博碩士論文 111621014 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:47 、訪客IP:3.12.151.184
姓名 陳品閎(Pin-Hong Chen)  查詢紙本館藏   畢業系所 大氣科學學系
論文名稱 軒嵐諾颱風(2022)路徑演變之動力探討
相關論文
★ 雲微物理參數化法應用於颱風模式中之研究★ 1998年臺灣梅雨個案模擬及其應用 -蘭陽平原之擴散研究
★ 地形對颱風路徑的影響之數值探討★ 中尺度MM5數值模式與大氣擴散模式之整合應用研究
★ 侵台颱風之GPS折射率3DVAR資料同化及數值模擬★ 地形及渦旋初始化對類似納莉颱風路徑及環流變化之影響
★ 類似桃芝颱風路徑之模擬★ WRF模式在颱風路徑預報應用與EOF分析誤差因素
★ 利用WRF3DVAR同化GPS折射率資料探討 對於颱風預報的影響★ 衛星資料結合變分分析對數值預報之影響
★ 利用MM5 4DVAR模式同化掩星折射率資料及虛擬渦旋探討颱風數值模擬之影響★ 利用MM5 4DVAR同化虛擬渦旋探討其對WRF模式預報颱風之影響
★ GPS掩星觀測資料同化及對區域天氣預報模擬之影響★ 西北向侵台颱風登陸前中心路徑打轉之模擬研究
★ 衛星資料與虛擬渦旋四維變分同化對颱風數值模擬的影響★ 資料同化對台灣地區颱風和梅雨模擬之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究使用WRF模式模擬軒嵐諾颱風(2022)之路徑演變以及其動力過程。在初期階段,颱風路徑受到高壓西南側駛流影響因此向西穩定地移動,再由於與東南側之熱帶性低氣壓產生交互作用即藤原效應,因此軒嵐諾路徑轉變成朝西南方向移動。而當熱帶性低氣壓最終合併於軒嵐諾時,造成颱風移動停滯且強度增強,此時颱風環流也比合併前還要寬廣,並且在颱風南側及東側之風速逐漸變強許多,造成颱風內往北之分量明顯增多,以及在大環境駛流引導下,導致颱風朝北移動。
本研究探討熱帶性低氣壓合併於軒嵐諾時的水平環流及垂直結構,由水平環流顯示當合併過程中熱帶性低氣壓逐漸合併於軒嵐諾北側,而因熱帶性低氣壓引進西南風,因此逐漸增強軒嵐諾南側,結合上述兩種因素導致軒嵐諾在合併後環流變得相當廣。由垂直結構顯示合併時是由中層開始逐漸影響於底層,並破壞颱風之徑向風結構,導致颱風靠近熱帶性低氣壓一側之風速變得較弱許多,而合併之後其迅速變得強許多,藉由求解Sawyer-Eliassen(SE)方程式,顯示非絕熱加熱項主宰徑向風及垂直速度,而底層則由動量項提供上升氣流及徑像入流。而由位渦收支分析,指出合併前後皆由水平平流主導颱風移動,然而在合併時非絕熱加熱項逐漸增大,與水平平流項互相抵消,導致軒嵐諾移動方向及速度受到改變。而渦流運動產生平均徑向渦流位渦之平流主導了眼牆及高層大氣之位渦趨勢,因此渦流運動對於位渦趨勢是較為重要。而從地形及水氣敏感度實驗中,移除台灣及菲律賓地形以及改變颱風南側水氣量皆對颱風之路徑北轉有不同程度的影響。理想化雙渦旋敏感度實驗則顯示在有無背景風下,雙渦旋不同距離之風場結構及路徑在藤原效應下皆有不同結果。
摘要(英) This study uses the WRF model to simulate the track evolution of Typhoon Hinnamnor (2022) and explore the dynamic processes associated with the track changes. At the earlier stage, the typhoon moves westward as influenced by the steering flow southwest of the subtropical high. Then, due to interactions with a tropical depression (TD) to the southeast of the typhoon, the Hinnamnor’s track is shifted southwestward as a result of Fujiwhara effect. The TD eventually merges with Hinnamnor, leading to the typhoon′s stagnation and intensification. The typhoon circulation is gradually enlarged with stronger flow at the south and east flanks of the typhoon vortex, resulting in a noticeable northward component that drives the typhoon northward.
This study explores the horizontal circulation and vertical structure of the typhoon in interaction with the TD. Wavenumber-one Potential vorticity (PV) budget analysis indicates that contributions from diabatic heating largely increase to counteract the horizontal PV advection, as a primary factor for the typhoon to move southward, and the eddy radial advection of eddy PV dominates the PV tendency. Sensitivity experiments conducted with removal of nearby Taiwan and Philippines terrain and the upstream water vapor reduction to south of the typhoon exhibit their different impacts on the typhoon′s northward track deflection.
關鍵字(中) ★ 藤原效應
★ 位渦收支
關鍵字(英)
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 iv
圖表目錄 v
一、前言 1
二、模式簡介與設定 4
2-1 WRF模式簡介 4
2-2 WRF模式設定及使用資料 4
三、實驗設計與分析方法 6
3-1颱風軒嵐諾概述 6
3-2實驗設計 6
3-3位渦收支 7
四、模擬結果 12
4-1參數化敏感度實驗 12
4-2第一階段:與TD交互作用分析13
4-3第二階段:路徑北轉分析 21
五、討論 26
5-1地形敏感度測試 26
5-2水氣敏感度測試 28
5-3理想化雙渦旋敏感度測試 30
六、結論 33
參考文獻 36
附表與附圖 40
參考文獻 Bui, H. H., Smith, R. K., Montgomery, M. T., & Peng, J. (2009). Balanced and unbalanced aspects of tropical cyclone intensification. Quarterly Journal of the Royal Meteorological Society: A journal of the atmospheric sciences, applied meteorology and physical oceanography, 135(644), 1715-1731.
Bi, M., Li, T., Peng, M., & Shen, X. (2015). Interactions between Typhoon Megi (2010) and a low-frequency monsoon gyre. Journal of the Atmospheric Sciences, 72(7), 2682-2702.
Chang, S. W. J. (1983). A numerical study of the interactions between two tropical cyclones. Monthly weather review, 111(9), 1806-1817.
Carr, L. E., & Elsberry, R. L. (1998). Objective diagnosis of binary tropical cyclone interactions forthe western North Pacific basin. Monthly Weather Review, 126(6), 1734-1740.
Ge, X., Yan, Z., Peng, M., Bi, M., & Li, T. (2018). Sensitivity of tropical cyclone track to the vertical structure of a nearby monsoon gyre. Journal of the Atmospheric Sciences, 75(6), 2017-2028.
Huang, C. Y., Wu, I. H., & Feng, L. (2016). A numerical investigation of the convective systems in the vicinity of southern Taiwan associated with Typhoon Fanapi (2010): Formation mechanism of double rainfall peaks. Journal of Geophysical Research: Atmospheres, 121(21), 12-647.
Heng, J., Wang, Y., & Zhou, W. (2017). Revisiting the balanced and unbalanced aspects of tropical cyclone intensification. Journal of the Atmospheric Sciences, 74(8), 2575-2591.
Huang, C. Y., Huang, C. H., & Skamarock, W. C. (2019). Track deflection of Typhoon Nesat (2017) as realized by multiresolution simulations of a global model. Monthly Weather Review, 147(5), 1593-1613.
Ito, K., Hirano, S., Lee, J. D., & Chan, J. C. (2023). Three-dimensional Fujiwhara effect for binary tropical cyclones in the western North Pacific. Monthly Weather Review, 151(7), 1779-1795.
Jang, W., & Chun, H. Y. (2013). The effects of topography on the evolution of typhoon Saomai (2006) under the influence of tropical storm Bopha (2006). Monthly weather review, 141(2), 468-489.
Jang, W., & Chun, H. Y. (2015). Effects of thermodynamic profiles on the interaction of binary tropical cyclones. Journal of Geophysical Research: Atmospheres, 120(18), 9173-9192.
Kuo, H. C., Chen, G. T., & Lin, C. H. (2000). Merger of tropical cyclones Zeb and Alex. Monthly weather review, 128(8), 2967-2975.
Liu, H. Y., & Tan, Z. M. (2016). A dynamical initialization scheme for binary tropical cyclones. Monthly Weather Review, 144(12), 4787-4803.
Liu, H. Y., Wang, Y., & Gu, J. F. (2021). Intensity change of binary tropical cyclones (TCs) in idealized numerical simulations: Two initially identical mature TCs. Journal of the Atmospheric Sciences, 78(4), 1001-1020.
Lee, J. D., Ito, K., & Chan, J. C. (2023). Importance of self‐induced vertical wind shear and diabatic heating on the Fujiwhara effect. Quarterly Journal of the Royal Meteorological Society, 149(753), 1197-1212.
Liu, H. Y., Gu, J. F., & Wang, Y. (2023). Consistent pattern of rainfall asymmetry in binary tropical cyclones. Geophysical Research Letters, 50(2), e2022GL101866.
Molinari, J., Romps, D. M., Vollaro, D., & Nguyen, L. (2012). CAPE in tropical cyclones. Journal of the Atmospheric Sciences, 69(8), 2452-2463.
Ma, M., Peng, M. S., Li, T., & Wang, L. (2022). Understanding the Unusual Track of Typhoon Lionrock (2016). Weather and Forecasting, 37(4), 393-414.
Prieto, R., McNoldy, B. D., Fulton, S. R., & Schubert, W. H. (2003). A classification of binary tropical cyclone–like vortex interactions. Monthly weather review, 131(11), 2656-2666.
Persing, J., & Montgomery, M. T. (2005). Is environmental CAPE important in the determination of maximum possible hurricane intensity?. Journal of the atmospheric sciences, 62(2), 542-550.
Sun, Y., Zhong, Z., Yi, L., Li, T., Chen, M., Wan, H., ... & Zhong, K. (2015). Dependence of the relationship between the tropical cyclone track and western Pacific subtropical high intensity on initial storm size: A numerical investigation. Journal of Geophysical Research: Atmospheres, 120(22), 11-451.
Schecter, D. A. (2016). Development and nondevelopment of binary mesoscale vortices into tropical cyclones in idealized numerical experiments. Journal of the Atmospheric Sciences, 73(3), 1223-1254.
Smith, R. K., Montgomery, M. T., & Bui, H. (2018). Axisymmetric balance dynamics of tropical cyclone intensification and its breakdown revisited. Journal of the Atmospheric Sciences, 75(9), 3169-3189.
Torn, R. D., Elless, T. J., Papin, P. P., & Davis, C. A. (2018). Tropical cyclone track sensitivity in deformation steering flow. Monthly Weather Review, 146(10), 3183-3201.
Wu, L., & Wang, B. (2000). A potential vorticity tendency diagnostic approach for tropical cyclone motion. Monthly Weather Review, 128(6), 1899-1911.
Wu, C. C., Huang, T. S., Huang, W. P., & Chou, K. H. (2003). A new look at the binary interaction: Potential vorticity diagnosis of the unusual southward movement of Tropical Storm Bopha (2000) and its interaction with Supertyphoon Saomai (2000). Monthly weather review, 131(7), 1289-1300.
Wu, C. C., Chen, S. G., Chen, J. H., Chou, K. H., & Lin, P. H. (2009). Interaction of Typhoon Shanshan (2006) with the midlatitude trough from both adjoint-derived sensitivity steering vector and potential vorticity perspectives. Monthly weather review, 137(3), 852-862.
Yu, H., & Kwon, H. J. (2005). Effect of TC–trough interaction on the intensity change of two typhoons. Weather and forecasting, 20(2), 199-211.
Yang, C. C., Wu, C. C., Chou, K. H., & Lee, C. Y. (2008). Binary interaction between Typhoons Fengshen (2002) and Fungwong (2002) based on the potential vorticity diagnosis. Monthly Weather Review, 136(12), 4593-4611.
指導教授 黃清勇 審核日期 2024-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明