以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:93 、訪客IP:52.14.100.101
姓名 洪敏雄(Ming-Hsiung Hung) 查詢紙本館藏 畢業系所 機械工程學系 論文名稱 基於雙面雙切削法於螺旋傘齒輪之五軸 CNC 加工數學模型建立
(Mathematical Modeling of Five-axis CNC Machining Based on Duplex Helical Method for Spiral Bevel Gears)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] 至系統瀏覽論文 (2029-1-30以後開放) 摘要(中) 螺旋傘齒輪由於特殊的形狀與嚙合方式,其加工方式較圓柱形齒輪更為複雜;且除了使用模具鍛造鑄造的方式,現今工業上普遍使用專用機台加工螺旋傘齒輪來提升生產效率;其加工方式主要可分為由美國齒輪製造商Gleason公司引領的面銑式切製法,以及德國齒輪製造商Klingelnberg所研究的面滾式切製法。傳統上,傘齒輪的切製方式離不開專用的加工機台,機台上通常具有多種複雜的結構,特色是具有搖台機構的特殊設計;然而經過二十年來的發展,加工機台已具有極高的效率與精度;六軸CNC工具機已具有高自由度,可以完整的完成加工螺旋傘齒輪時的切削軌跡,突破以往傳統上因機械結構所造成限制。由於螺旋傘齒輪之外形與多種計算方式,使的初入門之學者難以理解容易混淆,因此本研究欲發展一套完整設計至創成加工螺旋傘齒輪之數學模型;於研究中基於逆運動學,從傳統加工螺旋傘齒輪之切削機的座標系統,建立面銑式加工螺旋傘齒輪的數學模型,使其應用於CNC切削機台上;然而由於Gleason切製螺旋齒輪之機械設定的不公開,尤其是雙面雙切削法,於文獻上揭露的更少,本研究基於已揭密的基礎機械設定原理為基礎,研究一套以雙面雙切削法創成螺旋傘齒輪之計算模型,並應用至立式五軸CNC加工機,並驗證所計算之齒面模型。最後為了可快速的護取齒面接觸結果來判斷齒面效能,以創成之螺旋傘齒輪模型,於齒輪模擬軟體KissSoft建立近似齒面模型,並進行齒面負載接觸模擬;此外使用有限元素之齒面接觸模擬,驗證KissSoft之近似齒面模型之接觸模擬結果為正確的。 摘要(英) The modelling of spiral bevel gears is more complex than the modelling of cylindrical gears due to the unique shape and engagement type. Except using mold forging and casting methods, dedicated machines are commonly employed to enhance the production efficiency of spiral bevel gears in industry. Traditionally, the cutting of bevel gears relies on specialized machining equipment, typically featuring various complex structures, with a distinctive design incorporating a cradle type mechanism. Nowadays six-axis CNC machine tools provide high freedom, high efficiency and high precision, enabling the complete execution of cutting path for manufacturing spiral bevel gears, overcoming previous limitations imposed by mechanical structures.
Because of the complex shape and various calculation methods associated with spiral bevel gears, beginners often find it challenging to comprehend. Therefore, this study aims to develop a comprehensive mathematical model for the design and manufacturing of spiral bevel gears. In the research, is based on inverse kinematics to establish a mathematical model for face-milling of spiral bevel gears and applied to CNC cutting machines, starting from the coordinate system of universal gear cutting machines. However, due to the mysterious mechanical settings for cutting of Spiral gears, particularly the duplex helical cutting method, which is less revealed in the literature, this study, based on disclosed fundamental mechanical principles, research for a duplex helical cutting method to create a mathematical model for spiral bevel gears. Subsequently, the model is implemented on a vertical five-axis CNC machine, and the accuracy of the calculated tooth surface model is confirmed through validation. To promptly evaluate tooth contact outcomes for assessing tooth surface performance, the generated spiral bevel gear model is employed to create an approximate tooth surface model within the gear simulation software KISSsoft. Following this, simulations for tooth surface load contact are conducted. Furthermore, finite element tooth contact simulations are utilized to validate the accuracy of the contact simulation results obtained from KISSsoft.關鍵字(中) ★ 螺旋傘齒輪
★ 面銑式加工
★ 雙面雙切削法
★ 負載接觸模擬
★ KissSoft關鍵字(英) ★ Spiral bevel gear
★ Face-milling
★ Duplex helical method
★ Tooth contact analysis
★ Five-axis CNC machine
★ KissSoft論文目次 摘要 i
ABSTRACT ii
謝誌 iv
目錄 v
圖目錄 vii
表目錄 x
參數符號表 xi
第1章 緒論 1
1-1 前言 1
1-2 文獻回顧 4
1-3 研究目的與動機 6
1-4 論文架構 7
第2章 齒胚幾何模型之建立 8
2-1 傘齒輪之幾何設計 9
2-2 傘齒輪之幾何參數 13
2-3 總結 18
第3章 面銑式切削模型之建立 19
3-1 面銑式刀盤模型之建立 19
3-2 面銑式泛用加工座標系統之建構 24
3-3 應用立式五軸CNC加工機座標系統之建構 29
3-4 相對共軛齒面模型之建立 33
3-5 總結 36
第4章 傳統加工機台參數之計算 37
4-1 假想產形輪 38
4-2 平頂假想產形輪 39
4-3 錐形假想產形輪 43
4-4 基於雙面雙切削法創成傘齒輪 53
4-5 總結 55
第5章 數值範例 56
5-1 螺旋傘齒輪模型參數範例 57
5-2 傘齒輪齒面拓樸網格點之劃分 66
5-3 螺旋傘齒輪模型之驗證 66
第6章 KISSsoft負載齒面接觸模擬 76
6-1 KISSsoft傘齒輪之數學模型 76
6-2 KISSsoft近似齒面模擬模型之建立 77
6-3 KISSsoft負載齒面接觸模擬實驗 81
6-4 有限元素等效齒面模型之比對 88
第7章 總結與未來展望 95
7-1 總結 95
7-2 未來展望 96
參考文獻 97
作者簡介 100參考文獻 [1] Fuentes, A., Litvin, F. L., Mullins, B. R., Woods, R., and Handschuh, R. F., “Design and stress analysis of low-noise adjusted bearing contact spiral bevel gears,” J. Mech. Des., 124(3), 524-532, 2002.
[2] 鄧效忠、魏冰陽,錐齒輪設計的新方法,科學出版社,2012。
[3] American Gear Manufacturers Association, ANSI/AGMA ISO 23509-A08: Bevel and Hypoid Gear Geometry, 2008.
[4] Fan, Q., “Enhanced algorithms of contact simulation for hypoid gear drives produced by face-milling and face-hobbing processes,” Journal of Mechanical Design, 129(1), 31-37, 2007.
[5] Litvin, F. L., and Gutman, Y., “Methods of synthesis and analysis for hypoid gear-drives of formate and helixform,” Journal of Mechanical Design, 103, 103, 1981.
[6] Fong, Z. H., “Mathematical model of universal hypoid generator with supplemental kinematic flank correction motions,” Journal of Mechanical Design, 122(1), 136-142, 2000.
[7] Wang, P. Y., and Fong, Z. H., “Fourth-order kinematic synthesis for face-milling spiral bevel gears with modified radial motion (MRM) correction,” Journal of Mechanical Design, 128(2), 457-467, 2006.
[8] Shih, Y. P., Fong, Z. H., and Lin, G. C., “Mathematical model for a universal face hobbing hypoid gear generator,” Journal of Mechanical Design, 129(1), 38-47, 2007.
[9] Shih, Y. P., and Fong, Z. H., “Flank modification methodology for face-hobbing hypoid gears based on ease-off topography,” Journal of Mechanical Design, 129(12), 1294-1302, 2007.
[10] Litvin, F. L., Zhang, Y., Lundy, M., and Heine, C., Determination of settings of a tilted head-cutter for generation of hypoid and spiral bevel gears, No. AD-A196985, 1988.
[11] Fong, Z. H., and Tsay, B. C. B.,“ A study on the tooth geometry and cutting machine mechanisms of spiral bevel gears,” Journal of Mechanical Design, 129(12), 1294-1302, 1991.
[12] Fong, Z. H., and Tsay, C. B., “The undercutting of circular-cut spiral bevel gears,” Journal of Mechanical Design, 114(2), 317-325, 1992.
[13] Gonzalez-Perez, I., Fuentes, A., and Hayasaka, K., “Analytical determination of basic machine-tool settings for generation of spiral bevel gears from blank data,” Journal of Mechanical Design, 132(10), 1001002, 2010.
[14] Zhou, Y., Peng, S., Liu, X., Liu, S., and Tang, J., “A novel method to generate the tooth surface model of face-milled generated spiral bevel gears,” The International Journal of Advanced Manufacturing Technology, 102, 1205-1214, 2019.
[15] Shih, Y. P., Sun, Z. H., and Lai, K. L., “A flank correction face-milling method for bevel gears using a five-axis CNC machine,” The International Journal of Advanced Manufacturing Technology, 91, 3635-3652. 2017.
[16] Works, G., “Calculation instructions generated hypoid gears duplex helical method,” The Gleason Works, New York, 1971.
[17] 曾韜,螺旋錐齒輪設計與加工,,哈爾濱工業大學出版社,1989。
[18] Zhang, Y., and Yan, H., “New methodology for determining basic machine settings of spiral bevel and hypoid gears manufactured by duplex helical method,” Mechanism and Machine Theory, 100, 283-295, 2016.
[19] Yang, Y., Mao, S., Bai, B., and Kuang, Y., “Active design and manufacture of face-milled spiral bevel gear by completing process method with fixed workpiece axis based on a free-form machine tool,” The International Journal of Advanced Manufacturing Technology, 112, 2925-2942, 2021.
[20] Geng, L., Deng, X., Zhang, H., Nie, S., and Jiang, C., “Theory and experimental research on spiral bevel gear by double-side milling method,” Mechanics & Industry, 22, 33, 2021.
[21] 石伊蓓、林忠運,蝸線傘齒輪和戟齒輪切削刀具,機械月刊,第三十一卷,第八期,72-87頁,2005。
[22] 邱政民,五軸加工機之螺旋傘齒輪鐘型刀具切製法研究,國立臺灣科技大學,碩士論文,2013。
[23] Wang, X. C., GHOSH, S., and WU, X., “A simple method of obtaining machine-setting parameters for spiral bevel and hypoid gears,” European journal of mechanical engineering, 38(4), 173-179, 1993.
[24] Bae, I., and Schirru, V., “An approach of pairing bevel gears from conventional cutting machine with gears produced on 5-axis milling machine,” International Gear Conference 26th-28th, 240, Chandos, 2014.
[25] 張展,錐齒輪傳動設計與製造,化學工業出版社,2020。指導教授 吳育仁(Yu-Ren Wu) 審核日期 2024-1-29 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare