參考文獻 |
Bao, J.W., Gopalakrishnan, S.G., Michelson, S.A., Marks, F.D. and Montgomery, M.T., 2012. Impact of physics representations in the HWRFX on simulated hurricane structure and pressure–wind relationships. Monthly Weather Review, 140(10), pp.3278-3299.
Beljaars, A.C., 1995. The parametrization of surface fluxes in large‐scale models under free convection. Quarterly Journal of the Royal Meteorological Society, 121(522), pp.255-270.
Beljaars, A.C.M. and Viterbo, P., 1998. The role of the boundary layer in a numerical weather prediction model. Clear and Cloudy Boundary Layers, AAM Holtslag and PG Duynkerke, Eds.
Braun, S.A. and Tao, W.K., 2000. Sensitivity of high-resolution simulations of Hurricane Bob (1991) to planetary boundary layer parameterizations. Monthly Weather Review, 128(12), pp.3941-3961.
Byers, H. R., 1944: General Meteorology. McGraw-Hill, 645 pp.
Callaghan, J. and Smith, R., 1998. The relationship between maximum surface wind speeds and central pressure in tropical cyclones. Australian Meteorological Magazine, 47(3), pp.191-202.
Chen, S.H. and Sun, W.Y., 2002. A one-dimensional time dependent cloud model. Journal of the Meteorological Society of Japan. Ser. II, 80(1), pp.99-118.
Chen, X., 2022. How do planetary boundary layer schemes perform in hurricane conditions: A comparison with large‐eddy simulations. Journal of Advances in Modeling Earth Systems, 14(10), p.e2022MS003088.
Chen, Y., Yang, K., Zhou, D., Qin, J. and Guo, X., 2010. Improving the Noah land surface model in arid regions with an appropriate parameterization of the thermal roughness length. Journal of Hydrometeorology, 11(4), pp.995-1006.
Davis, C., Wang, W., Chen, S.S., Chen, Y., Corbosiero, K., DeMaria, M., Dudhia, J., Holland, G., Klemp, J., Michalakes, J. and Reeves, H., 2008. Prediction of landfalling hurricanes with the advanced hurricane WRF model. Monthly Weather Review, 136(6), pp.1990-2005.
Deardorff, J.W., 1970. Convective velocity and temperature scales for the unstable planetary boundary layer and for Rayleigh convection. Journal of Atmospheric Sciences, 27(8), pp.1211-1213.
DeMaria, M., Knaff, J.A. and Sampson, C., 2007. Evaluation of long-term trends in tropical cyclone intensity forecasts. Meteorology and Atmospheric Physics, 97(1), pp.19-28.
DeMaria, M., Sampson, C.R., Knaff, J.A. and Musgrave, K.D., 2014. Is tropical cyclone intensity guidance improving?. Bulletin of the American Meteorological Society, 95(3), pp.387-398.
Donelan, M.A., Haus, B.K., Reul, N., Plant, W.J., Stiassnie, M., Graber, H.C., Brown, O.B. and Saltzman, E.S., 2004. On the limiting aerodynamic roughness of the ocean in very strong winds. Geophysical Research Letters, 31(18).
Dudhia, J., 1989. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. Journal of Atmospheric Sciences, 46(20), pp.3077-3107.
Dyer, A.J. and Hicks, B.B., 1970. Flux‐gradient relationships in the constant flux layer. Quarterly Journal of the Royal Meteorological Society, 96(410), pp.715-721.
Edson, J.B., Jampana, V., Weller, R.A., Bigorre, S.P., Plueddemann, A.J., Fairall, C.W., Miller, S.D., Mahrt, L., Vickers, D. and Hersbach, H., 2013. On the exchange of momentum over the open ocean. Journal of Physical Oceanography, 43(8), pp.1589-1610.
Elsberry, R.L., Lambert, T.D. and Boothe, M.A., 2007. Accuracy of Atlantic and eastern North Pacific tropical cyclone intensity forecast guidance. Weather and Forecasting, 22(4), pp.747-762.
Emanuel, K. and Zhang, F., 2016. On the predictability and error sources of tropical cyclone intensity forecasts. Journal of the Atmospheric Sciences, 73(9), pp.3739-3747.
Emanuel, K.A., 1986. An air-sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. Journal of Atmospheric Sciences, 43(6), pp.585-605.
Emanuel, K.A., 1995. Sensitivity of tropical cyclones to surface exchange coefficients and a revised steady-state model incorporating eye dynamics. Journal of Atmospheric Sciences, 52(22), pp.3969-3976.
Fairall, C.W., Bradley, E.F., Hare, J.E., Grachev, A.A. and Edson, J.B., 2003. Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm. Journal of Climate, 16(4), pp.571-591.
French, J.R., Drennan, W.M., Zhang, J.A. and Black, P.G., 2007. Turbulent fluxes in the hurricane boundary layer. Part I: Momentum flux. Journal of the Atmospheric Sciences, 64(4), pp.1089-1102.
Gao, S. and Chiu, L.S., 2010. Surface latent heat flux and rainfall associated with rapidly intensifying tropical cyclones over the western North Pacific. International Journal of Remote Sensing, 31(17-18), pp.4699-4710.
Gao, S., Jia, S., Wan, Y., Li, T., Zhai, S. and Shen, X., 2019. The role of latent heat flux in tropical cyclogenesis over the western North Pacific: Comparison of developing versus non-developing disturbances. Journal of Marine Science and Engineering, 7(2), p.28.
Garratt, J.R., 1994. The atmospheric boundary layer. Earth-Science Reviews, 37(1-2), pp.89-134.
Green, B.W. and Zhang, F., 2013. Impacts of air–sea flux parameterizations on the intensity and structure of tropical cyclones. Monthly Weather Review, 141(7), pp.2308-2324.
Haus, B.K., Jeong, D., Donelan, M.A., Zhang, J.A. and Savelyev, I., 2010. Relative rates of sea‐air heat transfer and frictional drag in very high winds. Geophysical research letters, 37(7).
Huang, C.Y., Juan, T.C., Kuo, H.C. and Chen, J.H., 2020. Track deflection of Typhoon Maria (2018) during a westbound passage offshore of northern Taiwan: Topographic influence. Monthly Weather Review, 148(11), pp.4519-4544.
Janjic, Z. I., 2002: Nonsingular implementation of the Mellor-Yamada Level 2.5 Scheme in the NCEP Meso model. NCEP Office Note, 437, 61 pp.
Janjić, Z.I., 1994. The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Monthly Weather Review, 122(5), pp.927-945.
Janjic, Z.I., 1996. The surface layer in the NCEP Eta Model: Eleventh conference on numerical weather prediction. Norfolk, Amer Meteor Soc, Boston, MA, pp 354–355
Jarosz, E., Mitchell, D.A., Wang, D.W. and Teague, W.J., 2007. Bottom-up determination of air-sea momentum exchange under a major tropical cyclone. Science, 315(5819), pp.1707-1709.
Jiménez, P.A., Dudhia, J., González-Rouco, J.F., Navarro, J., Montávez, J.P. and García-Bustamante, E., 2012. A revised scheme for the WRF surface layer formulation. Monthly Weather Review, 140(3), pp.898-918.
Kain, J.S. and Fritsch, J.M., 1993. Convective parameterization for mesoscale models: The Kain-Fritsch scheme. The Representation of Cumulus Convection in Numerical Models (pp. 165-170). Boston, MA: American Meteorological Society.
Kain, J.S., 2004. The Kain–Fritsch convective parameterization: an update. Journal of Applied Meteorology, 43(1), pp.170-181.
Kanase, R.D. and Salvekar, P.S., 2015. Impact of physical parameterization schemes on track and intensity of severe cyclonic storms in Bay of Bengal. Meteorology and Atmospheric Physics, 127, pp.537-559.
Li, X., Ming, J., Wang, Y., Zhao, K. and Xue, M., 2013. Assimilation of T‐TREC‐retrieved wind data with WRF 3DVAR for the short‐term forecasting of typhoon Meranti (2010) near landfall. Journal of Geophysical Research: Atmospheres, 118(18), pp.10-361.
Liu, Y., Zhang, D.L. and Yau, M.K., 1999. A multiscale numerical study of Hurricane Andrew (1992). Part II: Kinematics and inner-core structures. Monthly Weather Review, 127(11), pp.2597-2616.
Liu, W.T., Katsaros, K.B. and Businger, J.A., 1979. Bulk parameterization of air-sea exchanges of heat and water vapor including the molecular constraints at the interface. Journal of the Atmospheric Sciences, 36(9), pp.1722-1735.
Ma, X., Li, J., Pang, S., Guo, T. and Ding, C., 2023. Influence of surface layer schemes on tropical cyclone Hato (2017) intensity. Journal of Atmospheric and Solar-Terrestrial Physics, 250, p.106110.
Ma, Z., Fei, J., Huang, X. and Cheng, X., 2015. Contributions of surface sensible heat fluxes to tropical cyclone. Part I: Evolution of tropical cyclone intensity and structure. Journal of the Atmospheric Sciences, 72(1), pp.120-140.
Malkus, J.S. and Riehl, H., 1960. On the dynamics and energy transformations in steady-state hurricanes. Tellus, 12(1), pp.1-20.
Miglietta, M.M., Mastrangelo, D. and Conte, D., 2015. Influence of physics parameterization schemes on the simulation of a tropical-like cyclone in the Mediterranean Sea. Atmospheric Research, 153, pp.360-375.
Ming, J. and Zhang, J.A., 2016. Effects of surface flux parameterization on the numerically simulated intensity and structure of Typhoon Morakot (2009). Advances in Atmospheric Sciences, 33, pp.58-72.
Mlawer, E.J., Taubman, S.J., Brown, P.D., Iacono, M.J. and Clough, S.A., 1997. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated‐k model for the longwave. Journal of Geophysical Research: Atmospheres, 102(D14), pp.16663-16682.
Mlawer, E.J., Taubman, S.J., Brown, P.D., Iacono, M.J. and Clough, S.A., 1997. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated‐k model for the longwave. Journal of Geophysical Research: Atmospheres, 102(D14), pp.16663-16682.
Monin, A.S. and Obukhov, A.M., 1954. Basic laws of turbulent mixing in the surface layer of the atmosphere. Contrib. Geophys. Inst. Acad. Sci. USSR, 151(163), p.e187.
Montgomery, M.T., Smith, R.K. and Nguyen, S.V., 2010. Sensitivity of tropical‐cyclone models to the surface drag coefficient. Quarterly Journal of the Royal Meteorological Society, 136(653), pp.1945-1953.
Nakanishi, M. and Niino, H., 2006. An improved Mellor–Yamada level-3 model: Its numerical stability and application to a regional prediction of advection fog. Boundary-Layer Meteorology, 119, pp.397-407.
Nakanishi, M. and Niino, H., 2009. Development of an improved turbulence closure model for the atmospheric boundary layer. Journal of the Meteorological Society of Japan. Ser. II, 87(5), pp.895-912.
National Centers for Environmental Prediction/National Weather Service/NOAA/US Department of Commerce, 2000. NCEP FNL operational model global tropospheric analyses, continuing from July 1999. Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory.
Nguyen, T.C. and Huang, C.Y., 2023. Investigation on the Intensification of Supertyphoon Yutu (2018) Based on Symmetric Vortex Dynamics Using the Sawyer–Eliassen Equation. Atmosphere, 14(11), p.1683.
Noh, Y., Cheon, W.G., Hong, S.Y. and Raasch, S., 2003. Improvement of the K-profile model for the planetary boundary layer based on large eddy simulation data. Boundary-Layer Meteorology, 107, pp.401-427.
Olson, J.B., Kenyon, J.S., Angevine, W., Brown, J.M., Pagowski, M. and Sušelj, K., 2019. A description of the MYNN-EDMF scheme and the coupling to other components in WRF–ARW.
Olson, J.B., Smirnova, T., Kenyon, J.S., Turner, D.D., Brown, J.M., Zheng, W. and Green, B.W., 2021. A description of the MYNN surface-layer scheme.
Palmén, E. and Riehl, H., 1957. Budget of angular momentum and energy in tropical cyclones. Journal of the Atmospheric Sciences, 14(2), pp.150-159.
Paulson, C.A., 1970. The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer. Journal of Applied Meteorology and Climatology, 9(6), pp.857-861.
Peng, C.H. and Wu, C.C., 2020. The impact of outer-core surface heat fluxes on the convective activities and rapid intensification of tropical cyclones. Journal of the Atmospheric Sciences, 77(11), pp.3907-3927.
Rappaport, E.N., Jiing, J.G., Landsea, C.W., Murillo, S.T. and Franklin, J.L., 2012. The Joint Hurricane Test Bed: Its first decade of tropical cyclone research-to-operations activities reviewed. Bulletin of the American Meteorological Society, 93(3), pp.371-380.
Reddy, M.V., Prasad, S.B., Krishna, U.V. and Reddy, K.K., 2014. Effect of cumulus and microphysical parameterizations on the JAL cyclone prediction. 92.60. Aa; 92.60. hb; 92.60. Wc.
Riehl, H., 1954: Tropical Meteorology. McGraw-Hill, 392 pp.
Rogers, R., Aberson, S., Aksoy, A., Annane, B., Black, M., Cione, J., Dorst, N., Dunion, J., Gamache, J., Goldenberg, S. and Gopalakrishnan, S., 2013. NOAA′s hurricane intensity forecasting experiment: A progress report. Bulletin of the American Meteorological Society, 94(6), pp.859-882.
Ruan, Z., Li, J., Li, F. and Lin, W., 2022. Effects of local and non-local closure PBL schemes on the simulation of Super Typhoon Mangkhut (2018). Frontiers of Earth Science, 16(2), pp.277-290.
Shen, L.Z., Wu, C.C. and Judt, F., 2021. The role of surface heat fluxes on the size of Typhoon Megi (2016). Journal of the Atmospheric Sciences, 78(4), pp.1075-1093.
Shi, R. and Xu, F., 2024. Improvement of global forecast of tropical cyclone intensity by spray heat flux and surface roughness. Journal of Geophysical Research: Atmospheres, 129(8), p.e2023JD039624.
Shin, H.H. and Hong, S.Y., 2011. Intercomparison of planetary boundary-layer parametrizations in the WRF model for a single day from CASES-99. Boundary-Layer Meteorology, 139, pp.261-281.
Skamarock, Klemp, J. B., Dudhia, J., Gill, D. O., Liu, Z., Berner, J., Wang, W., Powers, J. G., Duda, M. G., Barker, D., and Huang, X. -Y, 2021. A Description of the Advanced Research WRF Model Version 4.3. No. NCAR/TN-556+STR.
Smith, S.D., 1988. Coefficients for sea surface wind stress, heat flux, and wind profiles as a function of wind speed and temperature. Journal of Geophysical Research: Oceans, 93(C12), pp.15467-15472.
Stern, D.P. and Nolan, D.S., 2011. On the vertical decay rate of the maximum tangential winds in tropical cyclones. Journal of the Atmospheric Sciences, 68(9), pp.2073-2094.
Stull, R.B., 2012. An introduction to boundary layer meteorology. Springer Science & Business Media, 13.
Tastula, E.M., Galperin, B., Sukoriansky, S., Luhar, A. and Anderson, P., 2015. The importance of surface layer parameterization in modeling of stable atmospheric boundary layers. Atmospheric Science Letters, 16(1), pp.83-88.
Tewari, M., F. Chen, W. Wang, J. Dudhia, M. A. LeMone, K. Mitchell, M. Ek, G. Gayno, J. Wegiel, and R. H. Cuenca, 2004. Implementation and verification of the unified NOAH land surface model in the WRF model. 20th conference on weather analysis and forecasting/16th conference on numerical weather prediction, pp. 11–15.
Trivedi, D.K., Mukhopadhyay, P. and Vaidya, S.S., 2006. Impact of physical parameterization schemes on the numerical simulation of Orissa super cyclone (1999). Mausam, 57(1), pp.97-110.
Troitskaya, Y.I. and Rybushkina, G.V., 2008. Quasi-linear model of interaction of surface waves with strong and hurricane winds. Izvestiya, Atmospheric and Oceanic Physics, 44(5), pp.621-645.
Wang, Y. and Miao, J., 2019. Impact of surface layer parameterizations on simulated sea breeze precipitation over the Hainan island. Chinese Journal of Geophysics, 62(1), pp.32-48.
Webb, E.K., 1970. Profile relationships: The log‐linear range, and extension to strong stability. Quarterly Journal of the Royal Meteorological Society, 96(407), pp.67-90.
Yang, K., Koike, T., Fujii, H., Tamagawa, K. and Hirose, N., 2002. Improvement of surface flux parametrizations with a turbulence‐related length. Quarterly Journal of the Royal Meteorological Society: A Journal of the Atmospheric Sciences, Applied Meteorology and Physical Oceanography, 128(584), pp.2073-2087.
Yang, K., Koike, T., Ishikawa, H., Kim, J., Li, X., Liu, H., Liu, S., Ma, Y. and Wang, J., 2008. Turbulent flux transfer over bare-soil surfaces: Characteristics and parameterization. Journal of Applied Meteorology and Climatology, 47(1), pp.276-290.
Zhang, D.L. and Chen, H., 2012. Importance of the upper‐level warm core in the rapid intensification of a tropical cyclone. Geophysical Research Letters, 39(2).
Zhang, D.L., Liu, Y. and Yau, M.K., 2001. A multiscale numerical study of Hurricane Andrew (1992). Part IV: Unbalanced flows. Monthly Weather Review, 129(1), pp.92-107.
Zhang, J.A., Black, P.G., French, J.R. and Drennan, W.M., 2008. First direct measurements of enthalpy flux in the hurricane boundary layer: The CBLAST results. Geophysical Research Letters, 35(14).
Zhang, J.A., Rogers, R.F., Nolan, D.S. and Marks, F.D., 2011. On the characteristic height scales of the hurricane boundary layer. Monthly Weather Review, 139(8), pp.2523-2535.
Zilitinkevich, S., 1970. Non-local turbulent transport: Pollution dispersion aspects of coherent structure of connective flows. WIT Transactions on Ecology and the Environment, 9, pp.53-60. |