參考文獻 |
參考文獻
Alizadeh, T., & Amjadi, S. (2020). Determination of nicotinic acid by square wave
voltammetry on a carbon paste electrode: the crucial effect of electrode composition
and analytical conditions. Analytical and bioanalytical electrochemistry, 12(2), 250-
262.
Baker, J. R., Milke, M. W., & Mihelcic, J. R. (1999). Relationship between chemical
and theoretical oxygen demand for specific classes of organic chemicals. Water
research, 33(2), 327-334.
Bridgeman, J., Baker, A., Carliell-Marquet, C., & Carstea, E. (2013). Determination of
changes in wastewater quality through a treatment works using fluorescence
spectroscopy. Environmental technology, 34(23), 3069-3077.
Bourgeois, W., Burgess, J. E., & Stuetz, R. M. (2001). On‐line monitoring of wastewater
quality: a review. In: wiley online library.
Carchi, T., Lapo, B., Alvarado, J., Espinoza-Montero, P. J., Llorca, J., & Fernández, L.
(2019). A nafion film cover to enhance the analytical performance of the CuO/Cu
electrochemical sensor for determination of chemical oxygen demand. Sensors,
19(3), 669.
Carp, O., Huisman, C. L., & Reller, A. (2004). Photoinduced reactivity of titanium
dioxide. Progress in solid state chemistry, 32(1-2), 33-177.
Chanudet, V., Filella, M., & Quentel, F. (2006). Application of a simple voltammetric
method to the determination of refractory organic substances in freshwaters.
Analytica Chimica Acta, 569(1-2), 244-249.
Chen, H., Zhang, J., Chen, Q., Li, J., Li, D., Dong, C., ... & Cai, W. (2012). Assessment
of a COD analytical method based on the photoelectrocatalysis of a TiO2 nanotube
array sensor. Analytical methods, 4(6), 1790-1796.
Cheruiyot, G. K., Wanyonyi, W. C., Kiplimo, J. J., & Maina, E. N. (2019). Adsorption
of toxic crystal violet dye using coffee husks: Equilibrium, kinetics and
thermodynamics study. Scientific african, 5, e00116.
Deshmukh, M. A., Celiesiute, R., Ramanaviciene, A., Shirsat, M. D., & Ramanavicius,
A. (2018). EDTA_PANI/SWCNTs nanocomposite modified electrode for
electrochemical determination of copper (II), lead (II) and mercury (II) ions.
electrochimica acta, 259, 930-938.
83
Elfeky, E. M., Shehata, M. R., Elbashar, Y. H., Barakat, M. H., & El Rouby, W. M.
(2022). Developing the sensing features of copper electrodes as an environmental
friendly detection tool for chemical oxygen demand. RSC advances, 12(7), 4199-
4208.
Elugoke, S. E., Fayemi, O. E., Adekunle, A. S., Sherif, E.-S. M., & Ebenso, E. E. (2022).
Electrochemical sensor for the detection of adrenaline at poly (crystal violet)
modified electrode: optimization and voltammetric studies. Heliyon, 8(10).
Etacheri, V., Di Valentin, C., Schneider, J., Bahnemann, D., & Pillai, S. C. (2015).
Visible-light activation of TiO2 photocatalysts: Advances in theory and experiments.
Journal of photochemistry and photobiology C: photochemistry reviews, 25, 1-29.
Ettinger, M., Lishka, R., & Kroner, R. (1954). Persistence of pyridine bases in polluted
water. Industrial & engineering chemistry, 46(4), 791-793.
Fan, Y., Liu, J.-H., Lu, H.-T., & Zhang, Q. (2011). Electrochemical behavior and
voltammetric determination of paracetamol on nafion/TiO2–graphene modified
glassy carbon electrode. Colloids and surfaces B: Biointerfaces, 85(2), 289-292.
Forster, R. J., Walsh, D., Adamson, K., & Spain, E. (2019). Voltammetry| overview.
Geerdink, R. B., van den Hurk, R. S., & Epema, O. J. (2017). Chemical oxygen demand:
Historical perspectives and future challenges. Analytica chimica acta, 961, 1-11.
Guo, X., Yun, Y., Shanov, V. N., Halsall, H. B., & Heineman, W. R. (2011).
Determination of trace metals by anodic stripping voltammetry using a carbon
nanotube tower electrode. Electroanalysis, 23(5), 1252-1259.
Hassan, H. H., Badr, I. H., Abdel-Fatah, H. T., Elfeky, E. M., & Abdel-Aziz, A. M.
(2018). Low cost chemical oxygen demand sensor based on electrodeposited nanocopper film. Arabian journal of chemistry, 11(2), 171-180.
Hou, P.-X., Liu, C., & Cheng, H.-M. (2008). Purification of carbon nanotubes. carbon,
46(15), 2003-2025.
Issa, M., Muddemann, T., Haupt, D., Kunz, U., & Sievers, M. (2021). Simple catalytic
approach for removal of analytical interferences caused by hydrogen peroxide in a
standard chemical oxygen demand test. Journal of environmental engineering,
147(12), 04021059.
Jing, T., Zhou, Y., Hao, Q., Zhou, Y., & Mei, S. (2012). A nano-nickel electrochemical
sensor for sensitive determination of chemical oxygen demand. Analytical methods,
4(4), 1155-1159.
84
Kim, Y. C., Lee, K. H., Sasaki, S., Hashimoto, K., Ikebukuro, K., & Karube, I. (2000).
Photocatalytic sensor for chemical oxygen demand determination based on oxygen
electrode. Analytical chemistry, 72(14), 3379-3382.
Kissinger, P. T., & Heineman, W. R. (1983). Cyclic voltammetry. Journal of chemical
education, 60(9), 702.
Kulkarni, M. R., Revanth, T., Acharya, A., & Bhat, P. (2017). Removal of crystal violet
dye from aqueous solution using water hyacinth: Equilibrium, kinetics and
thermodynamics study. Resource-efficient technologies, 3(1), 71-77.
Kumaravel, A., & Chandrasekaran, M. (2011). A biocompatible nano TiO2/nafion
composite modified glassy carbon electrode for the detection of fenitrothion. Journal
of Electroanalytical Chemistry, 650(2), 163-170.
Lan, Q., Li, Q., Zhang, X., & Chen, Z. (2018). A novel electrochemiluminescence
system of CuS film and K2S2O8 for determination of crystal violet. Journal of
electroanalytical chemistry, 810, 216-221.
Li, D. (2013). TiO₂ photocatalytic degradation of waste activated sludge and potassium
hydrogen phthalate in wastewater for enhancing biogas production.
Li, G., Xia, Y., Tian, Y., Wu, Y., Liu, J., He, Q., & Chen, D. (2019). Recent developments
on graphene-based electrochemical sensors toward nitrite. Journal of the
electrochemical society, 166(12), B881.
Liu, Z., & Smith, S. R. (2021). Enzyme recovery from biological wastewater treatment.
Waste and biomass valorization, 12, 4185-4211.
Mahlambi, M. M., Ngila, C. J., & Mamba, B. B. (2015). Recent developments in
environmental photocatalytic degradation of organic pollutants: the case of titanium
dioxide nanoparticles—a review. Journal of nanomaterials, 2015, 5-5.
Moura, M. N., Martín, M. J., & Burguillo, F. J. (2007). A comparative study of the
adsorption of humic acid, fulvic acid and phenol onto bacillus subtilis and activated
sludge. Journal of hazardous materials, 149(1), 42-48.
Nasikhudin, Diantoro, M., Kusumaatmaja, A., & Triyana, K. (2018). Study on
photocatalytic properties of TiO2 nanoparticle in various pH condition. Journal of
physics: Conference series,
Pang, Y., Xu, G., Feng, Q., Liu, J., Lv, J., Zhang, Y., & Wu, Y. (2017). Synthesis of αBi2Mo3O12/TiO2 nanotube arrays for photoelectrochemical COD detection
application. Langmuir, 33(36), 8933-8942.
85
Park, J., & Eun, C. (2016). Electrochemical behavior and determination of salicylic acid
at carbon-fiber electrodes. Electrochimica acta, 194, 346-356.
Payra, S., Challagulla, S., Chakraborty, C., & Roy, S. (2019). A hydrogen evolution
reaction induced unprecedentedly rapid electrocatalytic reduction of 4-nitrophenol
over ZIF-67 compare to ZIF-8. Journal of electroanalytical chemistry, 853, 113545.
Ranjit, K., Willner, I., Bossmann, S., & Braun, A. (2001). Lanthanide oxide-doped
titanium dioxide photocatalysts: novel photocatalysts for the enhanced degradation
of p-chlorophenoxyacetic acid. Environmental science & technology, 35(7), 1544-
1549.
Rashed, M. A., Faisal, M., Harraz, F. A., Jalalah, M., Alsaiari, M., & Al-Assiri, M.
(2020). rGO/ZnO/nafion nanocomposite as highly sensitive and selective
amperometric sensor for detecting nitrite ions (NO2
−
). Journal of the Taiwan institute
of chemical engineers, 112, 345-356.
Raskin, I. (1992). Role of salicylic acid in plants. Annual review of plant biology, 43(1),
439-463.
Rathinavel, S., Priyadharshini, K., & Panda, D. (2021). A review on carbon nanotube:
An overview of synthesis, properties, functionalization, characterization, and the
application. Materials science and engineering: B, 268, 115095.
Rezaei, B., & Irannejad, N. (2019). Electrochemical detection techniques in biosensor
applications. In electrochemical biosensors (pp. 11-43). Elsevier.
Rodriguez-Amaro, R., Pérez, R., Lopez, V., & Ruiz, J. (1990). Study of the
electrochemical reduction of nicotinic acid at a mercury electrode. Journal of
electroanalytical chemistry and interfacial electrochemistry, 278(1-2), 307-322.
Savan, E. K. (2019). Electrochemical determination of N-acetyl cysteine in the presence
of acetaminophen at multi-walled carbon nanotubes and nafion modified sensor.
Sensors and actuators B: Chemical, 282, 500-506.
Tang, W.-W., Zeng, G.-M., Gong, J.-L., Liang, J., Xu, P., Zhang, C., & Huang, B.-B.
(2014). Impact of humic/fulvic acid on the removal of heavy metals from aqueous
solutions using nanomaterials: a review. Science of the total environment, 468, 1014-
1027.
Teixeira, M. d. C., Felix, F. S., Thomasi, S. S., Magriotis, Z. M., da Silva, J. M., Okumura,
L. L., & Saczk, A. A. (2019). Voltammetric determination of organic nitrogen
compounds in environmental samples using carbon paste electrode modified with
86
activated carbon. Microchemical journal, 148, 66-72.
Wang, L., Zhang, Y., Sun, X., Li, Y., Zhai, J., & Dong, S. (2023). A new FTO/TiO2/PbO2
electrode for eco-friendly electrochemical determination of chemical oxygen
demand. Nano Research, 1-6.
Wang, M., Liu, Y., Yang, L., Tian, K., He, L., Zhang, Z., Jia, Q., Song, Y., & Fang, S.
(2019). Bimetallic metal–organic framework derived FeOx/TiO2 embedded in
mesoporous carbon nanocomposite for the sensitive electrochemical detection of 4-
nitrophenol. Sensors and actuators B: Chemical, 281, 1063-1072.
Wang, X., Wu, D., Yuan, D., & Wu, X. (2022). A nano-lead dioxide-composite
electrochemical sensor for the determination of chemical oxygen demand. Journal of
environmental chemical engineering, 10(3), 107464.
Wu, J., Liu, H., & Lin, Z. (2008). Electrochemical performance of a carbon
nanotube/La-doped TiO2 nanocomposite and its use for preparation of an
electrochemical nicotinic acid sensor. Sensors, 8(11), 7085-7096.
Yagati, A. K., Pyun, J.-C., Min, J., & Cho, S. (2016). Label-free and direct detection of
C-reactive protein using reduced graphene oxide-nanoparticle hybrid impedimetric
sensor. Bioelectrochemistry, 107, 37-44.
Yao, L., Tang, Y., & Huang, Z. (2007). Nicotinic acid voltammetric sensor based on
molecularly imprinted polymer membrane‐modified electrode. Analytical letters,
40(4), 677-688.
Yu, H., Wang, H., Quan, X., Chen, S., & Zhang, Y. (2007). Amperometric determination
of chemical oxygen demand using boron-doped diamond (BDD) sensor.
Electrochemistry Communications, 9(9), 2280-2285.
胡啟章,「電化學原理與方法」,五南圖書出版社,2011。
陳凱欣,「以溶膠凝膠法製備 MWCNTs/TiO2 及其光催化特性」,碩士論文,
國立中央大學環境工程研究所,中壢,2013。
盧怡君,「以去官能基化二氧化鈦/單壁奈米碳管複合材料修飾玻璃碳電極進行
COD 之伏安法分析」, 碩士論文,國立中央大學環境工程研究所,中壢,2015
陳伊伶,「以二氧化鈦/單壁奈米碳管/玻璃碳電極進行多成份水樣之 COD 快速分
析」,碩士論文,國立中央大學環境工程研究所,中壢,2021 |