博碩士論文 111621013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:35 、訪客IP:3.145.33.159
姓名 吳孟杰(Meng-Jie Wu)  查詢紙本館藏   畢業系所 大氣科學學系
論文名稱 使用四維變分資料同化系統研究 2021 年宜蘭實驗 (YESR)期間的強降水事件
(A study of a heavy rainfall event during YESR2021 using a 4DVar data assimilation system)
相關論文
★ 單雷達風場反演—【移動坐標法】的特性分析與應用★ 由都卜勒風場反演熱動力場的新方法 ——TAMEX IOP#2颮線個案應用分析
★ 利用VAD技術及回波保守方程反演渦度場★ 利用單都卜勒雷達反演三維風場之研究─以數值模式資料驗證
★ 在地形上由都卜勒風場反演熱動力場★ 利用Extended-GBVTD方法反求非軸對稱颱風(颶風)風場結構
★ 同化雷達資料對數值預報影響之研究★ 使用系集卡曼濾波器同化都卜勒雷達資料之研究
★ 以3DVAR同化都卜勒雷達觀測及反演資料對於數值模擬結果的影響★ 台灣北部初秋豪雨個案之降雨特性研究
★ 同化都卜勒雷達資料改善模式預報之研究★ 2008年台灣西南部地區TRMM降雨雷達與七股雷達回波觀測比較分析及降雨估計應用研究
★ 使用四維變分同化都卜勒雷達資料以改進短期定量降雨預報★ 同化多部都卜勒雷達資料以提升降水預報能力之研究-2008 SoWMEX IOP8個案分析
★ 結合VDRAS、WRF與雷達網聯資料,以檢視對台灣地區短期降水預報改善之成效★ 結合都卜勒雷達觀測及反演氣象變數與COSMIC RO資料以改進模式預報之可行性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究使用IBM_VDRAS分析2021年11月26日的強降雨個案,搭配宜蘭強降雨實驗觀測,可辨識降雨四階段:階段一對流沿雪山山脈發展,向東北移動;階段二對流由西南側山谷肇始,聚集於中央山脈北段迎風側;階段三,平原北側系統消散,南方降雨系統開始東移;階段四,內陸降雨亦趨緩,沿海對流維持。比對由IBM_VDRAS所模擬結果,亦與降雨觀測相符,並與剖風儀、地面測站與微型探空進行校驗,結果指出此模式具有一定程度可分析冬季強降水。
  持續調查宜蘭冬季降水的過程,發現個案中底層東北風增強與其強風軸位置,會影響平原環流結構;中層強勁西南風使對流胞往東北方移動,並挾帶水氣跨越山脈進入平原;陡峭雪山山脈有利於垂直渦漩建立,影響對流胞發展;中央山脈北段處於迎風側,產生地形效應使氣塊抬升而成雲致雨。另外,局地高壓的出現與位置,影響了降雨分布。綜上所述,透過IBM_VDRAS的動力、熱力以及微物理過程,可以清楚的調查宜蘭冬季強降水的演變與特徵。
摘要(英) Using IBM_VDRAS to analysis a heavy rainfall event on 26 November 2021 with the observations in YESR (Yilan Experiment Severe Rainfall), this study identified four stages of precipitation. The precipitation was located along the SMR (Snow Mountain Range) in Stage 1, began to develop in the NCMR (Northern Central Mountain Range) and expanded northeastward into the plain in Stage 2, and then as the precipitation decreased over the northern plain, the rain band began to move to the east side of the NCMR in Stage 3, and finally the systems dissipated over the interior and only coastal convection existed in Stage 4. The simulation results were validated against wind profiler, surface sites and storm tracker, demonstrating the ability to capture the features in this case.
The research also investigated the features of this case, the results showed that the increasing low-level northeasterly wind would affect the circulation over the plain, the strong mid-level southwesterly wind make convection move northeastward and carry moisture into the plain, the steep Snow Mountain Range helps to establish the vertical vortices influenced the development of cells, and the northern Central Mountain Range captures the moisture transported by prevailing wind which induces the convection due to terrain effect. In addition, the local high-pressure systems play a key role in the location of the precipitation hotspot. From the kinematic, thermodynamic and microphysical fields of IBM_VDRAS, this study can clearly describe the evolution and characteristics of the winter heavy rainfall in Yilan.
關鍵字(中) ★ 宜蘭冬季強降水實驗
★ 四維變分
★ 雷達資料同化
關鍵字(英) ★ Ylian
★ YESR
★ IBM_VDRAS
★ 4DVar
★ radar data assimilation
★ heavy precipitation
論文目次 中文摘要 I
Abstract II
誌謝 III
目錄 IV
表目錄 VI
圖目錄 VII
第一章、 緒論 1
1-1. 宜蘭秋冬季強降水 1
1-2. 四維變分資料同化 2
1-3. 研究目標與架構 4
第二章、 研究方法 5
2-1. 雲模式基本方程組 5
2-2. 微物理過程 7
2-3. 價值函數 7
2-4. 伴隨模式 8
2-5. 虛網格沉浸邊界法 9
第三章、 個案與資料 11
3-1. 個案回顧 11
3-1-1. 綜觀環境配置 11
3-1-2. 降雨事件分析 12
3-1-3. 地面測站分析 12
3-2. 研究資料 13
3-2-1. 中尺度背景場 13
3-2-2. 氣象雷達資料 14
3-2-3. 剖風儀 14
3-2-4. 微型探空 15
第四章、 模擬與校驗 16
4-1. 模式設定與同化策略 16
4-2. 實驗設計 16
4-3. 模擬結果校驗 17
4-4. 離散窗區 vs 連續窗區 18
4-5. 模式預報表現 19
第五章、 討論與分析 20
5-1. 降雨時空間分布 20
5-2. 熱動力結構分析 21
5-3. 垂直剖面分析 22
第六章、 結論與展望 25
6-1. 結論 25
6-2. 未來工作 27
參考資料 28
附表 34
附圖 36
附錄 88
參考文獻 Gill, P. E., W. Murray, and M. H. Wright, 1981: Practical Optimization. Academic Press.
Kessler, E., 1969: On the Distribution and Continuity of Water Substance in Atmospheric Circulations. On the Distribution and Continuity of Water Substance in Atmospheric Circulations, American Meteorological Society, 1-84.
Byrd, R. H., P. Lu, J. Nocedal, and C. Zhu, 1995: A Limited Memory Algorithm for Bound Constrained Optimization. SIAM Journal on Scientific Computing, 16, 1190-1208.
Chang, S.-F., Y.-C. Liou, J. Sun, and S.-L. Tai, 2016: The Implementation of the Ice-Phase Microphysical Process into a Four-Dimensional Variational Doppler Radar Analysis System (VDRAS) and Its Impact on Parameter Retrieval and Quantitative Precipitation Nowcasting. Journal of the Atmospheric Sciences, 73, 1015-1038.
Chang, Y. H., W. T. Chen, C. M. Wu, Y. H. Kuo, and J. D. Neelin, 2023: Identifying the Deep‐Inflow Mixing Features in Orographically‐Locked Diurnal Convection. Geophysical Research Letters, 50.
Chen, X., K. Zhao, J. Sun, B. Zhou, and W.-C. Lee, 2016: Assimilating surface observations in a four-dimensional variational Doppler radar data assimilation system to improve the analysis and forecast of a squall line case. Advances in Atmospheric Sciences, 33, 1106-1119.
Crook, N. A., and J. Sun, 2002: Assimilating Radar, Surface, and Profiler Data for the Sydney 2000 Forecast Demonstration Project. Journal of Atmospheric and Oceanic Technology, 19, 888-898.
——, 2004: Analysis and Forecasting of the Low-Level Wind during the Sydney 2000 Forecast Demonstration Project. Weather and Forecasting, 19, 151-167.
Fadlun, E. A., R. Verzicco, P. Orlandi, and J. Mohd-Yusof, 2000: Combined Immersed-Boundary Finite-Difference Methods for Three-Dimensional Complex Flow Simulations. Journal of Computational Physics, 161, 35-60.
Feng, Y.-C., and T.-C. Chen Wang, 2011: Precipitation Characteristics of an Autumn Torrential Rainfall Event in Northern Taiwan as Determined from Dual-Polarization Radar Data. Journal of the Meteorological Society of Japan. Ser. II, 89, 133-150.
Franke, R., 1982: Scattered data interpolation: tests of some methods. Mathematics of Computation, 38, 181-200.
Houze, R. A., 2004: Mesoscale convective systems. Reviews of Geophysics, 42.
Hwang, W. C., P. H. Lin, and H. Yu, 2020: The development of the “Storm Tracker” and its applications for atmospheric high-resolution upper-air observations. Atmos. Meas. Tech., 13, 5395-5406.
Liou, Y.-C., T.-C. Chen Wang, and K.-S. Chung, 2003: A Three-Dimensional Variational Approach for Deriving the Thermodynamic Structure Using Doppler Wind Observations—An Application to a Subtropical Squall Line. Journal of Applied Meteorology, 42, 1443-1454.
Miller, M. J., and R. P. Pearce, 1974: A three-dimensional primitive equation model of cumulonimbus convection. Quarterly Journal of the Royal Meteorological Society, 100, 133-154.
Morales, J. L., and J. Nocedal, 2011: Remark on “algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound constrained optimization”. ACM Trans. Math. Softw., 38, Article 7.
Mueller, C., and Coauthors, 2003: NCAR Auto-Nowcast System. Weather and Forecasting, 18, 545-561.
Schiro, K. A., F. Ahmed, S. E. Giangrande, and J. D. Neelin, 2018: GoAmazon2014/5 campaign points to deep-inflow approach to deep convection across scales. Proc Natl Acad Sci U S A, 115, 4577-4582.
Su, S. H., and Coauthors, 2022: Observing severe precipitation near complex topography during the Yilan Experiment of Severe Rainfall in 2020 (YESR2020). Quarterly Journal of the Royal Meteorological Society, 148, 1663-1682.
Sun, J., 2005: Initialization and Numerical Forecasting of a Supercell Storm Observed during STEPS. Monthly Weather Review, 133, 793-813.
Sun, J., and A. Crook, 1994: Wind and Thermodynamic Retrieval from Single-Doppler Measurements of a Gust Front Observed during Phoenix II. Monthly Weather Review, 122, 1075-1091.
Sun, J., and N. A. Crook, 1997: Dynamical and Microphysical Retrieval from Doppler Radar Observations Using a Cloud Model and Its Adjoint. Part I: Model Development and Simulated Data Experiments. Journal of the Atmospheric Sciences, 54, 1642-1661.
——, 1998: Dynamical and Microphysical Retrieval from Doppler Radar Observations Using a Cloud Model and Its Adjoint. Part II: Retrieval Experiments of an Observed Florida Convective Storm. Journal of the Atmospheric Sciences, 55, 835-852.
——, 2001: Real-Time Low-Level Wind and Temperature Analysis Using Single WSR-88D Data. Weather and Forecasting, 16, 117-132.
Sun, J., and Y. Zhang, 2008: Analysis and Prediction of a Squall Line Observed during IHOP Using Multiple WSR-88D Observations. Monthly Weather Review, 136, 2364-2388.
Sun, J., D. W. Flicker, and D. K. Lilly, 1991: Recovery of Three-Dimensional Wind and Temperature Fields from Simulated Single-Doppler Radar Data. Journal of Atmospheric Sciences, 48, 876-890.
Sun, J., M. Chen, and Y. Wang, 2010: A Frequent-Updating Analysis System Based on Radar, Surface, and Mesoscale Model Data for the Beijing 2008 Forecast Demonstration Project. Weather and Forecasting, 25, 1715-1735.
Sun, T., J. Sun, Y. Chen, and H. Chen, 2023: A Multiscale Four-Dimensional Variational Data Assimilation Scheme: A Squall-Line Case Study. Monthly Weather Review, 151, 2077-2095.
Tai, S.-L., Y.-C. Liou, J. Sun, and S.-F. Chang, 2017: The Development of a Terrain-Resolving Scheme for the Forward Model and Its Adjoint in the Four-Dimensional Variational Doppler Radar Analysis System (VDRAS). Monthly Weather Review, 145, 289-306.
Tai, S.-L., Y.-C. Liou, S.-F. Chang, and J. Sun, 2020: The Heavy Rainfall Mechanism Revealed by a Terrain-Resolving 4DVar Data Assimilation System—A Case Study. Monthly Weather Review, 148, 2307-2330.
Tai, S.-L., Y.-C. Liou, J. Sun, S.-F. Chang, and M.-C. Kuo, 2011: Precipitation Forecasting Using Doppler Radar Data, a Cloud Model with Adjoint, and the Weather Research and Forecasting Model: Real Case Studies during SoWMEX in Taiwan. Weather and Forecasting, 26, 975-992.
Tripoli, G. J., and W. R. Cotton, 1981: The Use of lce-Liquid Water Potential Temperature as a Thermodynamic Variable In Deep Atmospheric Models. Monthly Weather Review, 109, 1094-1102.
Tseng, Y.-H., and J. H. Ferziger, 2003: A ghost-cell immersed boundary method for flow in complex geometry. Journal of Computational Physics, 192, 593-623.
Wu, B., J. Verlinde, and J. Sun, 2000: Dynamical and Microphysical Retrievals from Doppler Radar Observations of a Deep Convective Cloud. Journal of the Atmospheric Sciences, 57, 262-283.
Wu, C.-M., H.-C. Lin, F.-Y. Cheng, and M.-H. Chien, 2019: Implementation of the Land Surface Processes into a Vector Vorticity Equation Model (VVM) to Study its Impact on Afternoon Thunderstorms over Complex Topography in Taiwan. Asia-Pacific Journal of Atmospheric Sciences, 55, 701-717.
Wu, Y.-J., Y.-C. Liou, Y.-C. Lo, S.-L. Tai, S.-F. Chang, and J. Sun, 2021: Precipitation Processes of a Thunderstorm Occurred on 19 August 2014 in Northern Taiwan Documented by Using a High Resolution 4DVar Data Assimilation System. Journal of the Meteorological Society of Japan. Ser. II, 99, 1023-1044.
Zhu, C., R. H. Byrd, P. Lu, and J. Nocedal, 1997: Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization. ACM Trans. Math. Softw., 23, 550–560.
李金萬與陳泰然,1983:台灣北部地區1980年11月19日異常降水個案研究。大氣科學,10卷,頁25-38。
樺沢実,1950:第2種地形性降雨の実例について。中央気象台研究時報,2,1-5。
陳泰然、李金萬與劉廣英,1980:冬季東北季風影響下之臺灣北部異常降水之初步研究。大氣科學,7卷,頁73-84。
吳若瑜。東北季風環境下宜蘭冬季降雨特徵之地形效應。碩士論文,國立臺灣大學,民國112年2月。
吳英璋。對IBM_VDRAS四維變分資料同化系統的改進以及在探討複雜地形上劇烈降雨過程的應用 : 北台灣午後對流個案分析。碩士論文,國立中央大學,民國108年6月。
張沁全。同化雙偏極化雷達差異反射率之方法與影響評估:2021 年宜蘭降雨觀測實驗 IOP2 個案分析。碩士論文,國立中央大學,民國112年6月。
戴聖倫。都卜勒雷達變分分析系統中地形解析能力之建置及其應用。碩士論文,國立中央大學,民國106年6月。
洪琳。2020年宜蘭劇烈降雨實驗期間降雨分布特徵與豪大雨形成機制的探討。碩士論文,國立中央大學,民國113年1月。
羅翊銓。IBM_VDRAS系統功能的擴充與個案模擬- 以2017年7月7日午後對流為例。碩士論文,國立中央大學,民國108年6月。
葉嘉靜。宜蘭地區秋冬季豪大雨特性之研究。碩士論文,國立中央大學,民國92年6月。
陳奕安。多都卜勒氣象雷達反演之垂直速度的剖風儀驗證及高解析度三維風場反演能力的測試。碩士論文,國立中央大學,民國108年6月。
陳昭宇。多頻段剖風儀雷達觀測結果之比對與分析。碩士論文,國立中央大學,民國108年6月。
陳盈曄。宜蘭地區秋冬季降雨特性之研究。碩士論文,國立中央大學,民國89年6月。
黃熠程。四維變分資料同化系統與衛星資料整合以重建台灣與周圍地區的高解析度氣象場。碩士論文,國立中央大學,民國106年6月。
指導教授 廖宇慶(Yu-Chieng Liou) 審核日期 2024-7-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明