參考文獻 |
1. Mutombo, K. and M. Du Toit, Corrosion fatigue behaviour of aluminium alloy 6061-T651 welded using fully automatic gas metal arc welding and ER5183 filler alloy. International Journal of Fatigue, 2011. 33(12): p. 1539-1547.
2. Fahimpour, V., S. Sadrnezhaad, and F. Karimzadeh, Corrosion behavior of aluminum 6061 alloy joined by friction stir welding and gas tungsten arc welding methods. Materials & Design, 2012. 39: p. 329-333.
3. Kou, S., Welding metallurgy. New Jersey, USA, 2003. 431(446): p. 223-225.
4. Sathiya, P., et al., Microstructural characteristics on bead on plate welding of AISI 904 L super austenitic stainless steel using gas metal arc welding process. International Journal of Engineering, Science and Technology, 2010. 2(6).
5. Karadeniz, E., U. Ozsarac, and C. Yildiz, The effect of process parameters on penetration in gas metal arc welding processes. Materials & Design, 2007. 28(2): p. 649-656.
6. Ibrahim, I.A., et al., The Effect of Gas Metal Arc Welding (GMAW) processes on different welding parameters. Procedia Engineering, 2012. 41: p. 1502-1506.
7. Rojas, H., et al., The impact of heat input on the microstructures, fatigue behaviors, and stress lives of TIG-welded 6061-T6 alloy joints. Materials Research Express, 2020. 7(12): p. 126512.
8. Liang, Y., et al., Effect of TIG current on microstructural and mechanical properties of 6061-T6 aluminium alloy joints by TIG–CMT hybrid welding. Journal of Materials Processing Technology, 2018. 255: p. 161-174.
9. Malin, V., Study of metallurgical phenomena in the HAZ of 6061-T6 aluminum welded joints. Welding Journal-Including Welding Research Supplement, 1995. 74(9): p. 305s.
10. Vargas, J.A., et al., Analysis of heat input effect on the mechanical properties of Al-6061-T6 alloy weld joints. Materials & Design (1980-2015), 2013. 52: p. 556-564.
11. Lin, S., et al., Microstructures and fatigue behavior of metal-inert-gas-welded joints for extruded Al-Mg-Si alloy. Materials Science and Engineering: A, 2019. 745: p. 63-73.
12. Nie, F., et al., Microstructure and mechanical properties of pulse MIG welded 6061/A356 aluminum alloy dissimilar butt joints. Journal of materials science & technology, 2018. 34(3): p. 551-560.
13. Handbook, A., Fatigue and fracture. ASM International, 1996. 19: p. 18.
14. 李庭豪, 鋁合金7075-T73原材與陽極處理封孔後的疲勞性質對微結構的研究. 中央大學,碩士論文, 民國102年.
15. Krenn, C. and J. Morris Jr, The compatibility of crack closure and Kmax dependent models of fatigue crack growth. International Journal of Fatigue, 1999. 21: p. S147-S155.
16. Reed-Hill, R.E., The Microscopic Aspects of Fatigue Failure. Physical Metallurgy Principles, 1994: p. 755-760.
17. Reed-Hill, R.E., The Plastic Zone Size Ahead of A Crack. Physical Metallurgy Principles, 1994: p. 792-795.
18. Klesnil, M. and P. Lukas, Kinetics of Crack Growth. Fatigue of Metallic Materials, Second Revised Edition, 1992: p. 92-97.
19. Laird, C., The influence of metallurgical structure on the mechanisms of fatigue crack propagation, in Fatigue crack propagation. 1967, ASTM International.
20. 高屏區技術教學中心, 材料試驗課程-勞試試驗輔助教材.
21. Duan, C., et al., Formation and fatigue property of MIG welded high-speed train 6005A-T6 aluminum alloy. Materials Research Express, 2019. 6(5): p. 056532.
22. Bloem, C., et al., Fatigue behaviour of GMAW welded aluminium alloy AA7020. Welding International, 2009. 23(10): p. 773-777.
23. Shih, T.-S. and J.-W. Lin, Mechanical Properties and Fatigue Behavior of Cast/Forged Al–1.2% Mg–1.0% Si–1.0% Cu Aluminum Alloys. MATERIALS TRANSACTIONS, 2018. 59(7): p. 1130-1134.
24. Shih, T.-S. and Q.-Y. Chung, Fatigue of as-extruded 7005 aluminum alloy. Materials Science and Engineering: A, 2003. 348(1-2): p. 333-344.
25. Toda, H., et al., Statistical assessment of fatigue crack initiation from sub-surface hydrogen micropores in high-quality die-cast aluminum. Acta materialia, 2011. 59(12): p. 4990-4998.
26. Li, Z., et al., Study of 3D pores and its relationship with crack initiation factors of aluminum alloy die castings. Metallurgical and Materials Transactions B, 2019. 50: p. 1204-1212.
27. Huang, Y., et al., Real-time monitoring and control of porosity defects during arc welding of aluminum alloys. Journal of Materials Processing Technology, 2020. 286: p. 116832.
28. Ascari, A., et al., The influence of process parameters on porosity formation in hybrid LASER-GMA welding of AA6082 aluminum alloy. Optics & Laser Technology, 2012. 44(5): p. 1485-1490.
29. Ahsan, M.R., et al., Porosity formation mechanisms in cold metal transfer (CMT) gas metal arc welding (GMAW) of zinc coated steels. Science and Technology of Welding and Joining, 2016. 21(3): p. 209-215.
30. Han, X., et al., Porosity distribution and mechanical response of laser-MIG hybrid butt welded 6082-T6 aluminum alloy joint. Optics & Laser Technology, 2020. 132: p. 106511.
31. Kah, P., et al., Investigation of weld defects in friction-stir welding and fusion welding of aluminium alloys. International Journal of Mechanical and Materials Engineering, 2015. 10(1): p. 1-10.
32. Zhao, Y., et al., Investigate on the porosity morphology and formation mechanism in laser-MIG hybrid welded joint for 5A06 aluminum alloy with Y-shaped groove. Journal of Manufacturing Processes, 2020. 57: p. 847-856.
33. Ferreira, P., I. Robertson, and H. Birnbaum, Hydrogen effects on the character of dislocations in high-purity aluminum. Acta materialia, 1999. 47(10): p. 2991-2998.
34. Wu, S.C., et al., Fatigue behaviors of laser hybrid welded AA7020 due to defects via synchrotron X‐ray microtomography. Fatigue & Fracture of Engineering Materials & Structures, 2019. 42(10): p. 2232-2246.
35. Leo, P., et al., Effect of power distribution on the weld quality during hybrid laser welding of an Al–Mg alloy. Optics & Laser Technology, 2015. 73: p. 118-126.
36. Yang, K.V., et al., Porosity formation mechanisms and fatigue response in Al-Si-Mg alloys made by selective laser melting. Materials Science and Engineering: A, 2018. 712: p. 166-174.
37. Du Toit, M. and K. Mutombo, The influence of pulsed gas metal arc welding on the fatigue and corrosion-fatigue properties of wrought aluminium 6061-T651. Anti-Corrosion Methods and Materials, 2019. 66(6): p. 719-729.
38. Liu, H., et al., Mechanisms of fatigue crack initiation and propagation in 6005A CMT welded joint. Journal of Alloys and Compounds, 2018. 741: p. 188-196.
39. Bao, H. and A. McEvily, On plane stress–plane strain interactions in fatigue crack growth. International Journal of Fatigue, 1998. 20(6): p. 441-448. |