參考文獻 |
Atkinson, R. (2000). Atmospheric chemistry of VOCs and NOx. Atmospheric environment, 34(12-14), 2063-2101.
Bae, M., Kim, B. U., Kim, H. C., Kim, J., & Kim, S. (2021). Role of emissions and meteorology in the recent PM2. 5 changes in China and South Korea from 2015 to 2018. Environmental Pollution, 270, 116233.
Baklanov, A., & Zhang, Y. (2020). Advances in air quality modeling and forecasting. Global Transitions, 2, 261-270.
Batterman, S., Cook, R., & Justin, T. (2015). Temporal variation of traffic on highways and the development of accurate temporal allocation factors for air pollution analyses. Atmospheric environment, 107, 351-363.
Brioude, J., Kim, S. W., Angevine, W. M., Frost, G. J., Lee, S. H., McKeen, S. A., ... & Fast, J. D. (2011). Top‐down estimate of anthropogenic emission inventories and their
interannual variability in Houston using a mesoscale inverse modeling technique. Journal of Geophysical Research: Atmospheres, 116(D20).
Byun, D., Schere, K.L., 2006 : Review of the governing equations, computational algorithms, and other components of the models-3 community multiscale air quality (CMAQ) modeling system. Appl. Mech. Rev. 59, 51-77.
Chen, K. S., Ho, Y. T., Lai, C. H., & Chou, Y. M. (2003). Photochemical modeling and analysis of meteorological parameters during ozone episodes in Kaohsiung,Taiwan. Atmospheric Environment, 37(13), 1811-1823.
Cheng, F. Y., & Hsu, C. H. (2019). Long-term variations in PM2.5 concentrations under changing meteorological conditions in Taiwan. Scientific reports, 9(1), 6635.Zhao, B., Liou, K. N., Gu, Y., Li, Q., Jiang, J. H., Su, H., ... & Hao, J. (2017). Enhanced PM2.5 pollution in China due to aerosol-cloud interactions. Scientific reports, 7(1), 4453.
Cheng, F. Y., Feng, C. Y., Yang, Z. M., Hsu, C. H., Chan, K. W., Lee, C. Y., & Chang, S. C.(2021). Evaluation of real-time PM2. 5 forecasts with the WRF-CMAQ modeling system and weather-pattern-dependent bias-adjusted PM2. 5 forecasts in Taiwan. Atmospheric Environment, 244, 117909.
Crippa, M., Solazzo, E., Huang, G., Guizzardi, D., Koffi, E., Muntean, M., ... & Janssens-Maenhout, G. (2020). High resolution temporal profiles in the Emissions Database for Global Atmospheric Research. Scientific data, 7(1), 121.
Goldberg, D. L., Saide, P. E., Lamsal, L. N., de Foy, B., Lu, Z., Woo, J. H., ... & Streets, D. G.(2019). A top-down assessment using OMI NO2 suggests an underestimate in the NOx emissions inventory in Seoul, South Korea, during KORUS-AQ. Atmospheric Chemistry and Physics, 19(3), 1801-1818.
Grange, S. K., Lee, J. D., Drysdale, W. S., Lewis, A. C., Hueglin, C., Emmenegger, L., & Carslaw, D. C. (2021). COVID-19 lockdowns highlight a risk of increasing ozone pollution in European urban areas. Atmospheric Chemistry and Physics, 21(5), 4169-4185.
Guenther A.B., Jiang X., Heald C.L., Sakulyanontvittaya T., Duhl T., Emmons L.K., Wang X., 2012 : The model of emissions of gases and aerosols from nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions. Geoscientific Model Development, 5(6), 1471-1492.
Ho, C. C., Chen, L. J., & Hwang, J. S. (2020). Estimating ground-level PM2.5 levels in Taiwan using data from air quality monitoring stations and high coverage of microsensors. Environmental Pollution, 264, 114810.
Hossain, A., & Gargett, D. (2011, September). Road vehicle-kilometres travelled estimated from state/territory fuel sales. In Australasian Transport Research Forum 2011 Proceedings (pp. 28-30).
Hsu, C. H., Cheng, F. Y., Chen, C. L., Wu, D. H., Chen, T. Y., Liao, K. F., ... & Zhang, Y. T.(2023). A high-resolution inventory of ammonia emissions from agricultural fertilizer application and crop residue in Taiwan. Atmospheric Environment, 309, 119920.
Hwa, M. Y., Hsieh, C. C., Wu, T. C., & Chang, L. F. W. (2002). Real-world vehicle emissions and VOCs profile in the Taipei tunnel located at Taiwan Taipei area. Atmospheric Environment, 36(12), 1993-2002.
Irwin, J. G., & Williams, M. L. (1988). Acid rain: chemistry and transport. Environmental Pollution, 50(1-2), 29-59.
Jiang, Y., Wang, S., Xing, J., Zhao, B., Li, S., Chang, X., ... & Dong, Z. (2022). Ambient fine particulate matter and ozone pollution in China: synergy in anthropogenic emissions and atmospheric processes. Environmental Research Letters, 17(12), 123001.
Le, T., Wang, Y., Liu, L., Yang, J., Yung, Y. L., Li, G., & Seinfeld, J. H. (2020). Unexpected air pollution with marked emission reductions during the COVID-19 outbreak in China. Science, 369(6504), 702-706.
Li, M., Liu, H., Geng, G., Hong, C., Liu, F., Song, Y., ... & He, K. (2017). Anthropogenic emission inventories in China: a review. National Science Review, 4(6), 834-866.
McDuffie, E. E., Smith, S. J., O′Rourke, P., Tibrewal, K., Venkataraman, C., Marais, E. A., ... & Martin, R. V. (2020). A global anthropogenic emission inventory of atmospheric pollutants from sector-and fuel-specific sources (1970–2017): an application of the Community Emissions Data System (CEDS). Earth System Science Data, 12(4),3413-3442.
Meng, X., Zhang, K., Pang, K., & Xiang, X. (2020). Characterization of spatio-temporal distribution of vehicle emissions using web-based real-time traffic data. Science of the total environment, 709, 136227.
Misaki, T., Ohsawa, T., Konagaya, M., Shimada, S., Takeyama, Y., & Nakamura, S. (2019).Accuracy comparison of coastal wind speeds between WRF simulations using different input datasets in Japan. Energies, 12(14), 2754.
Ravina, M., Caramitti, G., Panepinto, D., & Zanetti, M. (2022). Air quality and photochemical reactions: analysis of NOx and NO2 concentrations in the urban area of Turin, Italy. Air Quality, Atmosphere & Health, 15(3), 541-558.
Seinfeld, J. H., & Pandis, S. N. (2016). Atmospheric chemistry and physics: from air pollution to climate change. John Wiley & Sons.
Shiu, C. J., Liu, S. C., Chang, C. C., Chen, J. P., Chou, C. C., Lin, C. Y., & Young, C. Y.(2007). Photochemical production of ozone and control strategy for Southern Taiwan. Atmospheric Environment, 41(40), 9324-9340.
Sicard, P., Crippa, P., De Marco, A., Castruccio, S., Giani, P., Cuesta, J., ... & Anav, A. (2021). High spatial resolution WRF-Chem model over Asia: Physics and chemistry evaluation. Atmospheric Environment, 244, 118004.
Sillman, S. (1999). The relation between ozone, NOx and hydrocarbons in urban and polluted rural environments. Atmospheric Environment, 33(12), 1821-1845.
Singh, A., & Agrawal, M. (2007). Acid rain and its ecological consequences. Journal of Environmental Biology, 29(1), 15.
Skamarock W.C., Klemp J.B., Dudhia J., Gill D.O., Barker D.M., Duda M.G., Huang X.- Y., Wang W., Powers J.G., 2008 : A Description of the Advanced Research WRF Version 3. National Center for Atmospheric Research Technical Note, NCAR, Boulder, CO, USA.
TEDS-11.0 (2019). Taiwan Emission Data System Version11.0, Ministry of Environment, Taipei, Taiwan, Republic of China.
Tsai, I. C., Lee, C. Y., Lung, S. C. C., & Su, C. W. (2021). Characterization of the vehicle emissions in the Greater Taipei Area through vision-based traffic analysis system and its impacts on urban air quality. Science of the Total Environment, 782, 146571.
Wang, H., Fu, L., Lin, X., Zhou, Y., & Chen, J. (2009). A bottom-up methodology to estimate vehicle emissions for the Beijing urban area. Science of the total environment, 407(6), 1947-1953.
Wang, Y. S., Chang, L. C., & Chang, F. J. (2021). Explore regional PM2.5 features and compositions causing health effects in Taiwan. Environmental Management, 67(1), 176-191 |