博碩士論文 110323083 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:85 、訪客IP:3.129.69.134
姓名 蔡明峰(Ming-Feng Cai)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 利用碳化矽的抗氧化性開發選擇性雷射熔融列印Ti-6Al-4V元件之低成本熱處理方法
(Development of a Low-cost Heat TreatmentMethod for Selective Laser Melt Printing of Ti-6Al-4V Components Using the Oxidation Resistance of Silicon Carbide)
相關論文
★ 雙光子光致聚合微製造系統之研發★ 雙光子光致聚合五軸微製造系統之雷射加工路徑生成研究
★ 椎弓根螺釘定位演算法及導引夾治具自動化設計流程開發★ 雙光子聚合微製造技術以能量均勻橢圓體為基之曝光時間最佳化研究
★ 雙光子光致聚合微製造以弦高誤差為基之切層演算法★ 雙光子光致聚合微製造技術以螺旋線雷射掃描路徑增強微結構強度研究
★ 雙光子聚合微製造技術之三維結構 製造品質改進研究★ 利用二維多重圖像建構三維三角網格模型的生成與品質改進
★ 組織工程用冷凍成型製造系統 之自動化製作流程開發★ 自動相機校正與二維影像輪廓萃取研究
★ 基於雙光子光致聚合技術之四軸微製造系統製作高深寬比結構之研究★ 冷凍成型積層製造之機台設計與組織工程支架製作參數調校研究
★ 基於二維影像輪廓重建三維模型技術之多視角相機群組空間座標系統整合★ 應用於大型物體三維模型重建之多重二維校正板相機校正流程開發
★ 組織工程用冷凍成型積層製造之固態水支撐結構生成研究★ 聚醚醚酮之積層製造系統開發
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-2-1以後開放)
摘要(中) 近年來積層製造之技術廣泛應用於骨科植入物的製作,可以替代、支撐、固定或修復受損組織。其中鈦合金作為骨科植入物材料選擇之一,主要鈦合金具備著生物相容性及耐腐蝕性等特性符合骨科植入物需求,然而鈦合金在加工處理時,容易因為高溫與氣體產生反應,使鈦合金在傳統製造中被列為最難加工的金屬之一。積層製造製程沒有傳統製造加工的外型設計約束,當中以選擇性雷射熔融最常用於鈦合金的積層製造,主要其在加工時,產生的高溫能使鈦合金完全熔融,進而增加成品之機械性質。但該製程反覆高溫熔融使的成品不斷經歷加熱及冷卻的過程,冷卻溫度下降速率過大,使內部產生殘留應力,從而導致製造不精確或變型。一般為了降低殘留應力熱處理是最常見的方法。會用氣氛或真空熱處理爐來防止鈦合金與氧進行反應,不過熱處理爐及耗材相當昂貴,導致在積層製造之後熱處理所需成本增加。
本研究之目的為建構出積層製造之低成本熱處理用無氣氛或真空高溫爐之方式,來達到降低內應力所導致的變型翹曲。主要概念將熱理件以碳化矽顆粒包覆,並將其半密封於容器中,達到減少空氣流通性,避免在高溫狀態氧氣與鈦進行反應形成氧化鈦。本論文研究不同熱處理參數對於試片之機械性質之影響,經由實驗結果顯示,金屬積層製造之製備熱處理兩端夾持側長度20mm之翹曲從400μm降低至76μm,減少了五倍以上之翹曲量,並且其降伏應力大於氣氛熱處理之降伏應力。最後在製備型熱處理設計及流程提出改善方式,以便後續進行改進之目標。
摘要(英) In recent years, the technology of laminated manufacturing has been widely applied to the production of orthopedic implants, which can replace, support, fix or repair damaged tissues. Titanium alloy is one of the materials of choice for orthopedic implants. The main characteristics of titanium alloy, such as biocompatibility and corrosion resistance, meet the needs of orthopedic implants; however, titanium alloy is susceptible to reactive reactions due to high temperatures and gases during the processing of titanium alloys, making titanium alloys one of the most difficult metals to process in conventional manufacturing. The laminated manufacturing process does not have the constraints of conventional manufacturing, and selective laser melting is most commonly used in the laminated manufacturing of titanium alloys. The main reason is that the high temperatures generated during the process can completely melt the titanium alloy, which in turn increases the mechanical properties of the finished product. However, the repeated high-temperature melting in this process makes the finished products go through the process of heating and cooling continuously, and the rate of cooling temperature dropping is too large, which generates residual stress inside and leads to inaccuracy or deformation of the manufacturing. In order to reduce the residual stress, heat treatment is the most common method. Atmospheric or vacuum heat treatment furnaces are used to prevent the titanium alloy from reacting with oxygen. However, heat treatment furnaces and consumables are quite expensive, resulting in increased costs for heat treatment after the laminate has been manufactured.
The purpose of this study is to develop a method to reduce the warpage caused by internal stress and to reduce the cost of heat treatment by using an atmosphere-free or vacuum high-temperature furnace for the heat treatment of laminated fabrication. In this study, silicon carbide is used to prevent oxygen penetration and sealed in a container to reduce the air circulation and avoid the reaction between oxygen and titanium to form titanium oxide at high temperature, and to study the effect of different heat treatment parameters on the mechanical properties of the specimens. The experimental results show that the warpage of 20mm at both ends of the clamping side of the fabricated heat treatment for metal lamination is reduced from 400μm to 76μm, which is more than five times of the warpage, and the yielding stress is larger than that of the atmosphere heat treatment. Finally, the design and process of heat treatment in the preparation type are proposed to be improved in order to achieve the goal of subsequent improvement.
關鍵字(中) ★ 積層製造
★ Ti-6Al-4V
★ 選擇性雷射熔融
★ 熱處理
關鍵字(英) ★ Additive manufacturing
★ Ti-6Al-4V
★ Selective laser melting
★ Heat treatment
論文目次 目錄
摘要 I
ABSTRACT II
目錄 III
圖目錄 V
表目錄 VIII
第一章 緒論 1
1-1 前言 1
1-2 文獻回顧 2
1-3 研究動機與目的 11
1-4 論文架構 12
第二章 理論說明 13
2-1 鈦合金介紹 13
2-2 碳化矽介紹 16
2-3 積層製造原理及種類 18
2-4 金屬積層製造之熱處理簡介 20
2-5 金屬積層製造之後處理 22
2-6 材料性質檢測 25
第三章 系統架構與實驗方法 30
3-1 金屬積層製造實驗設備 30
3-2 Ti-6Al-4V粉末特性 32
3-3 試片製作及參數設計 33
3-4 SLM鈦合金之低成本熱處理流程 34
3-5 表面處理及翹曲量測 38
3-6 拉伸試驗及破斷面觀察 41
3-7 實驗流程 43
第四章 實驗結果與討論 46
4-1 表面宏觀和微觀結構觀察與分析 46
4-2 X光繞射圖結果分析 51
4-3 拉伸測試結果 54
4-4 拉伸破斷面觀察及分析 58
4-5 SLM鈦合金之低成本熱處理之實驗結果與比較 65
第五章 結論與未來展望 67
5-1 結論 67
5-2 未來展望 68
參考文獻 69
參考文獻 6參考文獻
[1] X. P. Tan, Y. J. Tan, C. S. L. Chow, S. B. Tor and W. Y. Yeong, “Metallic powder-bed based 3D printing of cellular scaffolds for orthopaedic implants: a state-of-the-art review on manufacturing, topological design, mechanical properties and biocompatibility”, Materials science and engineering c-materials for biological applications, vol. 76, pp. 1328-1343, 2017.
[2] M. Long and H. J. Rack, “Titanium alloys in total joint replacement—a materials science perspective”, Biomaterials, vol. 19, pp. 1621-1639, 1998.
[3] L. N. Carter, O. Addison, N. Naji, P. Seres, A. H. Wilman, D. E. T. Shepherd, L. Grover and S. Cox, “Reducing MRI susceptibility artefacts in implants using additively manufactured porous Ti-6Al-4V structures”, Acta biomaterialia, vol. 107, pp. 338-348, 2020.
[4] J. C. Colombo-Pulgarin, C. A. Biffi, M. Vedani, D. Celentano, A. Sanchez-Egea, A. D. Boccardo and J. P. Ponthot, “Beta titanium alloys processed by laser powder bed fusion: a review”, Journal of materials engineering and performance, vol. 30, pp. 6365-6388, 2021.
[5] X. Z. Zhang, M. Leary, H. P. Tang, T. Song and M. Qian, “Selective electron beam manufactured Ti-6Al-4V lattice structures for orthopedic implant applications: Current status and outstanding challenges”, Current opinion in solid state and materials science, vol. 22, pp. 75-99, 2018.
[6] M. S. Ghiasi, J. Chen, A. Vaziri, E. K. Rodriguez and A. Nazarian, “Bone fracture healing in mechanobiological modeling: a review of principles and methods”, Bone reports, vol. 6, pp. 87-100, 2017.
[7] F. H. Froes, “8 - Powder metallurgy of titanium alloys”, Advances in powder metallurgy, pp. 202-240, 2013.
[8] P. Conradie, D. Dimitrov and G. Oosthuizen, “A cost modelling approach for milling titanium alloys”, Procedia CIRP, vol. 46, pp. 412-415, 2016.
[9] M. Attaran, “The rise of 3-D printing: the advantages of additive manufacturing over traditional manufacturing”, Business horizons, vol. 60, pp. 677-688, 2017.
[10] H. Kodama, “Automatic method for fabricating a three‐dimensional plastic model with photo‐hardening polymer”, Review of scientific instruments, vol. 52, pp. 1770-1773, 1981.
[11] ISO/ASTM52900-21, “Additive manufacturing general principles fundamentals and vocabulary”, 2021.
[12] S. L. Sing, “Perspectives on additive manufacturing enabled beta-titanium alloys for biomedical applications”, International journal of bioprinting, vol. 8, pp. 1-8, 2022.
[13] S. Liu and Y. C. Shin, “Additive manufacturing of Ti-6Al-4V alloy: a review”, Materials & design, vol. 164, 107552, 2019.
[14] T. Vilaro, C. Colin and J. D. Bartout, “As-fabricated and heat-treated microstructures of the Ti-6Al-4V alloy processed by selective laser melting”, Metallurgical and materials transactions a, vol. 42, pp.3190-3199, 2011.
[15] P. A. Kobryn and S. L. Semiatin, “The laser additive manufacture of Ti-6Al-4V”, Journal of management, vol. 53, pp. 40-42, 2001.
[16] S. Leuders, M. Thöne, A. Riemer, T. Niendorf, T. Tröster, H. A. Richard and H. J. Maier, “On the mechanical behaviour of titanium alloy Ti-6Al-4V manufactured by selective laser melting: fatigue resistance and crack growth performance”, International journal of fatigue, vol. 48, pp. 300-307, 2013.
[17] S. Leuders, T. Lieneke, S. Lammers, T. Tröster and T. Niendorf, “On the fatigue properties of metals manufactured by selective laser melting —the role of ductility”, Journal of materials research, vol. 29, pp. 1911-1919, 2014.
[18] S. Frangini, A. Mignone and F. Dericcardis, “Various aspects of the air oxidation behavior of a Ti-6Al-4V alloy at temperatures in the range 600-700-degrees-c”, Journal of materials science, vol. 29, pp. 714-720, 1994.
[19] H. Guleryuz and H. Cimenoglu, “Effect of thermal oxidation on corrosion and corrosion-wear behaviour of a Ti-6Al-4V alloy”, Biomaterials, vol. 25, pp. 3325-3333, 2004.
[20] H. Z. Zhao, Z. P. Xi, D. Z. Guo, B. Zhao, Y. L. Yang, X. N. Mao, J. Sun and L. Xiao, “Rotary piercing experiment and heat treatment of β titanium alloy”, Rare metal materials and engineering, vol. 44, pp. 671-675, 2015.
[21] B. Q. Jin, Q. Wang, L. Z. Zhao, A. J. Pan, X. F. Ding, W. Gao, Y. F. Song and X. F. Zhang, “A review of additive manufacturing techniques and post-processing for high-temperature titanium alloys”, Metals, vol. 13, 1327, 2023.
[22] Y. Shida and H. Anada, “The effect of various ternary additives on the oxidation behavior of TiAl in high-temperature air”, Oxidation of metals, vol. 45, pp. 197-219, 1996.
[23] S. K. Bhattacharya, R. Sahara, T. Kitashima, K. Ueda and T. Narushima, “First principles study of oxidation of Si-segregated α-Ti(0001) surfaces”, Japanese journal of applied physics, vol. 56, 125701, 2017.
[24] S. Gorsse and Y. Le Petitcorps, “A new approach in the understanding of the SiC/Ti reaction zone composition and morphology”, Composites part a-applied science and manufacturing, vol. 29, pp. 1221-1227, 1998.
[25] Y. Jiao, L. J. Huang, S. L. Wei, L. Geng, M. F. Qian and S. Yue, “Nano-Ti5Si3 leading to enhancement of oxidation resistance”, Corrosion science, vol. 140, pp. 223-230, 2018.
[26] E. Pleshakov, Y. Senyavs′kyi and R. Filip, “Laser surface modification of Ti-6Al-4V alloy with silicon carbide”, Materials science, vol. 38, pp. 646-652, 2002.
[27] H. Wang, X. J. Xu, Y. G. Liu, C. B. Cai, Z. W. Sun, M. N. Han, S. H. Sha and V. M. Tabie, “Effect of SiC content on hot corrosion resistance of tic and Ti5Si3 reinforced Ti-Al-Sn-Zr titanium matrix composites”, Journal of materials engineering and performance, vol. 30, pp. 2439-2448, 2021.
[28] A. Casadebaigt, J. Hugues and D. Monceau, “High temperature oxidation and embrittlement at 500–600 °C of Ti-6Al-4V alloy fabricated by laser and electron beam melting”, Corrosion science, vol. 175, 108875, 2020.
[29] A. Hemmasian Ettefagh, C. Zeng, S. Guo and J. Raush, “Corrosion behavior of additively manufactured Ti-6Al-4V parts and the effect of post annealing”, Additive manufacturing, vol. 28, pp. 252-258, 2019.
[30] Z. Y. Zhao, L. Li, P. K. Bai, Y. Jin, L. Y. Wu, J. Li, R. G. Guan and H. Q. Qu, “The heat treatment influence on the microstructure and hardness of TC4 titanium alloy manufactured via selective laser melting”, Materials, vol. 11, 1318, 2018.
[31] W. Yuan, W. Hou, S. Li, Y. Hao, R. Yang, L.-C. Zhang and Y. Zhu, “Heat treatment enhancing the compressive fatigue properties of open-cellular Ti-6Al-4V alloy prototypes fabricated by electron beam melting”, Journal of materials science & technology, vol. 34, pp. 1127-1131, 2018.
[32] N. Hutasoit, S. Masood, K. Pogula, M. Shuva and M. Rhamdhani, “Tensile properties of vacuum heat-treated Ti-6Al-4V alloy processed by selective laser melting”, 012138, 2018.
[33] G. M. Ter Haar and T. H. Becker, “Selective laser melting produced Ti-6Al-4V: post-process heat treatments to achieve superior tensile properties”, Materials, vol. 11, 146, 2018.
[34] S. Feldbauer, “Furnace optimization: meeting the need to reduce costs”, Heat treating progress, pp. 25-28, 2009.
[35] J. Kowalewski, “Amazing vacuum furnaces - cost of heat treatment around the world (2016)”, https://www.linkedin.com/pulse/amazing-vacuum-furnaces-cost-heat-treatment-around-world-janusz/.
[36] M. Peters, J. Hemptenmacher, J. Kumpfert and C. Leyens, “Structure and properties of titanium and titanium alloys”, Titanium and titanium alloys, pp. 1-36, 2003.
[37] T. Ahmed and H. J. Rack, “Phase transformations during cooling in alpha+beta titanium alloys”, Materials science and engineering a-structural materials properties microstructure and processing, vol. 243, pp. 206-211, 1998.
[38] M. J. H. Balat, “Determination of the active-to-passive transition in the oxidation of silicon carbide in standard and microwave-excited air”, Journal of the european ceramic society, vol. 16, pp. 55-62, 1996.
[39] J. P. Kruth, P. Mercelis, J. Van Vaerenbergh, L. Froyen and M. Rombouts, “Binding mechanisms in selective laser sintering and selective laser melting”, Rapid prototyping journal, vol. 11, pp. 26-36, 2005.
[40] A. Gebhardt, “Rapid prototyping”, 2003.
[41] L. Facchini, E. Magalini, P. Robotti, A. Molinari, S. Hoges and K. Wissenbach, “Ductility of a Ti-6Al-4V alloy produced by selective laser melting of prealloyed powders”, Rapid prototyping journal, vol. 16, pp. 450-459, 2010.
[42] D. Herzog, V. Seyda, E. Wycisk and C. Emmelmann, “Additive manufacturing of metals”, Acta materialia, vol. 117, pp. 371-392, 2016.
[43] P. Li, D. H. Warner, A. Fatemi and N. Phan, “Critical assessment of the fatigue performance of additively manufactured Ti–6Al–4V and perspective for future research”, International journal of fatigue, vol. 85, pp. 130-143, 2016.
[44] P. Prabhakar, W. J. Sames, R. Dehoff and S. S. Babu, “Computational modeling of residual stress formation during the electron beam melting process for Inconel 718”, Additive manufacturing, vol. 7, pp. 83-91, 2015.
[45] L. E. Murr, S. M. Gaytan, A. Ceylan, E. Martinez, J. L. Martinez, D. H. Hernandez, B. I. Machado, D. A. Ramirez, F. Medina, S. Collins and R. B. Wicker, “Characterization of titanium aluminide alloy components fabricated by additive manufacturing using electron beam melting”, Acta materialia, vol. 58, pp. 1887-1894, 2010.
[46] O. Diegel, A. Nordin and D. Motte, “A practical guide to design for additive manufacturing”, Springer, 2020.
[47] J. L. Bartlett and X. Li, “An overview of residual stresses in metal powder bed fusion”, Additive manufacturing, vol. 27, pp. 131-149, 2019.
[48] M. Yoshida, R. Ichiki and N. Utsumi, “Surface hardening of titanium using gas nitriding”, International journal of precision engineering and manufacturing, vol. 14, pp. 971-976, 2013.
[49] T. Ghara, S. Paul and P. P. Bandyopadhyay, “Influence of grit blasting on residual stress depth profile and dislocation density in different metallic substrates”, Metallurgical and materials transactions A, vol. 52, pp. 65-81, 2021.
[50] R. Melentiev and F. Z. Fang, “Recent advances and challenges of abrasive jet machining”, Cirp journal of manufacturing science and technology, vol. 22, pp. 1-20, 2018.
[51] G. Venkatesh, A. K. Sharma and P. Kumar, “Fine finishing of SiC microchannels using abrasive flow machining”, Indian journal of engineering and materials sciences, vol. 22, pp. 297-306, 2015.
[52] M. S. Cheema, G. Venkatesh, A. Dvivedi and A. K. Sharma, “Developments in abrasive flow machining: a review on experimental investigations using abrasive flow machining variants and media”, Proceedings of the institution of mechanical engineers part b-journal of engineering manufacture, vol. 226, pp. 1951-1962, 2012.
[53] 林麗娟,「X 光繞射原理及其應用」,工業材料,1994。
[54] AP&C, “Ti-6AI-4V grade 23”, https://www.advancedpowders.com/powders/titanium/ti-6al-4v-23.
[55] S. Kumar, T. S. N. Sankara Narayanan, S. Ganesh Sundara Raman and S. K. Seshadri, “Thermal oxidation of Ti-6Al-4V alloy: Microstructural and electrochemical characterization”, Materials chemistry and physics, vol. 119, pp. 337-346, 2010.
[56] A. F136-13, “Standard specification for wrought titanium-6aluminum-4vanadium eli (extra low interstitial) alloy for surgical implant applications”, 2021.
[57] A. D. Baghi, S. Nafisi, R. Hashemi, H. Ebendorff-Heidepriem and R. Ghomashchi, “Effective post processing of SLM fabricated Ti-6Al-4 V alloy: machining vs thermal treatment”, Journal of manufacturing processes, vol. 68, pp. 1031-1046, 2021.
指導教授 廖昭仰(Chao-Yaug Liao) 審核日期 2024-1-5
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明