參考文獻 |
鹿林山空氣品質背景測站,2024:測站簡介。http://lulin.tw/about?lang=tw (取用日期:2024.06)
NOAA Global Monitoring Laboratory,2024:氣膠系統儀器架設與原理。https://gml.noaa.gov/aero/instrumentation/inst_desc.html (取用日期:2024.06)
Ackerman, A.S., Toon, O.B., Stevens, D.E., Heymsfield, A.J., Ramanathan, V., Welton, E.J., 2000. Reduction of Tropical Cloudiness by Soot. Science 288, 1042-1047.
Adebiyi, A.A., Zuidema, P., 2016. The role of the southern African easterly jet in modifying the southeast Atlantic aerosol and cloud environments. Quarterly Journal of the Royal Meteorological Society 142, 1574-1589.
Albrecht, B.A., 1989. Aerosols, Cloud Microphysics, and Fractional Cloudiness. Science 245, 1227-1230.
Anderson, T.L., Covert, D.S., Marshall, S.F., Laucks, M.L., Charlson, R.J., Waggoner, A.P., Ogren, J.A., Caldow, R., Holm, R.L., Quant, F.R., Sem, G.J., Wiedensohler, A., Ahlquist, N.A., Bates, T.S., 1996. Performance Characteristics of a High-Sensitivity, Three-Wavelength, Total Scatter/Backscatter Nephelometer. Journal of Atmospheric and Oceanic Technology 13, 967-986.
Ardon-Dryer, K., Kelley, M.C., Xueting, X., Dryer, Y., 2022. The Aerosol Research Observation Station (AEROS). Atmos. Meas. Tech. 15, 2345-2360.
Artaxo, P., Berntsen, T., Betts, R., Fahey, D.W., Haywood, J., Lean, J., Lowe, D.C., Myhre, G., Nganga, J., Prinn, R., 2007. Changes in atmos-pheric constituents and in radiative forcing, in: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L. (Eds.), Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.
Bellouin, N., Quaas, J., Gryspeerdt, E., Kinne, S., Stier, P., Watson-Parris, D., Boucher, O., Carslaw, K.S., Christensen, M., Daniau, A.-L., Dufresne, J.-L., Feingold, G., Fiedler, S., Forster, P., Gettelman, A., Haywood, J.M., Lohmann, U., Malavelle, F., Mauritsen, T., McCoy, D.T., Myhre, G., Mülmenstädt, J., Neubauer, D., Possner, A., Rugenstein, M., Sato, Y., Schulz, M., Schwartz, S.E., Sourdeval, O., Storelvmo, T., Toll, V., Winker, D., Stevens, B., 2020. Bounding Global Aerosol Radiative Forcing of Climate Change. Reviews of Geophysics 58, e2019RG000660.
Bender, F.A.M., Frey, L., McCoy, D.T., Grosvenor, D.P., Mohrmann, J.K., 2019. Assessment of aerosol–cloud–radiation correlations in satellite observations, climate models and reanalysis. Climate Dynamics 52, 4371-4392.
Bond, T.C., Doherty, S.J., Fahey, D.W., Forster, P.M., Berntsen, T., DeAngelo, B.J., Flanner, M.G., Ghan, S., Kärcher, B., Koch, D., Kinne, S., Kondo, Y., Quinn, P.K., Sarofim, M.C., Schultz, M.G., Schulz, M., Venkataraman, C., Zhang, H., Zhang, S., Bellouin, N., Guttikunda, S.K., Hopke, P.K., Jacobson, M.Z., Kaiser, J.W., Klimont, Z., Lohmann, U., Schwarz, J.P., Shindell, D., Storelvmo, T., Warren, S.G., Zender, C.S., 2013. Bounding the role of black carbon in the climate system: A scientific assessment. Journal of Geophysical Research: Atmospheres 118, 5380-5552.
Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G., Forster, P., Kerminen, V.-M., Kondo, Y., Liao, H., Lohmann, U., 2013. Clouds and aerosols, Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, pp. 571-657.
Calderón, S.M., Tonttila, J., Buchholz, A., Joutsensaari, J., Komppula, M., Leskinen, A., Hao, L., Moisseev, D., Pullinen, I., Tiitta, P., Xu, J., Virtanen, A., Kokkola, H., Romakkaniemi, S., 2022. Aerosol–stratocumulus interactions: towards a better process understanding using closures between observations and large eddy simulations. Atmos. Chem. Phys. 22, 12417-12441.
Chen, C.-L., Chen, T.-Y., Hung, H.-M., Tsai, P.-W., Chou, C.C.K., Chen, W.-N., 2021a. The influence of upslope fog on hygroscopicity and chemical composition of aerosols at a forest site in Taiwan. Atmospheric Environment 246, 118150.
Chen, Y., Haywood, J., Wang, Y., Malavelle, F., Jordan, G., Partridge, D., Fieldsend, J., De Leeuw, J., Schmidt, A., Cho, N., Oreopoulos, L., Platnick, S., Grosvenor, D., Field, P., Lohmann, U., 2022. Machine learning reveals climate forcing from aerosols is dominated by increased cloud cover. Nature Geoscience 15, 609-614.
Chen, Y.C., Christensen, M.W., Xue, L., Sorooshian, A., Stephens, G.L., Rasmussen, R.M., Seinfeld, J.H., 2012. Occurrence of lower cloud albedo in ship tracks. Atmos. Chem. Phys. 12, 8223-8235.
Chen, Y.C., Wang, S.H., Min, Q., Lu, S., Lin, P.L., Lin, N.H., Chung, K.S., Joseph, E., 2021b. Aerosol impacts on warm-cloud microphysics and drizzle in a moderately polluted environment. Atmos. Chem. Phys. 21, 4487-4502.
Cheng, F.-Y., Yang, Z.-M., Ou-Yang, C.-F., Ngan, F., 2013. A numerical study of the dependence of long-range transport of CO to a mountain station in Taiwan on synoptic weather patterns during the Southeast Asia biomass-burning season. Atmospheric Environment 78, 277-290.
Christensen, M.W., Chen, Y.-C., Stephens, G.L., 2016. Aerosol indirect effect dictated by liquid clouds. Journal of Geophysical Research: Atmospheres 121, 14,636-614,650.
Christensen, M.W., Gettelman, A., Cermak, J., Dagan, G., Diamond, M., Douglas, A., Feingold, G., Glassmeier, F., Goren, T., Grosvenor, D.P., Gryspeerdt, E., Kahn, R., Li, Z., Ma, P.L., Malavelle, F., McCoy, I.L., McCoy, D.T., McFarquhar, G., Mülmenstädt, J., Pal, S., Possner, A., Povey, A., Quaas, J., Rosenfeld, D., Schmidt, A., Schrödner, R., Sorooshian, A., Stier, P., Toll, V., Watson-Parris, D., Wood, R., Yang, M., Yuan, T., 2022. Opportunistic experiments to constrain aerosol effective radiative forcing. Atmos. Chem. Phys. 22, 641-674.
D′Alessandro, J.J., McFarquhar, G.M., Wu, W., Stith, J.L., Jensen, J.B., Rauber, R.M., 2021. Characterizing the Occurrence and Spatial Heterogeneity of Liquid, Ice, and Mixed Phase Low-Level Clouds Over the Southern Ocean Using in Situ Observations Acquired During SOCRATES. Journal of Geophysical Research: Atmospheres 126, e2020JD034482.
Dagan, G., Stier, P., 2020. Ensemble daily simulations for elucidating cloud–aerosol interactions under a large spread of realistic environmental conditions. Atmos. Chem. Phys. 20, 6291-6303.
Davies, N.W., Fox, C., Szpek, K., Cotterell, M.I., Taylor, J.W., Allan, J.D., Williams, P.I., Trembath, J., Haywood, J.M., Langridge, J.M., 2019. Evaluating biases in filter-based aerosol absorption measurements using photoacoustic spectroscopy. Atmos. Meas. Tech. 12, 3417-3434.
Deng, Z., Zhao, C., Zhang, Q., Huang, M., Ma, X., 2009. Statistical analysis of microphysical properties and the parameterization of effective radius of warm clouds in Beijing area. Atmospheric Research 93, 888-896.
Doulgeris, K.M., Komppula, M., Romakkaniemi, S., Hyvärinen, A.P., Kerminen, V.M., Brus, D., 2020. In situ cloud ground-based measurements in the Finnish sub-Arctic: intercomparison of three cloud spectrometer setups. Atmos. Meas. Tech. 13, 5129-5147.
Doulgeris, K.M., Lihavainen, H., Hyvärinen, A.P., Kerminen, V.M., Brus, D., 2022. An extensive data set for in situ microphysical characterization of low-level clouds in a Finnish sub-Arctic site. Earth Syst. Sci. Data 14, 637-649.
Doulgeris, K.M., Vakkari, V., O′Connor, E.J., Kerminen, V.M., Lihavainen, H., Brus, D., 2023. Influence of air mass origin on microphysical properties of low-level clouds in a subarctic environment. Atmos. Chem. Phys. 23, 2483-2498.
Draxler, R.R., Hess, G., 1998. An overview of the HYSPLIT_4 modelling system for trajectories. Australian meteorological magazine 47, 295-308.
Fan, J., Wang, Y., Rosenfeld, D., Liu, X., 2016. Review of Aerosol–Cloud Interactions: Mechanisms, Significance, and Challenges. Journal of the Atmospheric Sciences 73, 4221-4252.
Fan, J., Yuan, T., Comstock, J.M., Ghan, S., Khain, A., Leung, L.R., Li, Z., Martins, V.J., Ovchinnikov, M., 2009. Dominant role by vertical wind shear in regulating aerosol effects on deep convective clouds. Journal of Geophysical Research: Atmospheres 114.
Feingold, G., Remer, L.A., Ramaprasad, J., Kaufman, Y.J., 2001. Analysis of smoke impact on clouds in Brazilian biomass burning regions: An extension of Twomey′s approach. Journal of Geophysical Research: Atmospheres 106, 22907-22922.
Fiore, A.M., Naik, V., Leibensperger, E.M., 2015. Air Quality and Climate Connections. Journal of the Air & Waste Management Association 65, 645-685.
Gryspeerdt, E., Stier, P., 2012. Regime-based analysis of aerosol-cloud interactions. Geophysical Research Letters 39.
Gultepe, I., Isaac, G.A., 1999. Scale Effects on Averaging of Cloud Droplet and Aerosol Number Concentrations: Observations and Models. Journal of Climate 12, 1268-1279.
Haywood, J., Boucher, O., 2000. Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: A review. Reviews of Geophysics 38, 513-543.
Haywood, J.M., Abel, S.J., Barrett, P.A., Bellouin, N., Blyth, A., Bower, K.N., Brooks, M., Carslaw, K., Che, H., Coe, H., Cotterell, M.I., Crawford, I., Cui, Z., Davies, N., Dingley, B., Field, P., Formenti, P., Gordon, H., de Graaf, M., Herbert, R., Johnson, B., Jones, A.C., Langridge, J.M., Malavelle, F., Partridge, D.G., Peers, F., Redemann, J., Stier, P., Szpek, K., Taylor, J.W., Watson-Parris, D., Wood, R., Wu, H., Zuidema, P., 2021. The CLoud–Aerosol–Radiation Interaction and Forcing: Year 2017 (CLARIFY-2017) measurement campaign. Atmos. Chem. Phys. 21, 1049-1084.
Herbert, R.J., Bellouin, N., Highwood, E.J., Hill, A.A., 2020. Diurnal cycle of the semi-direct effect from a persistent absorbing aerosol layer over marine stratocumulus in large-eddy simulations. Atmos. Chem. Phys. 20, 1317-1340.
Hsiao, T.-C., Chen, W.-N., Ye, W.-C., Lin, N.-H., Tsay, S.-C., Lin, T.-H., Lee, C.-T., Chuang, M.-T., Pantina, P., Wang, S.-H., 2017. Aerosol optical properties at the Lulin Atmospheric Background Station in Taiwan and the influences of long-range transport of air pollutants. Atmospheric Environment 150, 366-378.
Huang, H.-Y., Wang, S.-H., Huang, W.-X., Lin, N.-H., Chuang, M.-T., da Silva, A.M., Peng, C.-M., 2020. Influence of Synoptic-Dynamic Meteorology on the Long-Range Transport of Indochina Biomass Burning Aerosols. Journal of Geophysical Research: Atmospheres 125, e2019JD031260.
IPCC, 2014. Climate Change 2013 – The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.
IPCC, 2023. Climate Change 2021 – The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.
Jia, H., Ma, X., Yu, F., Quaas, J., 2021. Significant underestimation of radiative forcing by aerosol–cloud interactions derived from satellite-based methods. Nature Communications 12, 3649.
Kacarab, M., Thornhill, K.L., Dobracki, A., Howell, S.G., O′Brien, J.R., Freitag, S., Poellot, M.R., Wood, R., Zuidema, P., Redemann, J., Nenes, A., 2020. Biomass burning aerosol as a modulator of the droplet number in the southeast Atlantic region. Atmos. Chem. Phys. 20, 3029-3040.
Kaufman, Y.J., Fraser, R.S., 1997. The Effect of Smoke Particles on Clouds and Climate Forcing. Science 277, 1636-1639.
Kaufman, Y.J., Koren, I., Remer, L.A., Rosenfeld, D., Rudich, Y., 2005. The effect of smoke, dust, and pollution aerosol on shallow cloud development over the Atlantic Ocean. Proceedings of the National Academy of Sciences 102, 11207-11212.
Koch, D., Del Genio, A.D., 2010. Black carbon semi-direct effects on cloud cover: review and synthesis. Atmos. Chem. Phys. 10, 7685-7696.
Koike, M., Ukita, J., Ström, J., Tunved, P., Shiobara, M., Vitale, V., Lupi, A., Baumgardner, D., Ritter, C., Hermansen, O., Yamada, K., Pedersen, C.A., 2019. Year-Round In Situ Measurements of Arctic Low-Level Clouds: Microphysical Properties and Their Relationships With Aerosols. Journal of Geophysical Research: Atmospheres 124, 1798-1822.
Lance, S., 2012. Coincidence Errors in a Cloud Droplet Probe (CDP) and a Cloud and Aerosol Spectrometer (CAS), and the Improved Performance of a Modified CDP. Journal of Atmospheric and Oceanic Technology 29, 1532-1541.
Lance, S., Brock, C.A., Rogers, D., Gordon, J.A., 2010. Water droplet calibration of the Cloud Droplet Probe (CDP) and in-flight performance in liquid, ice and mixed-phase clouds during ARCPAC. Atmos. Meas. Tech. 3, 1683-1706.
Lebo, Z.J., Morrison, H., Seinfeld, J.H., 2012. Are simulated aerosol-induced effects on deep convective clouds strongly dependent on saturation adjustment? Atmos. Chem. Phys. 12, 9941-9964.
Lee, C.-T., Chuang, M.-T., Lin, N.-H., Wang, J.-L., Sheu, G.-R., Chang, S.-C., Wang, S.-H., Huang, H., Chen, H.-W., Liu, Y.-L., Weng, G.-H., Lai, H.-Y., Hsu, S.-P., 2011. The enhancement of PM2.5 mass and water-soluble ions of biosmoke transported from Southeast Asia over the Mountain Lulin site in Taiwan. Atmospheric Environment 45, 5784-5794.
Lihavainen, H., Kerminen, V.M., Remer, L.A., 2010. Aerosol-cloud interaction determined by both in situ and satellite data over a northern high-latitude site. Atmos. Chem. Phys. 10, 10987-10995.
Lin, C.-Y., Chen, W.-M., Sheng, Y.-F., Chen, W.-N., Liu, C.-Y., 2023. Exploration of the downward transport mechanisms of biomass burning emissions from Indochina at the low boundary layer in East Asia. Atmospheric Environment 314, 120117.
Lin, N.-H., Tsay, S.-C., Maring, H.B., Yen, M.-C., Sheu, G.-R., Wang, S.-H., Chi, K.H., Chuang, M.-T., Ou-Yang, C.-F., Fu, J.S., Reid, J.S., Lee, C.-T., Wang, L.-C., Wang, J.-L., Hsu, C.N., Sayer, A.M., Holben, B.N., Chu, Y.-C., Nguyen, X.A., Sopajaree, K., Chen, S.-J., Cheng, M.-T., Tsuang, B.-J., Tsai, C.-J., Peng, C.-M., Schnell, R.C., Conway, T., Chang, C.-T., Lin, K.-S., Tsai, Y.I., Lee, W.-J., Chang, S.-C., Liu, J.-J., Chiang, W.-L., Huang, S.-J., Lin, T.-H., Liu, G.-R., 2013. An overview of regional experiments on biomass burning aerosols and related pollutants in Southeast Asia: From BASE-ASIA and the Dongsha Experiment to 7-SEAS. Atmospheric Environment 78, 1-19.
Lohmann, U., Feichter, J., 2005. Global indirect aerosol effects: a review. Atmos. Chem. Phys. 5, 715-737.
Malm, W.C., Day, D.E., 2001. Estimates of aerosol species scattering characteristics as a function of relative humidity. Atmospheric Environment 35, 2845-2860.
McComiskey, A., Feingold, G., 2012. The scale problem in quantifying aerosol indirect effects. Atmos. Chem. Phys. 12, 1031-1049.
McComiskey, A., Feingold, G., Frisch, A.S., Turner, D.D., Miller, M.A., Chiu, J.C., Min, Q., Ogren, J.A., 2009. An assessment of aerosol-cloud interactions in marine stratus clouds based on surface remote sensing. Journal of Geophysical Research: Atmospheres 114.
Morrison, H., 2012. On the robustness of aerosol effects on an idealized supercell storm simulated with a cloud system-resolving model. Atmos. Chem. Phys. 12, 7689-7705.
Nguyen, L.S.P., Huang, H.-Y., Lei, T.L., Bui, T.T., Wang, S.-H., Chi, K.H., Sheu, G.-R., Lee, C.-T., Ou-Yang, C.-F., Lin, N.-H., 2020. Characterizing a landmark biomass-burning event and its implication for aging processes during long-range transport. Atmospheric Environment 241, 117766.
Ogren, J.A., Wendell, J., Andrews, E., Sheridan, P.J., 2017. Continuous light absorption photometer for long-term studies. Atmos. Meas. Tech. 10, 4805-4818.
Pani, S.K., Lin, N.-H., Lee, C.-T., Griffith, S.M., Chang, J.H.-W., Hsu, B.-J., 2022. Insights into aerosol chemical composition and optical properties at Lulin Atmospheric Background Station (2862 m asl) during two contrasting seasons. Science of The Total Environment 834, 155291.
Pincus, R., Baker, M.B., 1994. Effect of precipitation on the albedo susceptibility of clouds in the marine boundary layer. Nature 372, 250-252.
Saponaro, G., Kolmonen, P., Sogacheva, L., Rodriguez, E., Virtanen, T., de Leeuw, G., 2017. Estimates of the aerosol indirect effect over the Baltic Sea region derived from 12 years of MODIS observations. Atmos. Chem. Phys. 17, 3133-3143.
Schmeisser, L., Andrews, E., Ogren, J.A., Sheridan, P., Jefferson, A., Sharma, S., Kim, J.E., Sherman, J.P., Sorribas, M., Kalapov, I., Arsov, T., Angelov, C., Mayol-Bracero, O.L., Labuschagne, C., Kim, S.W., Hoffer, A., Lin, N.H., Chia, H.P., Bergin, M., Sun, J., Liu, P., Wu, H., 2017. Classifying aerosol type using in situ surface spectral aerosol optical properties. Atmos. Chem. Phys. 17, 12097-12120.
Spracklen, D.V., Carslaw, K.S., Pöschl, U., Rap, A., Forster, P.M., 2011. Global cloud condensation nuclei influenced by carbonaceous combustion aerosol. Atmos. Chem. Phys. 11, 9067-9087.
Stein, A.F., Draxler, R.R., Rolph, G.D., Stunder, B.J.B., Cohen, M.D., Ngan, F., 2015. NOAA’s HYSPLIT Atmospheric Transport and Dispersion Modeling System. Bulletin of the American Meteorological Society 96, 2059-2077.
Stevens, B., Feingold, G., 2009. Untangling aerosol effects on clouds and precipitation in a buffered system. Nature 461, 607-613.
Taylor, J.W., Wu, H., Szpek, K., Bower, K., Crawford, I., Flynn, M.J., Williams, P.I., Dorsey, J., Langridge, J.M., Cotterell, M.I., Fox, C., Davies, N.W., Haywood, J.M., Coe, H., 2020. Absorption closure in highly aged biomass burning smoke. Atmos. Chem. Phys. 20, 11201-11221.
Titos, G., Cazorla, A., Zieger, P., Andrews, E., Lyamani, H., Granados-Muñoz, M.J., Olmo, F.J., Alados-Arboledas, L., 2016. Effect of hygroscopic growth on the aerosol light-scattering coefficient: A review of measurements, techniques and error sources. Atmospheric Environment 141, 494-507.
Toll, V., Christensen, M., Gassó, S., Bellouin, N., 2017. Volcano and Ship Tracks Indicate Excessive Aerosol-Induced Cloud Water Increases in a Climate Model. Geophysical Research Letters 44, 12,492-412,500.
Toll, V., Christensen, M., Quaas, J., Bellouin, N., 2019. Weak average liquid-cloud-water response to anthropogenic aerosols. Nature 572, 51-55.
Twomey, S., 1974. Pollution and the planetary albedo. Atmospheric Environment (1967) 8, 1251-1256.
Twomey, S., 1977. The Influence of Pollution on the Shortwave Albedo of Clouds. Journal of Atmospheric Sciences 34, 1149-1152.
van der Werf, G.R., Randerson, J.T., Giglio, L., Collatz, G.J., Mu, M., Kasibhatla, P.S., Morton, D.C., DeFries, R.S., Jin, Y., van Leeuwen, T.T., 2010. Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmos. Chem. Phys. 10, 11707-11735.
Wang, J., Cubison, M.J., Aiken, A.C., Jimenez, J.L., Collins, D.R., 2010. The importance of aerosol mixing state and size-resolved composition on CCN concentration and the variation of the importance with atmospheric aging of aerosols. Atmos. Chem. Phys. 10, 7267-7283.
Wang, S., Ma, Y., Wang, Z., Wang, L., Chi, X., Ding, A., Yao, M., Li, Y., Li, Q., Wu, M., Zhang, L., Xiao, Y., Zhang, Y., 2021. Mobile monitoring of urban air quality at high spatial resolution by low-cost sensors: impacts of COVID-19 pandemic lockdown. Atmos. Chem. Phys. 21, 7199-7215.
Warren, S.G., Hahn, C.H., London, J., Chervin, R.M., Jenne, R.L., 1988. Global Distribution of Total Cloud Cover and Cloud Type Amounts Over the Ocean. University Corporation for Atmospheric Research.
Wood, R., 2012. Stratocumulus Clouds. Monthly Weather Review 140, 2373-2423.
Wu, H., Taylor, J.W., Szpek, K., Langridge, J.M., Williams, P.I., Flynn, M., Allan, J.D., Abel, S.J., Pitt, J., Cotterell, M.I., Fox, C., Davies, N.W., Haywood, J., Coe, H., 2020. Vertical variability of the properties of highly aged biomass burning aerosol transported over the southeast Atlantic during CLARIFY-2017. Atmos. Chem. Phys. 20, 12697-12719.
Yang, Y., Zhao, C., Dong, X., Fan, G., Zhou, Y., Wang, Y., Zhao, L., Lv, F., Yan, F., 2019. Toward understanding the process-level impacts of aerosols on microphysical properties of shallow cumulus cloud using aircraft observations. Atmospheric Research 221, 27-33.
Yen, M.-C., Peng, C.-M., Chen, T.-C., Chen, C.-S., Lin, N.-H., Tzeng, R.-Y., Lee, Y.-A., Lin, C.-C., 2013. Climate and weather characteristics in association with the active fires in northern Southeast Asia and spring air pollution in Taiwan during 2010 7-SEAS/Dongsha Experiment. Atmospheric Environment 78, 35-50.
Zhang, J., Zuidema, P., 2019. The diurnal cycle of the smoky marine boundary layer observed during August in the remote southeast Atlantic. Atmos. Chem. Phys. 19, 14493-14516.
Zhang, J., Zuidema, P., 2021. Sunlight-absorbing aerosol amplifies the seasonal cycle in low-cloud fraction over the southeast Atlantic. Atmos. Chem. Phys. 21, 11179-11199.
Zhao, C., Qiu, Y., Dong, X., Wang, Z., Peng, Y., Li, B., Wu, Z., Wang, Y., 2018. Negative Aerosol-Cloud re Relationship From Aircraft Observations Over Hebei, China. Earth and Space Science 5, 19-29. |