博碩士論文 110323111 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:102 、訪客IP:18.119.113.79
姓名 林潔炘(Chien-Hsin Lin)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 製造圓柱型蝸桿之動力刮削刀具設計
(Design of Power Skiving Cutter for Manufacturing Cylindrical Worms)
相關論文
★ G10液晶玻璃基板之機械手臂牙叉結構改良與最佳化設計★ 線性齒頂修整對正齒輪之傳動誤差與嚙合頻能量影響分析
★ 沖床齒輪分析與改善★ 以互補型盤狀圓弧刀具創成之曲線齒齒輪有限元素應力分析
★ 修整型曲線齒輪對齒面接觸應力與負載下傳動誤差之研究★ 衛載遙測取像儀反射鏡加工缺陷檢測與最佳光學成像品質之運動學裝配設計
★ 應用經驗模態分解法於正齒輪對之傳動誤差分析★ 小軸交角之修整型正齒輪與凹面錐形齒輪組設計與負載下齒面接觸分析
★ 修整型正齒輪對動態模擬與實驗★ 應用繞射光學元件之齒輪量測系統開發
★ 漸開線與切線雙圓弧齒形之諧波齒輪有限元素分析與齒形設計★ 創成螺旋鉋齒刀之砂輪輪廓設計與最佳化
★ 動力刮削創成內正齒輪之刀具齒形輪廓最佳化設計★ 非接觸式章動減速電機結構設計與模擬
★ Helipoid齒輪接觸特性研究與最佳化分析★ 高轉速正齒輪之多目標最佳化與動態特性分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 傳統蝸桿製造通常使用車刀和磨輪加工,如今隨著動力刮削技術的發展,除了切削 常見的內齒輪外,小模數之蝸桿也可以用動力刮削加工。本論文首先運用齒輪原理及微 分幾何,模擬切削 ZA 型、ZN 型、ZI 型、ZK 型、ZC 型蝸桿,推導出此五型蝸桿之齒面數學模式。分別將五型蝸桿之齒面數學模式,藉由動力刮削之切削運動關係及嚙合方程式,建立動力刮削刀具前刀面之刃口線數學模式,再透過磨輪研磨刀具之運動關係,推導得到磨削此刀具之磨輪設計。
為了驗證本研究求得之磨輪與刀具設計過程,首先利用最佳化程式,以NURBS曲線針對磨輪進行擬合,並確認擬合準確度。接著將擬合之磨輪輪廓,推導至動力刮削刀具之設計前刀面,並以此刀具切削五型蝸桿。計算以動力刮削刀具切削之蝸桿與理論蝸桿間之齒形誤差,驗證刀具輪廓之正確性。
對刀具進行重磨可有效延長刀具壽命,故探討動力刮削刀具重磨量變化,對蝸桿齒形誤差與精度的影響,以DIN 7級作為目標,分別計算動力刮削刀具切削之五型蝸桿齒形誤差及精度,分析不同重磨量對精度之影響。為了確認動力刮削刀具之適用範圍,使用刀具切削不同參數之五型蝸桿,計算其誤差及精度,並探討其有效重磨量之變化。
摘要(英) Traditional worm manufacturing typically involves using turning and grinding processes. However, with the advancement of power skiving technology, it is now possible to use power skiving for the production of small module worms in addition to the internal gears. This paper begins by utilizing gear theory and differential geometry to simulate the cutting motion of five different types of worms, namely ZA-type, ZN-type, ZI-type, ZK-type, and ZC-type, and derives mathematical models of five types of worms. Using these mathematical models of five types of worms along with the cutting motion relationships in power skiving and equation of meshing, mathematical models of the edge profiles of the power skiving tools are established. Furthermore, the grinding wheels design for grinding these cutters are derived through the motion relationships involved in grinding the cutters.
To validate the grinding wheels and cutters design process in this study, an optimization program is first employed to fit NURBS curves to the grinding wheel and confirm the accuracy of the fit. Subsequently, the fitted grinding wheel profile is transferred to the design of the edge profile of the power skiving tool, which is then used to cut the five types of worms. The tooth profile error between the worms cut with the designed tools and the theoretical worms is calculated to verify the correctness of the tool profile.
Regrinding the tools can effectively extend their lifespan. Therefore, the study explores the impact of changes in the amount of regrinding on the tooth profile error and accuracy of the worms, with DIN 7 class as the target accuracy level. The tooth profile error and accuracy of the five types of worms cut with the designed tools are calculated for different amounts of regrinding to analyze the effect on accuracy. To determine the applicability of the designed tools, different parameters for the five types of worms are cut using these tools, and their errors and accuracy are calculated. The variations in the effective regrinding amount are also investigated.
關鍵字(中) ★ 圓柱型蝸桿
★ NURBS
★ 最佳化
★ 動力刮削刀具
★ 有效重磨量
關鍵字(英)
論文目次 摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VII
表目錄 XI
符號對照表 XIII
第1章 緒論 1
1.1 前言 1
1.2 文獻回顧 1
1.2.1 蝸桿的分類與介紹 1
1.2.2 NURBS曲線介紹與應用 3
1.2.3 動力刮削加工 5
1.3 研究動機與目的 11
1.4 論文架構 12
第2章 蝸桿之齒面數學模式 13
2.1 前言 13
2.2 ZA型蝸桿 13
2.2.1 ZA型蝸桿之刀具數學模式 13
2.2.2 ZA型蝸桿之齒面數學模式 14
2.3 ZN型蝸桿 16
2.3.1 ZN型蝸桿之刀具數學模式 16
2.3.2 ZN型蝸桿之齒面數學模式 17
2.4 ZI型蝸桿 20
2.5 ZK型蝸桿 23
2.5.1 ZK型蝸桿之刀具數學模式 23
2.5.2 ZK型蝸桿之齒面數學模式 25
2.6 ZC型蝸桿 28
2.6.1 ZC型蝸桿之刀具數學模式 28
2.6.2 ZC型蝸桿之齒面數學模式 31
2.7 五型蝸桿齒形數值範例 32
第3章 切削蝸桿之動力刮削刀具設計 37
3.1 前言 37
3.2 動力刮削刀具之齒面數學模式 37
3.3 動力刮削刀具之刃口線數學模式 39
3.4 磨輪之假想齒條刀數學模式 41
3.5 數值範例 46
第4章 設計動力刮削刀具之驗證 50
4.1 前言 50
4.2 磨輪曲線擬合 50
4.2.1 NURBS曲線 50
4.2.2 磨輪曲線最佳化 52
4.3 漸縮型設計動力刮削刀具 57
4.4 設計流程之驗證 60
4.4.1 動力刮削刀具切削之蝸桿 60
4.4.2 齒形誤差 60
4.4.3 蝸桿齒形誤差分析結果 61
第5章 動力刮削刀具重磨量與適用性分析 64
5.1 前言 64
5.2 齒形精度定義 64
5.3 刀具重磨量分析 64
5.3.1 重磨量定義 64
5.3.2 有效重磨量分析結果 65
5.3.3 討論 72
5.4 動力刮削刀具適用性分析 72
5.4.1 案例1—改變蝸桿之牙口數 72
5.4.2 案例2—改變蝸桿之節圓半徑 75
5.4.3 案例3—改變蝸桿之旋向 78
5.4.4 討論 81
第6章 結論與未來工作 82
6.1 結論 82
6.2 未來工作 83
參考文獻 84
參考文獻 [1] F. L. Litvin and A. Fuentes, “Gear Geometry and Applied Theory, Second Edition,” Cambridge University Press., New York, 2004.
[2] DIN 3975-1, “Definitions and Parameters on Cylindrical Worm Gear Pairs with Rectangular Crossing Shafts-Part 1: Worm and Worm Wheel,” D. I. f. Normung, 2017.
[3] H. Winter and H. Wilkesmann, “Calculation of Cylindrical Worm Gear Drives of Different Tooth Profiles,” Journal of Mechanical Design, vol. 103, no. 1, pp. 73-82, 1981.
[4] C.-B. Tsay, J.-W. Jeng, and H.-S. Feng, “A Mathematical Model of the ZE-Type Worm Gear Set,” Mechanism and Machine Theory, vol. 30, no. 6, pp. 777-789, 1995.
[5] H. S. Fang and C. B. Tsay, “Mathematical Model and Bearing Contacts of the ZK-Type Worm Gear Set Cut by Oversize Hob Cutters,” Mechanism and Machine Theory, vol. 31, no. 3, pp. 271-282, 1996.
[6] H. S. Fang and C. B. Tsay, “Mathematical Model and Bearing Contacts of the ZN-Type Worm Gear Set Cut by Oversize Hob Cutters,” Mechanism and Machine Theory, vol. 35, no. 12, pp. 1689-1708, 2000.
[7] L. Dong, P. Liu, W. Wei, X. Dong, and H. Li, “Study on ZI Worm and Helical Gear Drive with Large Transmission Ratio,” Mechanism and Machine Theory, vol. 74, pp. 299-309, 2014.
[8] V. V. Simon, “Characteristics of a New Type of Cylindrical Worm-Gear Drive,” Journal of Mechanical Design, vol. 120, no. 1, pp. 139-146, 1998.
[9] M. V. Chernets, “Prediction Method of Contact Pressures, Wear and Life of Worm Gears with Archimedean and Involute Worm, Taking Tooth Correction into Account,” Journal of Friction and Wear, vol. 40, no. 4, pp. 342-348, 2019.
[10] L. Skoczylas and P. Pawlus, “Geometry and Machining of Concave Profiles of the ZK-Type Worm Thread, ” Mechanism and Machine Theory, vol. 95, pp. 35-41, 2016.
[11] 葉國鑫,「CNC蝸桿磨床程式與人機介面開發」,碩士論文,機械工程學系,國立中央大學,桃園市,2023。
[12] P. Laurent-Gengoux and M. Mekhilef, “Optimization of a NURBS Representation,” Computer-Aided Design, vol. 25, no. 11, pp. 699-710, 1993.
[13] 鄭元寧,「NURBS曲線和曲面在逆向工程的應用」,碩士論文,機械工程學系,國立中正大學,嘉義縣,1995。
[14] M. Sarfraz, S. A. Raza, and M. H. Baig, “Computing Optimized Curves with NURBS Using Evolutionary Intelligence,” Computational Science and Its Applications – ICCSA, pp. 806-815, 2005, Berlin, Heidelberg.
[15] A. H. Taheri, S. Abolghasemi, and K. Suresh, “Generalizations of Non-Uniform Rational B-splines via Decoupling of the Weights: Theory, Software and Applications,” Engineering with Computers, vol. 36, no. 4, pp. 1831-1848, 2020.
[16] Gleason Cutting Tools Corporation, “Isoform Shaper Cutters Facts and Features,” Gleason Cutting Tools Corporation, Loves Park, IL; USA.
[17] C.-L. Huang, Z.-H. Fong, S.-D. Chen, and K.-R. Chang, “Profile Correction of a Helical Gear Shaping Cutter Using the Lengthwise-Reciprocating Grinding Method,” Mechanism and Machine Theory, vol. 44, pp. 401-411, 2009.
[18] 莊曄,「齒輪鉋齒加工參數研究」,碩士論文,機械工程學系,國立中正大學,嘉義縣,2004。
[19] F. Seibicke and H. Müller, “Good Things Need Some Time,” GEARSolutions, pp. 74-80, 2013.
[20] H. J. Stadtfeld, “Power Skiving of Cylindrical Gears on Different Machine Platforms,” American Gear Manufacturers Association Fall Technical Meeting, Indianapolis, Indiana; USA, pp. 1-18, 2013.
[21] J.-L. Feutren, “Worm Screw High-Speed Manufacturing,” GEARSolutions, pp. 32-39, 2017.
[22] E. Guo, R. Hong, X. Huang, and C. Fang, “Research on the Design of Skiving Tool for Machining Involute Gears,” Journal of Mechanical Science and Technology, vol. 28, no. 12, pp. 5107-5115, 2014.
[23] E. Guo, R. Hong, X. Huang, and C. Fang, “Research on the Cutting Mechanism of Cylindrical Gear Power Skiving,” The International Journal of Advanced Manufacturing Technology, vol. 79, no. 1, pp. 541-550, 2015.
[24] E. Guo, R. Hong, X. Huang, and C. Fang, “A Correction Method for Power Skiving of Cylindrical Gears Lead Modification,” Journal of Mechanical Science and Technology, vol. 29, no. 10, pp. 4379-4386, 2015.
[25] Z. Guo, S.-M. Mao, X.-E. Li, and Z.-Y. Ren, “Research on the Theoretical Tooth Profile Errors of Gears Machined by Skiving,” Mechanism and Machine Theory, vol. 97, pp. 1-11, 2016.
[26] Z. Guo, S.-M. Mao, X.-F. Du, and Z.-Y. Ren, “Influences of Tool Setting Errors on Gear Skiving Accuracy,” The International Journal of Advanced Manufacturing Technology, vol. 91, no. 9, pp. 3135-3143, 2017.
[27] 李偉瑜,「圓柱型齒輪之動力刮削刀具輪廓設計」,碩士論文,機械工程學系,國立中央大學,桃園市,2020。
[28] 梁長菁、蔡忠佑、李羽婷和李羽軒,「ZI型蝸桿強力刮齒法於車銑複合機之技術開發」,第25屆全國機構及機器設計學術研討會,高雄市,2022。
[29] DIN 3975-2, “Definitions and Parameters on Cylindrical Worm Gear Pairs with Rectangular Crossing Shafts-Part 2: Deviations,” D. I. f. Normung, 2002.
[30] DIN 3974-2, “Accuracy of Worms and Worm Gears-Part 2: Tolerances for Individual Errors,” D. I. f. Normung, 1995.
[31] ANSI/AGMA 1104-A09, “Tolerance Specification for Shaper Cutters,” A. G. M. Association, 2009.
指導教授 陳怡呈(Yi-Cheng Chen) 審核日期 2023-11-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明