參考文獻 |
[1] Stuart J Russell and Peter Norvig, Artificial intelligence: a modern approach, Pearson, 2016.
[2] Richard S Sutton and Andrew G Barto, Reinforcement learning: An introduction, MIT press, 2018.
[3] Yuxi Li, “Deep reinforcement learning: An overview,” arXiv preprint arXiv:1701.07274, 2017.
[4] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al., “Mastering the game of go with deep neural networks and tree search,” nature, vol. 529, no. 7587, pp. 484–489, 2016.
[5] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wierstra, and Martin Riedmiller, “Playing atari with deep reinforcement learning,” arXiv preprint arXiv:1312.5602, 2013.
[6] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al., “Training language models to follow instructions with human feedback,” Advances in neural information processing systems, vol. 35, pp. 27730–27744, 2022. 49
[7] ROpenAI, “Gpt-4technical report. arxiv 2303.08774,” View in Article, vol. 2, no. 5, 2023. [8] Markus Schlosser, “Agency,” https://plato.stanford.edu/archives/win2019/ entries/agency/, 2019.
[9] Steven Pinker, The language instinct: How the mind creates language, Penguin uK, 2003.
[10] Tomas Mikolov, Martin Karafiát, Lukas Burget, Jan Cernockỳ, and Sanjeev Khudanpur, “Recurrent neural network based language model.,” in Interspeech. Makuhari, 2010, pp. 1045–1048.
[11] Alex Graves, “Generating sequences with recurrent neural networks,” arXiv preprint arXiv:1308.0850, 2013.
[12] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov, “Roberta: A robustly optimized bert pretraining approach,” arXiv preprint arXiv:1907.11692, 2019.
[13] Pengcheng He, Xiaodong Liu, Jianfeng Gao, and Weizhu Chen, “Deberta: Decodingenhanced bert with disentangled attention,” arXiv preprint arXiv:2006.03654, 2020.
[14] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al., “Palm: Scaling language modeling with pathways,” Journal of Machine Learning Research, vol. 24, no. 240, pp. 1–113, 2023.
[15] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al., “Llama: Open and efficient foundation language models,” arXiv preprint arXiv:2302.13971, 2023. 50
[16] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al., “Gpt-4 technical report,” arXiv preprint arXiv:2303.08774, 2023.
[17] Noah Shinn, Beck Labash, and Ashwin Gopinath, “Reflexion: an autonomous agent with dynamic memory and self-reflection,” arXiv preprint arXiv:2303.11366, 2023.
[18] Chan Hee Song, Jiaman Wu, Clayton Washington, Brian M Sadler, Wei-Lun Chao, and Yu Su, “Llm-planner: Few-shot grounded planning for embodied agents with large language models,” in Proceedings of the IEEE/CVF International Conference on Computer Vision, 2023, pp. 2998–3009.
[19] Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen Ding, Boyang Hong, Ming Zhang, JunzheWang,SenjieJin, EnyuZhou, etal., “Theriseandpotentialoflargelanguagemodel based agents: A survey,” arXiv preprint arXiv:2309.07864, 2023.
[20] Guohao Li, Hasan Abed Al Kader Hammoud, Hani Itani, Dmitrii Khizbullin, and Bernard Ghanem, “Camel: Communicative agents for” mind” exploration of large scale language model society,” 2023.
[21] Chen Qian, Xin Cong, Cheng Yang, Weize Chen, Yusheng Su, Juyuan Xu, Zhiyuan Liu, and Maosong Sun, “Communicative agents for software development,” arXiv preprint arXiv:2307.07924, 2023.
[22] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova, “Bert: Pretraining of deep bidirectional transformers for language understanding,” arXiv preprint arXiv:1810.04805, 2018. 51
[23] Nils Reimers and Iryna Gurevych, “Sentence-bert: Sentence embeddings using siamese bert-networks,” arXiv preprint arXiv:1908.10084, 2019.
[24] Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al., “Training compute-optimal large language models,” arXiv preprint arXiv:2203.15556, 2022.
[25] Chien-Hao Huang, “Combining deep supervised learning and reinforcement learning for music melody generation,” Master’s thesis, National Central University, 6 2023.
[26] Jian Wu, Changran Hu, Yulong Wang, Xiaolin Hu, and Jun Zhu, “A hierarchical recurrent neural network for symbolic melody generation,” IEEE transactions on cybernetics, vol. 50, no. 6, pp. 2749–2757, 2019.
[27] Delong Huang and Fei Guo, “Multiplicity of periodic bouncing solutions for generalized impact hamiltonian systems,” Boundary Value Problems, vol. 2019, no. 1, pp. 57, 2019.
[28] Minh-Ngoc Tran and YoungHan Kim, “Concurrent service auto-scaling for knative resource quota-based serverless system,” Future Generation Computer Systems, 2024.
[29] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer, “High-resolution image synthesis with latent diffusion models,” in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 2022, pp. 1068410695.
[30] PrafullaDhariwalandAlexanderNichol, “Diffusionmodelsbeatgansonimagesynthesis,” Advances in neural information processing systems, vol. 34, pp. 8780–8794, 2021. 52
[31] Jonathan Ho, Ajay Jain, and Pieter Abbeel, “Denoising diffusion probabilistic models,” Advances in neural information processing systems, vol. 33, pp. 6840–6851, 2020.
[32] Chitwan Saharia, Jonathan Ho, William Chan, Tim Salimans, David J Fleet, and Mohammad Norouzi, “Image super-resolution via iterative refinement,” IEEE transactions on pattern analysis and machine intelligence, vol. 45, no. 4, pp. 4713–4726, 2022.
[33] Mehdi Mirza and Simon Osindero, “Conditional generative adversarial nets,” arXiv preprint arXiv:1411.1784, 2014.
[34] Kihyuk Sohn, Honglak Lee, and Xinchen Yan, “Learning structured output representation using deep conditional generative models,” Advances in neural information processing systems, vol. 28, 2015.
[35] Olaf Ronneberger, Philipp Fischer, and Thomas Brox, “U-net: Convolutional networks for biomedical image segmentation,” in Medical image computing and computer-assisted intervention–MICCAI 2015: 18th international conference, Munich, Germany, October 5-9, 2015, proceedings, part III 18. Springer, 2015, pp. 234–241.
[36] AndrewJaegle,SebastianBorgeaud,Jean-BaptisteAlayrac, CarlDoersch,CatalinIonescu, David Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, et al., “Perceiver io: A general architecture for structured inputs & outputs,” arXiv preprint arXiv:2107.14795, 2021.
[37] Andrew Jaegle, Felix Gimeno, Andy Brock, Oriol Vinyals, Andrew Zisserman, and Joao Carreira, “Perceiver: General perception with iterative attention,” in International conference on machine learning. PMLR, 2021, pp. 4651–4664. 53
[38] Andreas Blattmann, Robin Rombach, HuanLing, TimDockhorn, SeungWookKim, Sanja Fidler, and Karsten Kreis, “Align your latents: High-resolution video synthesis with latent diffusion models,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 22563–22575.
[39] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei, “Imagenet: A large-scale hierarchical image database,” in 2009 IEEE conference on computer vision and pattern recognition. Ieee, 2009, pp. 248–255.
[40] Fisher Yu, Ari Seff, Yinda Zhang, Shuran Song, Thomas Funkhouser, and Jianxiong Xiao, “Lsun: Construction of a large-scale image dataset using deep learning with humans in the loop,” arXiv preprint arXiv:1506.03365, 2015.
[41] Jonathan Ho and Tim Salimans, “Classifier-free diffusion guidance,” arXiv preprint arXiv:2207.12598, 2022.
[42] Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever, “Consistency models,” arXiv preprint arXiv:2303.01469, 2023.
[43] Chenlin Meng, Robin Rombach, Ruiqi Gao, Diederik Kingma, Stefano Ermon, Jonathan Ho, and TimSalimans, “On distillation of guided diffusion models,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 1429714306.
[44] Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine, “Elucidating the design space of diffusion-based generative models,” Advances in neural information processing systems, vol. 35, pp. 26565–26577, 2022. 54
[45] Jiaming Song, Chenlin Meng, and Stefano Ermon, “Denoising diffusion implicit models,” arXiv preprint arXiv:2010.02502, 2020.
[46] ChengLu,YuhaoZhou,FanBao,JianfeiChen, ChongxuanLi, andJunZhu, “Dpm-solver: Afast ode solver for diffusion probabilistic model sampling in around 10 steps,” Advances in Neural Information Processing Systems, vol. 35, pp. 5775–5787, 2022.
[47] ChengLu, YuhaoZhou, FanBao, JianfeiChen, ChongxuanLi, and JunZhu, “Dpm-solver+ +: Fast solver for guided sampling of diffusion probabilistic models,” arXiv preprint arXiv:2211.01095, 2022.
[48] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al., “Learning transferable visual models from natural language supervision,” in International conference on machine learning. PMLR, 2021, pp. 8748–8763. |