參考文獻 |
6參考文獻
[1] X. P. Tan, Y. J. Tan, C. S. L. Chow, S. B. Tor and W. Y. Yeong, “Metallic powder-bed based 3D printing of cellular scaffolds for orthopaedic implants: a state-of-the-art review on manufacturing, topological design, mechanical properties and biocompatibility”, Materials science and engineering c-materials for biological applications, vol. 76, pp. 1328-1343, 2017.
[2] M. Long and H. J. Rack, “Titanium alloys in total joint replacement—a materials science perspective”, Biomaterials, vol. 19, pp. 1621-1639, 1998.
[3] L. N. Carter, O. Addison, N. Naji, P. Seres, A. H. Wilman, D. E. T. Shepherd, L. Grover and S. Cox, “Reducing MRI susceptibility artefacts in implants using additively manufactured porous Ti-6Al-4V structures”, Acta biomaterialia, vol. 107, pp. 338-348, 2020.
[4] J. C. Colombo-Pulgarin, C. A. Biffi, M. Vedani, D. Celentano, A. Sanchez-Egea, A. D. Boccardo and J. P. Ponthot, “Beta titanium alloys processed by laser powder bed fusion: a review”, Journal of materials engineering and performance, vol. 30, pp. 6365-6388, 2021.
[5] X. Z. Zhang, M. Leary, H. P. Tang, T. Song and M. Qian, “Selective electron beam manufactured Ti-6Al-4V lattice structures for orthopedic implant applications: Current status and outstanding challenges”, Current opinion in solid state and materials science, vol. 22, pp. 75-99, 2018.
[6] M. S. Ghiasi, J. Chen, A. Vaziri, E. K. Rodriguez and A. Nazarian, “Bone fracture healing in mechanobiological modeling: a review of principles and methods”, Bone reports, vol. 6, pp. 87-100, 2017.
[7] F. H. Froes, “8 - Powder metallurgy of titanium alloys”, Advances in powder metallurgy, pp. 202-240, 2013.
[8] P. Conradie, D. Dimitrov and G. Oosthuizen, “A cost modelling approach for milling titanium alloys”, Procedia CIRP, vol. 46, pp. 412-415, 2016.
[9] M. Attaran, “The rise of 3-D printing: the advantages of additive manufacturing over traditional manufacturing”, Business horizons, vol. 60, pp. 677-688, 2017.
[10] H. Kodama, “Automatic method for fabricating a three‐dimensional plastic model with photo‐hardening polymer”, Review of scientific instruments, vol. 52, pp. 1770-1773, 1981.
[11] ISO/ASTM52900-21, “Additive manufacturing general principles fundamentals and vocabulary”, 2021.
[12] S. L. Sing, “Perspectives on additive manufacturing enabled beta-titanium alloys for biomedical applications”, International journal of bioprinting, vol. 8, pp. 1-8, 2022.
[13] S. Liu and Y. C. Shin, “Additive manufacturing of Ti-6Al-4V alloy: a review”, Materials & design, vol. 164, 107552, 2019.
[14] T. Vilaro, C. Colin and J. D. Bartout, “As-fabricated and heat-treated microstructures of the Ti-6Al-4V alloy processed by selective laser melting”, Metallurgical and materials transactions a, vol. 42, pp.3190-3199, 2011.
[15] P. A. Kobryn and S. L. Semiatin, “The laser additive manufacture of Ti-6Al-4V”, Journal of management, vol. 53, pp. 40-42, 2001.
[16] S. Leuders, M. Thöne, A. Riemer, T. Niendorf, T. Tröster, H. A. Richard and H. J. Maier, “On the mechanical behaviour of titanium alloy Ti-6Al-4V manufactured by selective laser melting: fatigue resistance and crack growth performance”, International journal of fatigue, vol. 48, pp. 300-307, 2013.
[17] S. Leuders, T. Lieneke, S. Lammers, T. Tröster and T. Niendorf, “On the fatigue properties of metals manufactured by selective laser melting —the role of ductility”, Journal of materials research, vol. 29, pp. 1911-1919, 2014.
[18] S. Frangini, A. Mignone and F. Dericcardis, “Various aspects of the air oxidation behavior of a Ti-6Al-4V alloy at temperatures in the range 600-700-degrees-c”, Journal of materials science, vol. 29, pp. 714-720, 1994.
[19] H. Guleryuz and H. Cimenoglu, “Effect of thermal oxidation on corrosion and corrosion-wear behaviour of a Ti-6Al-4V alloy”, Biomaterials, vol. 25, pp. 3325-3333, 2004.
[20] H. Z. Zhao, Z. P. Xi, D. Z. Guo, B. Zhao, Y. L. Yang, X. N. Mao, J. Sun and L. Xiao, “Rotary piercing experiment and heat treatment of β titanium alloy”, Rare metal materials and engineering, vol. 44, pp. 671-675, 2015.
[21] B. Q. Jin, Q. Wang, L. Z. Zhao, A. J. Pan, X. F. Ding, W. Gao, Y. F. Song and X. F. Zhang, “A review of additive manufacturing techniques and post-processing for high-temperature titanium alloys”, Metals, vol. 13, 1327, 2023.
[22] Y. Shida and H. Anada, “The effect of various ternary additives on the oxidation behavior of TiAl in high-temperature air”, Oxidation of metals, vol. 45, pp. 197-219, 1996.
[23] S. K. Bhattacharya, R. Sahara, T. Kitashima, K. Ueda and T. Narushima, “First principles study of oxidation of Si-segregated α-Ti(0001) surfaces”, Japanese journal of applied physics, vol. 56, 125701, 2017.
[24] S. Gorsse and Y. Le Petitcorps, “A new approach in the understanding of the SiC/Ti reaction zone composition and morphology”, Composites part a-applied science and manufacturing, vol. 29, pp. 1221-1227, 1998.
[25] Y. Jiao, L. J. Huang, S. L. Wei, L. Geng, M. F. Qian and S. Yue, “Nano-Ti5Si3 leading to enhancement of oxidation resistance”, Corrosion science, vol. 140, pp. 223-230, 2018.
[26] E. Pleshakov, Y. Senyavs′kyi and R. Filip, “Laser surface modification of Ti-6Al-4V alloy with silicon carbide”, Materials science, vol. 38, pp. 646-652, 2002.
[27] H. Wang, X. J. Xu, Y. G. Liu, C. B. Cai, Z. W. Sun, M. N. Han, S. H. Sha and V. M. Tabie, “Effect of SiC content on hot corrosion resistance of tic and Ti5Si3 reinforced Ti-Al-Sn-Zr titanium matrix composites”, Journal of materials engineering and performance, vol. 30, pp. 2439-2448, 2021.
[28] A. Casadebaigt, J. Hugues and D. Monceau, “High temperature oxidation and embrittlement at 500–600 °C of Ti-6Al-4V alloy fabricated by laser and electron beam melting”, Corrosion science, vol. 175, 108875, 2020.
[29] A. Hemmasian Ettefagh, C. Zeng, S. Guo and J. Raush, “Corrosion behavior of additively manufactured Ti-6Al-4V parts and the effect of post annealing”, Additive manufacturing, vol. 28, pp. 252-258, 2019.
[30] Z. Y. Zhao, L. Li, P. K. Bai, Y. Jin, L. Y. Wu, J. Li, R. G. Guan and H. Q. Qu, “The heat treatment influence on the microstructure and hardness of TC4 titanium alloy manufactured via selective laser melting”, Materials, vol. 11, 1318, 2018.
[31] W. Yuan, W. Hou, S. Li, Y. Hao, R. Yang, L.-C. Zhang and Y. Zhu, “Heat treatment enhancing the compressive fatigue properties of open-cellular Ti-6Al-4V alloy prototypes fabricated by electron beam melting”, Journal of materials science & technology, vol. 34, pp. 1127-1131, 2018.
[32] N. Hutasoit, S. Masood, K. Pogula, M. Shuva and M. Rhamdhani, “Tensile properties of vacuum heat-treated Ti-6Al-4V alloy processed by selective laser melting”, 012138, 2018.
[33] G. M. Ter Haar and T. H. Becker, “Selective laser melting produced Ti-6Al-4V: post-process heat treatments to achieve superior tensile properties”, Materials, vol. 11, 146, 2018.
[34] S. Feldbauer, “Furnace optimization: meeting the need to reduce costs”, Heat treating progress, pp. 25-28, 2009.
[35] J. Kowalewski, “Amazing vacuum furnaces - cost of heat treatment around the world (2016)”, https://www.linkedin.com/pulse/amazing-vacuum-furnaces-cost-heat-treatment-around-world-janusz/.
[36] M. Peters, J. Hemptenmacher, J. Kumpfert and C. Leyens, “Structure and properties of titanium and titanium alloys”, Titanium and titanium alloys, pp. 1-36, 2003.
[37] T. Ahmed and H. J. Rack, “Phase transformations during cooling in alpha+beta titanium alloys”, Materials science and engineering a-structural materials properties microstructure and processing, vol. 243, pp. 206-211, 1998.
[38] M. J. H. Balat, “Determination of the active-to-passive transition in the oxidation of silicon carbide in standard and microwave-excited air”, Journal of the european ceramic society, vol. 16, pp. 55-62, 1996.
[39] J. P. Kruth, P. Mercelis, J. Van Vaerenbergh, L. Froyen and M. Rombouts, “Binding mechanisms in selective laser sintering and selective laser melting”, Rapid prototyping journal, vol. 11, pp. 26-36, 2005.
[40] A. Gebhardt, “Rapid prototyping”, 2003.
[41] L. Facchini, E. Magalini, P. Robotti, A. Molinari, S. Hoges and K. Wissenbach, “Ductility of a Ti-6Al-4V alloy produced by selective laser melting of prealloyed powders”, Rapid prototyping journal, vol. 16, pp. 450-459, 2010.
[42] D. Herzog, V. Seyda, E. Wycisk and C. Emmelmann, “Additive manufacturing of metals”, Acta materialia, vol. 117, pp. 371-392, 2016.
[43] P. Li, D. H. Warner, A. Fatemi and N. Phan, “Critical assessment of the fatigue performance of additively manufactured Ti–6Al–4V and perspective for future research”, International journal of fatigue, vol. 85, pp. 130-143, 2016.
[44] P. Prabhakar, W. J. Sames, R. Dehoff and S. S. Babu, “Computational modeling of residual stress formation during the electron beam melting process for Inconel 718”, Additive manufacturing, vol. 7, pp. 83-91, 2015.
[45] L. E. Murr, S. M. Gaytan, A. Ceylan, E. Martinez, J. L. Martinez, D. H. Hernandez, B. I. Machado, D. A. Ramirez, F. Medina, S. Collins and R. B. Wicker, “Characterization of titanium aluminide alloy components fabricated by additive manufacturing using electron beam melting”, Acta materialia, vol. 58, pp. 1887-1894, 2010.
[46] O. Diegel, A. Nordin and D. Motte, “A practical guide to design for additive manufacturing”, Springer, 2020.
[47] J. L. Bartlett and X. Li, “An overview of residual stresses in metal powder bed fusion”, Additive manufacturing, vol. 27, pp. 131-149, 2019.
[48] M. Yoshida, R. Ichiki and N. Utsumi, “Surface hardening of titanium using gas nitriding”, International journal of precision engineering and manufacturing, vol. 14, pp. 971-976, 2013.
[49] T. Ghara, S. Paul and P. P. Bandyopadhyay, “Influence of grit blasting on residual stress depth profile and dislocation density in different metallic substrates”, Metallurgical and materials transactions A, vol. 52, pp. 65-81, 2021.
[50] R. Melentiev and F. Z. Fang, “Recent advances and challenges of abrasive jet machining”, Cirp journal of manufacturing science and technology, vol. 22, pp. 1-20, 2018.
[51] G. Venkatesh, A. K. Sharma and P. Kumar, “Fine finishing of SiC microchannels using abrasive flow machining”, Indian journal of engineering and materials sciences, vol. 22, pp. 297-306, 2015.
[52] M. S. Cheema, G. Venkatesh, A. Dvivedi and A. K. Sharma, “Developments in abrasive flow machining: a review on experimental investigations using abrasive flow machining variants and media”, Proceedings of the institution of mechanical engineers part b-journal of engineering manufacture, vol. 226, pp. 1951-1962, 2012.
[53] 林麗娟,「X 光繞射原理及其應用」,工業材料,1994。
[54] AP&C, “Ti-6AI-4V grade 23”, https://www.advancedpowders.com/powders/titanium/ti-6al-4v-23.
[55] S. Kumar, T. S. N. Sankara Narayanan, S. Ganesh Sundara Raman and S. K. Seshadri, “Thermal oxidation of Ti-6Al-4V alloy: Microstructural and electrochemical characterization”, Materials chemistry and physics, vol. 119, pp. 337-346, 2010.
[56] A. F136-13, “Standard specification for wrought titanium-6aluminum-4vanadium eli (extra low interstitial) alloy for surgical implant applications”, 2021.
[57] A. D. Baghi, S. Nafisi, R. Hashemi, H. Ebendorff-Heidepriem and R. Ghomashchi, “Effective post processing of SLM fabricated Ti-6Al-4 V alloy: machining vs thermal treatment”, Journal of manufacturing processes, vol. 68, pp. 1031-1046, 2021. |