoxylic acid", Journal of Electroanalytical Chemistry, 698, 31-38(2013).
Zheng, Q., Zhou, B.X., Bai, J., Li, L.H., Jin, Z.J., Zhang, J.L., Li, J.H., Liu, Y.B., Cai, W.M., and Zhu, X.Y.,"Self-organized TiO2 nanotube array sensor for the determination of chemical oxygen demand", Advanced Materials, 20, 1044-+(2008).
Zhou, W., Pan, K., Qu, Y., Sun, F.F., Tian, C.G., Ren, Z.Y., Tian, G.H., and Fu, H.G.,"Photodegradation of organic contamination in wastewaters by bonding TiO2/single-walled carbon nanotube composites with enhanced photocatalytic activity", Chemosphere, 81, 555-561(2010).
Zhu, X.L., Yuan, C.W., Bao, Y.C., Yang, J.H., and Wu, Y.Z.,"Photocatalytic degradation of pesticide pyridaben on TiO2 particles", Journal of Molecular Catalysis a-Chemical, 229, 95-105(2005).
Zia, A.I.,"Smart electrochemical sensing system for the real time detection of endocrine disrupting compounds and hormones", Ph.D. thesis, Electronics Engineering at Massey University, New Zealand(2015)
Zielinska-Jurek, A., Kowalska, E., Sobczak, J.W., Lisowski, W., Ohtani, B., and Zaleska, A.,"Preparation and characterization of monometallic (Au) and bimetallic (Ag/Au) modified-titania photocatalysts activated by visible light", Applied Catalysis B-Environmental, 101, 504-514(2011).
胡啟章,「電化學原理與方法」, 五南圖書出版股份有限公司, 台北(2011).
梁昇致,「利用TiO2電極檢測生活污水中COD之研究」, 碩士論文, 朝陽科技大學環境工程與管理系碩士班, 台中(2013).
陳凱欣,「以溶膠凝膠法製備MWCNTs/TiO2及其光催化特性」, 碩士論文, 國立中央大學環境工程研究所, 桃園(2013).
曾苓婷,「利用電化學技術監測污水中COD之研究」, 碩士論文, 環境工程與管理系碩士班, (2011).
黃喬渝,「單壁奈米碳管修飾電極對硝基酚和銅之電化學分析」, 碩士論文, 國立中央大學環境工程研究所, 桃園(2012).
黃韻寧,「以二氧化鈦/單壁奈米碳管複合材料修飾玻璃碳電極進行COD之伏安法分析」, 碩士論文, 國立中央大學環境工程研究所, 桃園(2015).
楊藏嶽, and 楊慶成,「中國電機工程師手冊第二十二篇-電化學及應用」, 中國電機工程學會, (1992).
盧怡君,「以去官能基化二氧化鈦/單壁奈米碳管複合材料修飾玻璃碳電極進行COD之伏安法分析」, 碩士論文, 國立中央大學環境工程研究所, 桃園 (2015).
羅弘駿,「利用二氧化鈦/活性碳電極進行電容去離子處理鄰苯二甲酸氫鉀之研究」, 碩士論文, 國立中央大學環境工程研究所, 桃園(2018).
陳伊伶,「以二氧化鈦/單壁奈米碳管/玻璃碳電極結合多變量分析進行COD快速量測」, 碩士論文, 國立中央大學環境工程研究所, 桃園(2022).
指導教授 秦靜如(Qin Jingru) 審核日期 2024-1-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明