博碩士論文 109323040 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:34 、訪客IP:18.225.92.25
姓名 彭奕晨(I-CHEN PENG)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 以耦合離散元素法與有限元素法分析含阻尼顆粒偏心轉子的動態行為
相關論文
★ 顆粒形狀對顆粒體在旋轉鼓內流動行為之影響★ 圓片顆粒體在振動床迴流現象之研究-電腦模擬與實驗之驗證
★ 水中顆粒體崩塌分析與電腦模擬比對★ 以離散元素法探討具有傾斜開槽之晶體結構在單軸拉力作用下的裂縫生成與傳播行為
★ 可破裂顆粒在單向度壓力及膨脹收縮 之力學行為★ 掉落體衝擊顆粒床之力學與運動行為的研究 : DEM的實驗驗證及內部性質探討
★ 掉落體衝擊不同材質與形狀顆粒床之運動及力學行為★ 顆粒體在具阻礙物滑道中流動行為研究:DEM的實驗驗證及傳輸性質與內部性質探討
★ 以物理實驗探討顆粒形狀 對顆粒體在振動床中傳輸性質的影響★ 以物理實驗探討顆粒形狀 對顆粒體在旋轉鼓中傳輸性質的影響
★ 一般顆粒體與可破裂顆粒體在單向度束制壓縮作用下之力學行為★ 以二相流離散元素電腦模擬與物理實驗探討液體中顆粒體崩塌行為
★ 振動床內顆粒體迴流機制的微觀探索與顆粒形狀效應★ 非球形顆粒體在剪力槽中的流動行為追蹤與分析
★ 以有限元素法模擬單向度束制壓縮下顆粒體與容器壁間的互制行為及摩擦效應的影響★ 以離散元素法分析苗栗縣南庄鄉鹿湖山區之土石崩塌行為及內部性質之探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-10-19以後開放)
摘要(中) 本研究採用雙面平衡法,以平衡轉子系統上的偏心慣性力,同時採用顆粒阻尼技術,使用顆粒與腔體之間的碰撞及摩擦消除系統的能量,以壓制轉子轉動時帶來的振動。本研究數值模型採用耦合離散元素法(Discrete Element Method, DEM)與有限元素法(Finite Element Method, FEM),分析含顆粒阻尼器偏心轉子的動態行為。本研究分析轉速與顆粒粒徑對偏心轉子動態行為的影響,動態反應包含中央軸心徑向位移、位移頻譜、軸承應力、轉子動能及彈性應變能。研究結果顯示:(1)偏心轉子的轉動行為均較平衡轉子更加不穩定,且偏心轉子造成的軸承應力皆大於平衡轉子的軸承應力。(2)顆粒阻尼器中阻尼顆粒與結構腔體間互相碰撞及摩擦可以降低轉子系統運轉時徑向位移、軸承應力、動能及彈性應變能。 (3)置入不同粒徑顆粒皆可達到很好的減振效果,2.0 mm顆粒體為較佳粒徑。(4)比較應力與徑向位移的關係,得知軸中央軸心的徑向位移越小則軸承應力越大。(5)加入不同顆粒粒徑於偏心轉子系統皆可以得到很好的消能效果,但顆粒粒徑對含顆粒阻尼器轉子系統的動能及彈性應變能影響甚小。
摘要(英) This study employs a dual-sided balancing method with particle dampers to counteract the eccentric inertial forces on rotor systems. A coupled DEM and FEM model is proposed to analyze the dynamic behavior of an eccentric rotor system incorporating granular dampers. The effects of rotational speed and particle size on the dynamic behavior of the system were investigated. The dynamic responses studied here included radial displacement, displacement spectrum, bearing stresses, and kinetic energy and strain energy of the rotor systems. Numerical results indicate that the unbalanced shaft shows more unstable dynamic behavior than balanced shaft. Additionally, the bearing stresses in the unbalanced shaft are higher than those of the balanced shaft. The collisions and friction between damping particles and mechanical parts effectively reduce radial displacement, vibration frequency, bearing stresses, and kinetic energy and strain energy of the rotor system. The installation of particles dampers leads to a significant reduction in vibration, especially for 2.0 mm particle dampers exhibiting the most favorable damping effect. Comparing the relationship between stresses and radial displacements, it is observed that as the radial displacements at the central part of the shaft decrease, the bearing stresses increase. The rotor system achieves effective energy dissipation with different kinds of particle sizes. However, the particle size has minimal impact on the kinetic energy and strain energy of the rotor system with particle dampers.
關鍵字(中) ★ 偏心轉子系統
★ 顆粒阻尼器
★ 耦合離散元素法與有限元素法
★ 顆粒減振
★ 徑向位移
★ 軸承應力
關鍵字(英) ★ eccentric rotor system
★ particle damper
★ Two-way Couple DEM-FEM Approach
★ granular vibration damping
★ radial displacement
★ bearing stresses
論文目次 摘要.................................................................................................................................i
Abstract..........................................................................................................................ii
目錄...............................................................................................................................iii
附表目錄.......................................................................................................................vi
附圖目錄......................................................................................................................vii
附錄目錄......................................................................................................................xii
第一章 緒論..................................................................................................................1
1-1 研究背景 .........................................................................................................1
1-2 研究動機以及研究目的 .................................................................................2
1-3 文獻回顧 .........................................................................................................3
1-3-1 轉動機械性質相關文獻.....................................................................3
1-3-2 顆粒阻尼應用相關文獻.....................................................................7
第二章 研究方法........................................................................................................ 11
2-1 動平衡校正原理及雙平衡面校正法 ..........................................................11
2-2 DEM-FEM 雙向耦合建模............................................................................12
2-2-1 彈性連續體的 FEM 模型.................................................................12
2-2-2 顆粒體的 DEM 模型........................................................................15
2-2-3 DEM-FEM 雙向耦合 ........................................................................17
2-3 系統介紹 ......................................................................................................17
2-3-1 臨界時間步.......................................................................................17
2-3-2 幾何參數與邊界條件.......................................................................18
2-3-3 網格元素與材料性質.......................................................................20
iv
2-3-4 數值模擬系統與觀察點...................................................................20
第三章 結果與討論....................................................................................................22
3-1 偏心轉子機構的動態分析 ..........................................................................22
3-1-1 網格品質測試...................................................................................22
3-1-1-1 轉子於軸承接觸區的網格分割尺寸測試............................22
3-1-1-2 轉子於非軸承接觸區的網格分尺寸測試............................23
3-1-1-3 圓周分割測試........................................................................23
3-1-2 時間步安全係數測試.......................................................................23
3-1-3 網格方位測試...................................................................................24
3-2 無偏心轉子機構與有偏心轉子機構的動態對比分析 ..............................25
3-2-1 轉子轉速徑向位移及頻譜分析.......................................................25
3-2-2 軸承應力分析...................................................................................27
3-3 含顆粒阻尼器的偏心轉子機構動態分析 ..................................................29
3-3-1 轉子轉速徑向位移及頻譜分析.......................................................29
3-3-2 軸承應力分析...................................................................................31
3-3-3 動能及彈性應變能分析...................................................................33
3-4 顆粒粒徑與轉子轉速影響分析 ..................................................................35
3-4-1 轉子轉速徑向位移及頻譜分析.......................................................35
3-4-2 軸承應力分析...................................................................................37
3-4-3 動能及彈性應變能分析...................................................................39
第四章 結論................................................................................................................40
4-1 結論 ..............................................................................................................40
參考文獻......................................................................................................................42
附表..............................................................................................................................45

附圖..............................................................................................................................48
附錄..............................................................................................................................99
參考文獻 [1] S. Zhou, S. Shi, Active balancing and vibration control of rotating machinery: a survey, Shock. Vib.33 (2001) 361–371.
[2] A.G. Parkinson, The balancing of flexible rotors, Proceedings of the IUTAM Symposium on Dynamics of Rotors, Lyngby (1974) 413–435.
[3] R.E.D. Bishop, G.M.L. Gladwell, The vibration and balancing of an unbalance flexible rotor, Int. J. Mech. Sci. 1 (1959) 66–77.
[4] J.W. Lund, J. Tonnesen, Analyses and experiments on multiplane balancing of a flexible rotor, ASME Journal of Engineering for Industry 94 (1972) 233–242.
[5] S. Saito, T. Azuma, Balancing of flexible rotors by the complex modal method, ASME Journal of Mechanical Design 105 (1981) 94–105.
[6] H. Ma, H. Li, X. Zhao, H. Niu, B. Wen, Effects of eccentric phase difference between two discs on oil-film instability in a rotor–bearing system, Mech. Syst. Signal Proc. 41 (2013) 526–545.
[7] Q. Ding, K. Zhang, Order reduction and nonlinear behaviors of a continuous rotor system, Nonlinear Dyn. 67 (2012) 251–262.
[8] F. Seve, M. A. Andrianoely, A. Berlioz, R. Dufour, M. Charreyronb, Balancing of machinery with a flexible variable-speed rotor, J. Sound Vib. 264 (2003) 287–302.
[9] G. Adiletta, A. R. Guido, C. Rossi, Chaotic motions of a rigid rotor in short journal bearings, Nonlinear Dyn. 10 (1996) 251–269.
[10] R. D. Brown, P. Addison, A. H. C. Chan, Chaos in the unbalance response of journal bearings, Nonlinear Dyn. (1994) 421–432.
[11] F. Xie, H. Zhang, J. Wu, W. Ma, C. Liu, X. Gao, Dynamic analysis of a rotor-journal bearing system of rotary compressor, ICEC (2006) C036, 1–10.
[12] H. F. de Castro, K. L. Cavalca, R. Nordmannb, Whirl and whip instabilities in rotor-bearing system considering a nonlinear force model, J. Sound Vib. 317 (2008) 273–293.
[13] H. Zhang, J. Wu, F. Xie, A. Chen, Y. Li, Dynamic behaviors of the crankshafts in single-cylinder and twin-cylinder rotary compresso, Int. J. Refrig. 47 (2014) 36–45.
[14] K. Kim, G. Hong, G. Jang, Dynamic analysis of a flexible shaft in a scroll compressor considering solid contact and oil film pressure in journal bearings, Int. J. Refrig 127 (2021) 165–173.
[15] Z. Wang, X. Yu, F. Liu, Q. Feng, Q. Tan, Dynamic analyses for the rotor-journal bearing system of a variable speed rotary compressor, Int. J. Refrig 36 (2013) 1938–1950.
[16] F. Xie, B. Huang, H. Zhang, C. Liu, Failure analysis of the rotor-journal bearing system of rotary compressor, FEDSM2007-37018 (2007) 139–144.
[17] S. E. Olson, An analytical particle damping model, J. Sound Vib. 264 (2003) 1155–1166.
[18] N. Ahmad, R. Ranganath, A. Ghosal, Modeling and experimental study of a honeycomb beam filled with damping particles, J. Sound Vib.391 (2017) 20–34.
[19] M. Gharib, S. Ghani, Free vibration analysis of linear particle chain impact damper, J. Sound Vib. 332 (2013) 6254–6264.
[20] K. Zhang, T. Chen, X. Wang, J. Fang, Rheology behavior and optimal damping effect of granular particles in a non-obstructive particle damper, J. Sound Vib. 364 (2016) 30–43.
[21] Z. Yin, F. Su, H. Zhang, Investigation of the energy dissipation of different rheology behaviors in a non-obstructive particle damper, Powder Technol. 321 (2017) 270–275.
[22] K. Zhang, T. Chen, L. He, Damping behaviors of granular particles in a vertically vibrated closed container, Powder Technol. 321 (2017) 173–179.
[23] W. Yan, B. Wang, H. He, Research of mechanical model of particle damper with
friction effect and its experimental verification, J. Sound Vib. 460 (2019) 114898.
[24] Y. Wang, B. Liu, A. Tian, W. Tang, Experimental and numerical investigations on the performance of particle dampers attached to a primary structure undergoing free vibration in the horizontal and vertical directions, J. Sound Vib. 371 (2016) 35–55.
[25] Y. Liu, J. Han, Z. Xue, Y. Zhang, Q. Yang, Structural vibrations and acoustic radiation of bladeeshaftingeshell coupled system, J. Sound Vib. 463 (2019) 114961.
[26] J. Liu, T. Deng, X. Chang, F. Sun, J. Zhou, Research on longitudinal vibration suppression of underwater vehicle shafting based on particle damping, Sci. Rep. 13 (2023) 3047.
[27] W. Xiao, J. Li, S. Wang, X. Fang, Study on vibration suppression based on particle damping in centrifugal field of gear transmission, J. Sound Vib. 366 (2016) 62–80.
[28] Y. Chung, Y. Wu, Dynamic modeling of a gear transmission system containing damping particles using coupled multi-body dynamics and discrete element method, Nonlinear Dyn. 98 (2019) 129–149.
指導教授 鍾雲吉 審核日期 2023-10-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明