博碩士論文 111621020 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:51 、訪客IP:18.189.171.119
姓名 林伯勳(Po-Hsun Lin)  查詢紙本館藏   畢業系所 大氣科學學系
論文名稱 鹿林山春季雲事件之高時間解析雲微物理觀測與分析研究
(In-Situ Observations of Cloud Microphysics at Mt. Lulin during Biomass Burning Transport Events in Spring)
相關論文
★ 鹿林山背景站大氣輻射及氣膠輻射驅動力之研究★ 中南半島生質燃燒氣膠濃度分布之年際變化與其對區域環境衝擊研究
★ 中壢地區光達消光散射比之長期分析與污染物關聯性研究★ 臺灣大氣背景PM2.5質量濃度之推估
★ 雲林斗六PM2.5濃度變化與氣膠光學特性及氣象條件之關聯性研究★ Mapping Surface Solar Radiation with Satellite Data over Taiwan
★ 開發適用於大氣邊界層觀測的無人機系統★ 利用AERONET資料解析中南半島地區氣膠種類及成分
★ 氣膠對臺灣北部暖雲微物理和毛雨的影響★ Characteristics and Corrections of Thermal Offset for Secondary Standard Pyranometers
★ 氣膠對臺灣中部平原夏季降水日變化之影響★ 中南半島生質燃燒氣膠傳送動力機制及區域氣候反饋
★ 2019年春季泰國北部無人機觀測實驗: 邊界層特徵與氣膠垂直分布之研究★ Investigating hygroscopic cloud-seeding effects in liquid-water clouds in northern Taiwan: in-situ measurements and model simulation
★ 整合無人機與光達觀測解析斗六地區空污事件之演變過程★ 氣膠光學及微物理反演法開發:以鹿林山大氣背景站應用為例
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-7-31以後開放)
摘要(中) 人為排放氣膠為雲凝結核的重要來源之一,氣膠濃度的變化透過改變雲滴的大小與數量,可以間接影響大氣輻射收支。目前世界上針對氣膠與雲交互作用的觀測資料尚顯不足,值得注意的是,低層暖雲對氣膠濃度變化特別敏感,但雲微物理特性在不同環境條件皆有著不同的表現,以至於氣膠對雲造成的衝擊與變化目前仍然充滿爭議。本研究目的為建構一套高時間解析度之氣膠-雲監測系統,包含雲滴譜儀(Cloud Droplet Probe, CDP)和光學式氣膠粒徑儀(Grimm 11-D),於2024年3月1日至12日架設於鹿林山大氣背景站(LABS),針對含有大量生質燃燒氣膠的暖雲進行現地觀測,並建立一套資料QC的程序,以確保觀測結果不受外在因素干擾(如:環境風速影響、鏡頭汙損),觀測資料足以解析雲系統中的氣膠和雲微物理(如:數量濃度、有效直徑、液態水含量等)隨時序變化及依條件分類表現,以了解受到大量氣膠影響後雲系統的特徵。
資料分析結果顯示,隨著氣膠質量濃度(PM2.5)的增加雲滴數量濃度(Nd)並非呈現單調增加的趨勢;液態水含量(LWC)則是在高PM2.5負載中顯著減少,初步支持了氣膠造成雲消散的論點。本研究中使用Nd計算氣膠-雲交互作用指數(Aerosol-Cloud-Interaction Index, ACI Index),視為氣膠轉換成雲凝結核的活化率,其特點為不需限定在相同雲液態水含量條件,得以更加廣泛的分析氣膠-雲交互作用的現象。因此分析雲系統內的氣膠與雲微物理變化時,與過去的研究不同(設定在相同LWC下,僅利用氣膠濃度的差異分析ACI),須一併將雲水含量(如:LWC、Nd)的變因納入考量,所以本研究進一步引入LPR (log(LWC/PM2.5))與NPR (log(Nd/PM2.5))指數,代表系統中每單位的氣膠所含的雲液態水濃度。結果顯示,液態水含量相對於氣膠濃度,在充足的條件下(LPR ≥ -1.5、NPR ≥ 1.8)計算出ACI介於0.11-0.14,且ln(Nd)與ln(PM2.5)呈現高相關性,氣膠濃度增加對雲滴數量的增多顯著影響;相較之下,液態水含量缺少的條件下,特別當LPR介於-3至-1.5時,ACI趨近於0、相關係數為-0.01,說明更多的氣膠對雲滴數量增多毫無幫助。本研究首次於鹿林山針對生質燃燒氣膠影響之暖雲進行觀測實驗與分析,結果說明臺灣三月的雲系在高濃度的東南亞生質燃燒氣膠影響下,雲量的減少(LWC、N¬d下降)比Twomey效應更為顯著,且進一步利用雲系統中的液態水-氣膠濃度比例結合ACI指數分析,發現液態水含量充足與否也會影響到增加的氣膠是否會活化成雲凝結核(ACI > 0),相較於侷限在相同雲液態水含量下分析,同時納入雲液態水含量與氣膠濃度二者變因,可以更加全面地闡述雲系統內的氣膠與雲之間的交互作用結果。
摘要(英) Anthropogenic aerosols are an important source of cloud condensation nuclei (CCN), and high aerosol loading could indirectly affect radiation forcing (RF) by changing cloud droplet size and number concentration. At present, there is a lack of observation on aerosol-cloud interaction (ACI), especially in the case of low-level warm clouds, which are sensitive to changes in aerosol concentration. However, cloud microphysical properties are different in different environments, and the impact of aerosol on cloud is still controversial. The objective of this study is to analyze the development and changes of aerosol and cloud microphysics (i.e., number concentration, effective diameter, liquid water concentration, etc.) within warm cloud over a period of several hours, to understand the characteristics of the cloud system after being affected by a large amount of aerosol. Therefore, a high-time-resolution aerosol-cloud monitoring system was constructed and set up to observe warm clouds with high loading of biomass burning aerosols at the Lulin Atmospheric Background Station (LABS) from 1st to 12th March 2024, including Cloud Droplet Probe (CDP) and Optical Particle Counter (Grimm 11-D), and a quality control (QC) procedure was established for cloud microphysics data during the observation period to ensure that the observation results were not disturbed by external factors (e.g., ambient wind speed influence, monitor unclean).
The result shows that the cloud droplet number concentration (Nd) does not increase monotonically with the increase of the aerosol mass concentration (PM2.5), while the liquid water content (LWC) decreases significantly at high PM2.5, which initially supports that aerosol contributes to cloud dissipation. To conduct a more comprehensive analysis of the aerosol-cloud interaction phenomenon, Nd is used to calculate Aerosol-Cloud Interaction Index (ACI Index), which is regarded as the activation rate of aerosol to CCN. One of the key characteristics of ACINd index is that it does not need to be limited under the same cloud water content. Therefore, when analyzing ACI in cloud systems, it is necessary to consider not only the variations in aerosol concentration (i.e., PM2.5) but also the variations in cloud water content (i.e., LWC, Nd). Accordingly, this study introduces LPR (log(LWC/PM2.5)) and NPR (log(Nd/PM2.5)) indices, which represent the concentration of cloud liquid water in the cloud for unit of aerosol in the system. The results demonstrate that when cloud water content is sufficient in relation to PM2.5 (LPR ≥ -1.5, NPR ≥ 1.8), ACI ranges from 0.11 to 0.14 with high correlation between ln(Nd) and ln(PM2.5¬), indicating that an increase in aerosol concentration has a significant impact on the growth of cloud droplets. Conversely, when cloud water content is shortage (LPR is between -3 and -1.5), the ACI is close to 0, and the correlation coefficient is -0.01. This suggests that an increase in aerosol does not contribute to the formation of cloud droplets. This study conducted the first observation of warm cloud under the influence of biomass burning aerosol at Mt. Lulin. The finding revealed that the reduction of cloud (decrease of LWC and Nd) is more significant than Twomey effect in the March cloud system in Taiwan under high loading of biomass burning aerosol. Further analysis of cloud liquid water to aerosol concentration ratio and ACI index in the cloud system demonstrates that the sufficiency of cloud water content also affected whether the increased aerosol would be activated into CCN (ACI > 0). The present study suggests that the inclusion of both cloud water content and aerosol concentration provides a more comprehensive description of aerosol-cloud interactions in cloud systems.
關鍵字(中) ★ 氣膠與雲交互作用
★ 雲微物理
關鍵字(英) ★ Aerosol-Cloud Interaction
★ Cloud Microphysics
論文目次 摘要 i
Abstract iii
致謝 v
目錄 vi
圖目錄 viii
表目錄 xii
第一章 前言 1
1-1 研究動機 1
1-2 研究目的 2
第二章 文獻回顧 4
2-1 氣膠與雲與輻射效應 4
2-2 氣膠-雲交互作用指數(Aerosol-Cloud Interaction Index, ACI Index) 5
2-3 氣膠與雲微物理相關研究 6
2-4 中南半島氣膠傳輸與衝擊相關研究 9
第三章 研究方法 10
3-1 觀測地點 11
3-2 氣膠-雲微物理監測系統 12
3-3-1 雲滴譜儀(Cloud Droplet Probe) 14
3-3-2 氣膠粒徑儀(11-D Optical Particle Counter) 17
3-3 HYSPLIT模式 18
3-4 氣膠系統(Aerosol System) 19
3-5 雲水資料選用 20
3-5-1 暖雲資料選取 20
3-5-2 雲微物理參數計算 22
3-5-3 CDP抽氣風管風速修正計算 24
3-6 氣膠資料選用 25
3-6-1 氣膠資料選取 25
3-6-2 氣膠參數計算 27
3-7 氣膠與雲資料分析方法 28
3-7-1 ACI指數計算 28
3-7-2 氣膠與雲水含量濃度比例關係計算 28
3-7-3 平均值標準誤差(Standard Error of the Mean) 29
第四章 雲水資料修正與檢驗 32
4-1 雲滴譜儀設備風管內風速修正 33
4-2 CDP鏡頭汙損對資料影響性分析 35
第五章 結果與討論 39
5-1 天氣、氣膠與雲微物理特徵分析 39
5-1-1 綜觀天氣分析 39
5-1-2 氣膠來源與光學特性分析 48
5-1-3 雲微物理特徵分析 56
5-2 氣膠濃度對雲微物理影響 60
5-2-1 不同氣膠濃度區間內雲微物理與水氣含量比較 60
5-2-2 連續雲事件內LPR、NPR與ACI關係比較 62
5-2-3 LPR、NPR區間與ACI分析 67
5-2-4 LPR區間與ACI值對天氣條件敏感度分析 72
5-3 雲液態水-氣膠比例與氣膠-雲交互作用 78
5-3-1 雲水含量充足之降水前個案分析(Case 1、Case 4) 80
5-3-2 雲水含量充足之毛雨與非降水個案分析(Case 2、Case 3) 85
5-3-3 雲水含量缺乏之個案分析(Case 5、Case 6、Case 7) 91
第六章 結論與未來展望 97
6-1 結論 97
6-2 未來展望 100
第七章 參考文獻 102
參考文獻 鹿林山空氣品質背景測站,2024:測站簡介。http://lulin.tw/about?lang=tw (取用日期:2024.06)
NOAA Global Monitoring Laboratory,2024:氣膠系統儀器架設與原理。https://gml.noaa.gov/aero/instrumentation/inst_desc.html (取用日期:2024.06)
Ackerman, A.S., Toon, O.B., Stevens, D.E., Heymsfield, A.J., Ramanathan, V., Welton, E.J., 2000. Reduction of Tropical Cloudiness by Soot. Science 288, 1042-1047.
Adebiyi, A.A., Zuidema, P., 2016. The role of the southern African easterly jet in modifying the southeast Atlantic aerosol and cloud environments. Quarterly Journal of the Royal Meteorological Society 142, 1574-1589.
Albrecht, B.A., 1989. Aerosols, Cloud Microphysics, and Fractional Cloudiness. Science 245, 1227-1230.
Anderson, T.L., Covert, D.S., Marshall, S.F., Laucks, M.L., Charlson, R.J., Waggoner, A.P., Ogren, J.A., Caldow, R., Holm, R.L., Quant, F.R., Sem, G.J., Wiedensohler, A., Ahlquist, N.A., Bates, T.S., 1996. Performance Characteristics of a High-Sensitivity, Three-Wavelength, Total Scatter/Backscatter Nephelometer. Journal of Atmospheric and Oceanic Technology 13, 967-986.
Ardon-Dryer, K., Kelley, M.C., Xueting, X., Dryer, Y., 2022. The Aerosol Research Observation Station (AEROS). Atmos. Meas. Tech. 15, 2345-2360.
Artaxo, P., Berntsen, T., Betts, R., Fahey, D.W., Haywood, J., Lean, J., Lowe, D.C., Myhre, G., Nganga, J., Prinn, R., 2007. Changes in atmos-pheric constituents and in radiative forcing, in: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L. (Eds.), Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press.
Bellouin, N., Quaas, J., Gryspeerdt, E., Kinne, S., Stier, P., Watson-Parris, D., Boucher, O., Carslaw, K.S., Christensen, M., Daniau, A.-L., Dufresne, J.-L., Feingold, G., Fiedler, S., Forster, P., Gettelman, A., Haywood, J.M., Lohmann, U., Malavelle, F., Mauritsen, T., McCoy, D.T., Myhre, G., Mülmenstädt, J., Neubauer, D., Possner, A., Rugenstein, M., Sato, Y., Schulz, M., Schwartz, S.E., Sourdeval, O., Storelvmo, T., Toll, V., Winker, D., Stevens, B., 2020. Bounding Global Aerosol Radiative Forcing of Climate Change. Reviews of Geophysics 58, e2019RG000660.
Bender, F.A.M., Frey, L., McCoy, D.T., Grosvenor, D.P., Mohrmann, J.K., 2019. Assessment of aerosol–cloud–radiation correlations in satellite observations, climate models and reanalysis. Climate Dynamics 52, 4371-4392.
Bond, T.C., Doherty, S.J., Fahey, D.W., Forster, P.M., Berntsen, T., DeAngelo, B.J., Flanner, M.G., Ghan, S., Kärcher, B., Koch, D., Kinne, S., Kondo, Y., Quinn, P.K., Sarofim, M.C., Schultz, M.G., Schulz, M., Venkataraman, C., Zhang, H., Zhang, S., Bellouin, N., Guttikunda, S.K., Hopke, P.K., Jacobson, M.Z., Kaiser, J.W., Klimont, Z., Lohmann, U., Schwarz, J.P., Shindell, D., Storelvmo, T., Warren, S.G., Zender, C.S., 2013. Bounding the role of black carbon in the climate system: A scientific assessment. Journal of Geophysical Research: Atmospheres 118, 5380-5552.
Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G., Forster, P., Kerminen, V.-M., Kondo, Y., Liao, H., Lohmann, U., 2013. Clouds and aerosols, Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, pp. 571-657.
Calderón, S.M., Tonttila, J., Buchholz, A., Joutsensaari, J., Komppula, M., Leskinen, A., Hao, L., Moisseev, D., Pullinen, I., Tiitta, P., Xu, J., Virtanen, A., Kokkola, H., Romakkaniemi, S., 2022. Aerosol–stratocumulus interactions: towards a better process understanding using closures between observations and large eddy simulations. Atmos. Chem. Phys. 22, 12417-12441.
Chen, C.-L., Chen, T.-Y., Hung, H.-M., Tsai, P.-W., Chou, C.C.K., Chen, W.-N., 2021a. The influence of upslope fog on hygroscopicity and chemical composition of aerosols at a forest site in Taiwan. Atmospheric Environment 246, 118150.
Chen, Y., Haywood, J., Wang, Y., Malavelle, F., Jordan, G., Partridge, D., Fieldsend, J., De Leeuw, J., Schmidt, A., Cho, N., Oreopoulos, L., Platnick, S., Grosvenor, D., Field, P., Lohmann, U., 2022. Machine learning reveals climate forcing from aerosols is dominated by increased cloud cover. Nature Geoscience 15, 609-614.
Chen, Y.C., Christensen, M.W., Xue, L., Sorooshian, A., Stephens, G.L., Rasmussen, R.M., Seinfeld, J.H., 2012. Occurrence of lower cloud albedo in ship tracks. Atmos. Chem. Phys. 12, 8223-8235.
Chen, Y.C., Wang, S.H., Min, Q., Lu, S., Lin, P.L., Lin, N.H., Chung, K.S., Joseph, E., 2021b. Aerosol impacts on warm-cloud microphysics and drizzle in a moderately polluted environment. Atmos. Chem. Phys. 21, 4487-4502.
Cheng, F.-Y., Yang, Z.-M., Ou-Yang, C.-F., Ngan, F., 2013. A numerical study of the dependence of long-range transport of CO to a mountain station in Taiwan on synoptic weather patterns during the Southeast Asia biomass-burning season. Atmospheric Environment 78, 277-290.
Christensen, M.W., Chen, Y.-C., Stephens, G.L., 2016. Aerosol indirect effect dictated by liquid clouds. Journal of Geophysical Research: Atmospheres 121, 14,636-614,650.
Christensen, M.W., Gettelman, A., Cermak, J., Dagan, G., Diamond, M., Douglas, A., Feingold, G., Glassmeier, F., Goren, T., Grosvenor, D.P., Gryspeerdt, E., Kahn, R., Li, Z., Ma, P.L., Malavelle, F., McCoy, I.L., McCoy, D.T., McFarquhar, G., Mülmenstädt, J., Pal, S., Possner, A., Povey, A., Quaas, J., Rosenfeld, D., Schmidt, A., Schrödner, R., Sorooshian, A., Stier, P., Toll, V., Watson-Parris, D., Wood, R., Yang, M., Yuan, T., 2022. Opportunistic experiments to constrain aerosol effective radiative forcing. Atmos. Chem. Phys. 22, 641-674.
D′Alessandro, J.J., McFarquhar, G.M., Wu, W., Stith, J.L., Jensen, J.B., Rauber, R.M., 2021. Characterizing the Occurrence and Spatial Heterogeneity of Liquid, Ice, and Mixed Phase Low-Level Clouds Over the Southern Ocean Using in Situ Observations Acquired During SOCRATES. Journal of Geophysical Research: Atmospheres 126, e2020JD034482.
Dagan, G., Stier, P., 2020. Ensemble daily simulations for elucidating cloud–aerosol interactions under a large spread of realistic environmental conditions. Atmos. Chem. Phys. 20, 6291-6303.
Davies, N.W., Fox, C., Szpek, K., Cotterell, M.I., Taylor, J.W., Allan, J.D., Williams, P.I., Trembath, J., Haywood, J.M., Langridge, J.M., 2019. Evaluating biases in filter-based aerosol absorption measurements using photoacoustic spectroscopy. Atmos. Meas. Tech. 12, 3417-3434.
Deng, Z., Zhao, C., Zhang, Q., Huang, M., Ma, X., 2009. Statistical analysis of microphysical properties and the parameterization of effective radius of warm clouds in Beijing area. Atmospheric Research 93, 888-896.
Doulgeris, K.M., Komppula, M., Romakkaniemi, S., Hyvärinen, A.P., Kerminen, V.M., Brus, D., 2020. In situ cloud ground-based measurements in the Finnish sub-Arctic: intercomparison of three cloud spectrometer setups. Atmos. Meas. Tech. 13, 5129-5147.
Doulgeris, K.M., Lihavainen, H., Hyvärinen, A.P., Kerminen, V.M., Brus, D., 2022. An extensive data set for in situ microphysical characterization of low-level clouds in a Finnish sub-Arctic site. Earth Syst. Sci. Data 14, 637-649.
Doulgeris, K.M., Vakkari, V., O′Connor, E.J., Kerminen, V.M., Lihavainen, H., Brus, D., 2023. Influence of air mass origin on microphysical properties of low-level clouds in a subarctic environment. Atmos. Chem. Phys. 23, 2483-2498.
Draxler, R.R., Hess, G., 1998. An overview of the HYSPLIT_4 modelling system for trajectories. Australian meteorological magazine 47, 295-308.
Fan, J., Wang, Y., Rosenfeld, D., Liu, X., 2016. Review of Aerosol–Cloud Interactions: Mechanisms, Significance, and Challenges. Journal of the Atmospheric Sciences 73, 4221-4252.
Fan, J., Yuan, T., Comstock, J.M., Ghan, S., Khain, A., Leung, L.R., Li, Z., Martins, V.J., Ovchinnikov, M., 2009. Dominant role by vertical wind shear in regulating aerosol effects on deep convective clouds. Journal of Geophysical Research: Atmospheres 114.
Feingold, G., Remer, L.A., Ramaprasad, J., Kaufman, Y.J., 2001. Analysis of smoke impact on clouds in Brazilian biomass burning regions: An extension of Twomey′s approach. Journal of Geophysical Research: Atmospheres 106, 22907-22922.
Fiore, A.M., Naik, V., Leibensperger, E.M., 2015. Air Quality and Climate Connections. Journal of the Air & Waste Management Association 65, 645-685.
Gryspeerdt, E., Stier, P., 2012. Regime-based analysis of aerosol-cloud interactions. Geophysical Research Letters 39.
Gultepe, I., Isaac, G.A., 1999. Scale Effects on Averaging of Cloud Droplet and Aerosol Number Concentrations: Observations and Models. Journal of Climate 12, 1268-1279.
Haywood, J., Boucher, O., 2000. Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: A review. Reviews of Geophysics 38, 513-543.
Haywood, J.M., Abel, S.J., Barrett, P.A., Bellouin, N., Blyth, A., Bower, K.N., Brooks, M., Carslaw, K., Che, H., Coe, H., Cotterell, M.I., Crawford, I., Cui, Z., Davies, N., Dingley, B., Field, P., Formenti, P., Gordon, H., de Graaf, M., Herbert, R., Johnson, B., Jones, A.C., Langridge, J.M., Malavelle, F., Partridge, D.G., Peers, F., Redemann, J., Stier, P., Szpek, K., Taylor, J.W., Watson-Parris, D., Wood, R., Wu, H., Zuidema, P., 2021. The CLoud–Aerosol–Radiation Interaction and Forcing: Year 2017 (CLARIFY-2017) measurement campaign. Atmos. Chem. Phys. 21, 1049-1084.
Herbert, R.J., Bellouin, N., Highwood, E.J., Hill, A.A., 2020. Diurnal cycle of the semi-direct effect from a persistent absorbing aerosol layer over marine stratocumulus in large-eddy simulations. Atmos. Chem. Phys. 20, 1317-1340.
Hsiao, T.-C., Chen, W.-N., Ye, W.-C., Lin, N.-H., Tsay, S.-C., Lin, T.-H., Lee, C.-T., Chuang, M.-T., Pantina, P., Wang, S.-H., 2017. Aerosol optical properties at the Lulin Atmospheric Background Station in Taiwan and the influences of long-range transport of air pollutants. Atmospheric Environment 150, 366-378.
Huang, H.-Y., Wang, S.-H., Huang, W.-X., Lin, N.-H., Chuang, M.-T., da Silva, A.M., Peng, C.-M., 2020. Influence of Synoptic-Dynamic Meteorology on the Long-Range Transport of Indochina Biomass Burning Aerosols. Journal of Geophysical Research: Atmospheres 125, e2019JD031260.
IPCC, 2014. Climate Change 2013 – The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.
IPCC, 2023. Climate Change 2021 – The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.
Jia, H., Ma, X., Yu, F., Quaas, J., 2021. Significant underestimation of radiative forcing by aerosol–cloud interactions derived from satellite-based methods. Nature Communications 12, 3649.
Kacarab, M., Thornhill, K.L., Dobracki, A., Howell, S.G., O′Brien, J.R., Freitag, S., Poellot, M.R., Wood, R., Zuidema, P., Redemann, J., Nenes, A., 2020. Biomass burning aerosol as a modulator of the droplet number in the southeast Atlantic region. Atmos. Chem. Phys. 20, 3029-3040.
Kaufman, Y.J., Fraser, R.S., 1997. The Effect of Smoke Particles on Clouds and Climate Forcing. Science 277, 1636-1639.
Kaufman, Y.J., Koren, I., Remer, L.A., Rosenfeld, D., Rudich, Y., 2005. The effect of smoke, dust, and pollution aerosol on shallow cloud development over the Atlantic Ocean. Proceedings of the National Academy of Sciences 102, 11207-11212.
Koch, D., Del Genio, A.D., 2010. Black carbon semi-direct effects on cloud cover: review and synthesis. Atmos. Chem. Phys. 10, 7685-7696.
Koike, M., Ukita, J., Ström, J., Tunved, P., Shiobara, M., Vitale, V., Lupi, A., Baumgardner, D., Ritter, C., Hermansen, O., Yamada, K., Pedersen, C.A., 2019. Year-Round In Situ Measurements of Arctic Low-Level Clouds: Microphysical Properties and Their Relationships With Aerosols. Journal of Geophysical Research: Atmospheres 124, 1798-1822.
Lance, S., 2012. Coincidence Errors in a Cloud Droplet Probe (CDP) and a Cloud and Aerosol Spectrometer (CAS), and the Improved Performance of a Modified CDP. Journal of Atmospheric and Oceanic Technology 29, 1532-1541.
Lance, S., Brock, C.A., Rogers, D., Gordon, J.A., 2010. Water droplet calibration of the Cloud Droplet Probe (CDP) and in-flight performance in liquid, ice and mixed-phase clouds during ARCPAC. Atmos. Meas. Tech. 3, 1683-1706.
Lebo, Z.J., Morrison, H., Seinfeld, J.H., 2012. Are simulated aerosol-induced effects on deep convective clouds strongly dependent on saturation adjustment? Atmos. Chem. Phys. 12, 9941-9964.
Lee, C.-T., Chuang, M.-T., Lin, N.-H., Wang, J.-L., Sheu, G.-R., Chang, S.-C., Wang, S.-H., Huang, H., Chen, H.-W., Liu, Y.-L., Weng, G.-H., Lai, H.-Y., Hsu, S.-P., 2011. The enhancement of PM2.5 mass and water-soluble ions of biosmoke transported from Southeast Asia over the Mountain Lulin site in Taiwan. Atmospheric Environment 45, 5784-5794.
Lihavainen, H., Kerminen, V.M., Remer, L.A., 2010. Aerosol-cloud interaction determined by both in situ and satellite data over a northern high-latitude site. Atmos. Chem. Phys. 10, 10987-10995.
Lin, C.-Y., Chen, W.-M., Sheng, Y.-F., Chen, W.-N., Liu, C.-Y., 2023. Exploration of the downward transport mechanisms of biomass burning emissions from Indochina at the low boundary layer in East Asia. Atmospheric Environment 314, 120117.
Lin, N.-H., Tsay, S.-C., Maring, H.B., Yen, M.-C., Sheu, G.-R., Wang, S.-H., Chi, K.H., Chuang, M.-T., Ou-Yang, C.-F., Fu, J.S., Reid, J.S., Lee, C.-T., Wang, L.-C., Wang, J.-L., Hsu, C.N., Sayer, A.M., Holben, B.N., Chu, Y.-C., Nguyen, X.A., Sopajaree, K., Chen, S.-J., Cheng, M.-T., Tsuang, B.-J., Tsai, C.-J., Peng, C.-M., Schnell, R.C., Conway, T., Chang, C.-T., Lin, K.-S., Tsai, Y.I., Lee, W.-J., Chang, S.-C., Liu, J.-J., Chiang, W.-L., Huang, S.-J., Lin, T.-H., Liu, G.-R., 2013. An overview of regional experiments on biomass burning aerosols and related pollutants in Southeast Asia: From BASE-ASIA and the Dongsha Experiment to 7-SEAS. Atmospheric Environment 78, 1-19.
Lohmann, U., Feichter, J., 2005. Global indirect aerosol effects: a review. Atmos. Chem. Phys. 5, 715-737.
Malm, W.C., Day, D.E., 2001. Estimates of aerosol species scattering characteristics as a function of relative humidity. Atmospheric Environment 35, 2845-2860.
McComiskey, A., Feingold, G., 2012. The scale problem in quantifying aerosol indirect effects. Atmos. Chem. Phys. 12, 1031-1049.
McComiskey, A., Feingold, G., Frisch, A.S., Turner, D.D., Miller, M.A., Chiu, J.C., Min, Q., Ogren, J.A., 2009. An assessment of aerosol-cloud interactions in marine stratus clouds based on surface remote sensing. Journal of Geophysical Research: Atmospheres 114.
Morrison, H., 2012. On the robustness of aerosol effects on an idealized supercell storm simulated with a cloud system-resolving model. Atmos. Chem. Phys. 12, 7689-7705.
Nguyen, L.S.P., Huang, H.-Y., Lei, T.L., Bui, T.T., Wang, S.-H., Chi, K.H., Sheu, G.-R., Lee, C.-T., Ou-Yang, C.-F., Lin, N.-H., 2020. Characterizing a landmark biomass-burning event and its implication for aging processes during long-range transport. Atmospheric Environment 241, 117766.
Ogren, J.A., Wendell, J., Andrews, E., Sheridan, P.J., 2017. Continuous light absorption photometer for long-term studies. Atmos. Meas. Tech. 10, 4805-4818.
Pani, S.K., Lin, N.-H., Lee, C.-T., Griffith, S.M., Chang, J.H.-W., Hsu, B.-J., 2022. Insights into aerosol chemical composition and optical properties at Lulin Atmospheric Background Station (2862 m asl) during two contrasting seasons. Science of The Total Environment 834, 155291.
Pincus, R., Baker, M.B., 1994. Effect of precipitation on the albedo susceptibility of clouds in the marine boundary layer. Nature 372, 250-252.
Saponaro, G., Kolmonen, P., Sogacheva, L., Rodriguez, E., Virtanen, T., de Leeuw, G., 2017. Estimates of the aerosol indirect effect over the Baltic Sea region derived from 12 years of MODIS observations. Atmos. Chem. Phys. 17, 3133-3143.
Schmeisser, L., Andrews, E., Ogren, J.A., Sheridan, P., Jefferson, A., Sharma, S., Kim, J.E., Sherman, J.P., Sorribas, M., Kalapov, I., Arsov, T., Angelov, C., Mayol-Bracero, O.L., Labuschagne, C., Kim, S.W., Hoffer, A., Lin, N.H., Chia, H.P., Bergin, M., Sun, J., Liu, P., Wu, H., 2017. Classifying aerosol type using in situ surface spectral aerosol optical properties. Atmos. Chem. Phys. 17, 12097-12120.
Spracklen, D.V., Carslaw, K.S., Pöschl, U., Rap, A., Forster, P.M., 2011. Global cloud condensation nuclei influenced by carbonaceous combustion aerosol. Atmos. Chem. Phys. 11, 9067-9087.
Stein, A.F., Draxler, R.R., Rolph, G.D., Stunder, B.J.B., Cohen, M.D., Ngan, F., 2015. NOAA’s HYSPLIT Atmospheric Transport and Dispersion Modeling System. Bulletin of the American Meteorological Society 96, 2059-2077.
Stevens, B., Feingold, G., 2009. Untangling aerosol effects on clouds and precipitation in a buffered system. Nature 461, 607-613.
Taylor, J.W., Wu, H., Szpek, K., Bower, K., Crawford, I., Flynn, M.J., Williams, P.I., Dorsey, J., Langridge, J.M., Cotterell, M.I., Fox, C., Davies, N.W., Haywood, J.M., Coe, H., 2020. Absorption closure in highly aged biomass burning smoke. Atmos. Chem. Phys. 20, 11201-11221.
Titos, G., Cazorla, A., Zieger, P., Andrews, E., Lyamani, H., Granados-Muñoz, M.J., Olmo, F.J., Alados-Arboledas, L., 2016. Effect of hygroscopic growth on the aerosol light-scattering coefficient: A review of measurements, techniques and error sources. Atmospheric Environment 141, 494-507.
Toll, V., Christensen, M., Gassó, S., Bellouin, N., 2017. Volcano and Ship Tracks Indicate Excessive Aerosol-Induced Cloud Water Increases in a Climate Model. Geophysical Research Letters 44, 12,492-412,500.
Toll, V., Christensen, M., Quaas, J., Bellouin, N., 2019. Weak average liquid-cloud-water response to anthropogenic aerosols. Nature 572, 51-55.
Twomey, S., 1974. Pollution and the planetary albedo. Atmospheric Environment (1967) 8, 1251-1256.
Twomey, S., 1977. The Influence of Pollution on the Shortwave Albedo of Clouds. Journal of Atmospheric Sciences 34, 1149-1152.
van der Werf, G.R., Randerson, J.T., Giglio, L., Collatz, G.J., Mu, M., Kasibhatla, P.S., Morton, D.C., DeFries, R.S., Jin, Y., van Leeuwen, T.T., 2010. Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmos. Chem. Phys. 10, 11707-11735.
Wang, J., Cubison, M.J., Aiken, A.C., Jimenez, J.L., Collins, D.R., 2010. The importance of aerosol mixing state and size-resolved composition on CCN concentration and the variation of the importance with atmospheric aging of aerosols. Atmos. Chem. Phys. 10, 7267-7283.
Wang, S., Ma, Y., Wang, Z., Wang, L., Chi, X., Ding, A., Yao, M., Li, Y., Li, Q., Wu, M., Zhang, L., Xiao, Y., Zhang, Y., 2021. Mobile monitoring of urban air quality at high spatial resolution by low-cost sensors: impacts of COVID-19 pandemic lockdown. Atmos. Chem. Phys. 21, 7199-7215.
Warren, S.G., Hahn, C.H., London, J., Chervin, R.M., Jenne, R.L., 1988. Global Distribution of Total Cloud Cover and Cloud Type Amounts Over the Ocean. University Corporation for Atmospheric Research.
Wood, R., 2012. Stratocumulus Clouds. Monthly Weather Review 140, 2373-2423.
Wu, H., Taylor, J.W., Szpek, K., Langridge, J.M., Williams, P.I., Flynn, M., Allan, J.D., Abel, S.J., Pitt, J., Cotterell, M.I., Fox, C., Davies, N.W., Haywood, J., Coe, H., 2020. Vertical variability of the properties of highly aged biomass burning aerosol transported over the southeast Atlantic during CLARIFY-2017. Atmos. Chem. Phys. 20, 12697-12719.
Yang, Y., Zhao, C., Dong, X., Fan, G., Zhou, Y., Wang, Y., Zhao, L., Lv, F., Yan, F., 2019. Toward understanding the process-level impacts of aerosols on microphysical properties of shallow cumulus cloud using aircraft observations. Atmospheric Research 221, 27-33.
Yen, M.-C., Peng, C.-M., Chen, T.-C., Chen, C.-S., Lin, N.-H., Tzeng, R.-Y., Lee, Y.-A., Lin, C.-C., 2013. Climate and weather characteristics in association with the active fires in northern Southeast Asia and spring air pollution in Taiwan during 2010 7-SEAS/Dongsha Experiment. Atmospheric Environment 78, 35-50.
Zhang, J., Zuidema, P., 2019. The diurnal cycle of the smoky marine boundary layer observed during August in the remote southeast Atlantic. Atmos. Chem. Phys. 19, 14493-14516.
Zhang, J., Zuidema, P., 2021. Sunlight-absorbing aerosol amplifies the seasonal cycle in low-cloud fraction over the southeast Atlantic. Atmos. Chem. Phys. 21, 11179-11199.
Zhao, C., Qiu, Y., Dong, X., Wang, Z., Peng, Y., Li, B., Wu, Z., Wang, Y., 2018. Negative Aerosol-Cloud re Relationship From Aircraft Observations Over Hebei, China. Earth and Space Science 5, 19-29.
指導教授 王聖翔 審核日期 2024-8-5
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明