參考文獻 |
黃椿喜、葉世瑄、呂國臣、洪景山(2016)。系集定量降水預報方法之探討與分析-系集平均、機率擬合平均與超越機率之定量降水預報。大氣科學,44(2),173-196。
陳淡容、廖信豪、吳宜昭、于宜強(2020)。2020年5月19-24日梅雨鋒線豪雨事件氣象分析,國家災害防救科技中心災防科技電子報,第 180 期,共16頁。
Chang, CC., Yang, SC., 2022: Impact of assimilating Formosat-7/COSMIC-II GNSS radio occultation data on heavy rainfall prediction in Taiwan. TAO 33, 7, https://doi.org/10.1007/s44195-022-00004-4.
Chen, S.-Y.; Liu, C.-Y.; Huang, C.-Y.; Hsu, S.-C.; Li, H.-W.; Lin, P.-H.; Cheng, J.-P.; Huang, C.-Y, 2021: An Analysis Study of FORMOSAT-7/COSMIC-2 Radio Occultation Data in the Troposphere. Remote Sens. 2021, 13, 717. https://doi.org/10.3390/rs13040717.
Chen, Y.-J., Hong, J.-S., Chen, W.-J, 2022: Impact of Assimilating FORMOSAT-7/COSMIC-2 Radio Occultation Data on Typhoon Prediction Using a Regional Model. Atmosphere 2022, 13, 1879. https://doi.org/10.3390/atmos13111879.
Chien, F.-C., and Y.-C. Chiu, 2021: Assessing the impact of dropsonde data on rain forecasts in Taiwan with observing system simulation experiments. Atmosphere, 12, 1672, https://doi.org/10.3390/atmos12121672.
Chien, F., and Y. Chiu, 2023: Factors Leading to Heavy Rainfall in Southern Taiwan in the Early Mei-Yu Season of 2020. Mon. Wea. Rev., 151, 1885–1908, https://doi.org/10.1175/MWR-D-22-0226.1.
Cucurull, L., 2015: Implementation of a quality control for radio occultation observations in the presence of large gradients of atmospheric refractivity, Atmos. Meas. Tech., 8, 1275–1285, https://doi.org/10.5194/amt-8-1275-2015.
Emanuel, K. A., 1994: Atmospheric Convection. Oxford University Press, 580 pp.
E. K. Smith and S. Weintraub, 1953: The Constants in the Equation for Atmospheric Refractive Index at Radio Frequencies, Proceedings of the IRE, vol. 41, no. 8, pp. 1035-1037, https://doi.org/10.1109/JRPROC.1953.274297.
Hersbach, H., 2016: The ERA5 atmospheric reanalysis. 2016 Fall Meeting, San Francisco, CA, Amer. Geophys. Union, Abstract NG33D–01.
Kuo, Y., L. Cheng, and J. Bao, 1988: Numerical Simulation of the 1981 Sichuan Flood. Part I: Evolution of a Mesoscale Southwest Vortex. Mon. Wea. Rev., 116, 2481–2504, https://doi.org/10.1175/1520-0493(1988)116<2481:NSOTSF>2.0.CO;2.
Guo, Y., R. Zhang, Z. Wen, J. Li, C. Zhang, and Z. Zhou, 2021: Understanding the role of SST anomaly in extreme rainfall of 2020 Meiyu season from an interdecadal perspective. Sci. China Earth Sci., 64, 1619–1632,
https://doi.org/10.1007/s11430-020-9762-0.
Korn, G. A., and T. M. Korn, 1961: Mathematical Handbook for Scientists and Engineers, McGraw-Hill, 943 pp.
Lien, G., and Coauthors, 2021: Assimilation Impact of Early FORMOSAT-7/COSMIC-2 GNSS Radio Occultation Data with Taiwan’s CWB Global Forecast System. Mon. Wea. Rev., 149, 2171–2191, https://doi.org/10.1175/MWR-D-20-0267.1.
Liu, H., Y. Kuo, S. Sokolovskiy, X. Zou, Z. Zeng, L. Hsiao, and B. C. Ruston, 2018: A Quality Control Procedure Based on Bending Angle Measurement Uncertainty for Radio Occultation Data Assimilation in the Tropical Lower Troposphere. J. Atmos. Oceanic Technol., 35, 2117–2131, https://doi.org/10.1175/JTECH-D-17-0224.1.
Ralph, F. M., J. J. Rutz, J. M. Cordeira, M. Dettinger, M. Anderson, D. Reynolds, L. J. Schick, and C. Smallcomb, 2019: A Scale to Characterize the Strength and Impacts of Atmospheric Rivers. Bull. Amer. Meteor. Soc., 100, 269–289, https://doi.org/10.1175/BAMS-D-18-0023.1.
C. Rocken, R. Anthes, M. Exner, D. Hunt, S. Sokolovskiy, R. Ware, M. Gorbunov, W. Schreiner, D. Feng, B. Herman, Y.-H. Kuo, X. Zou, 1997: Analysis and validation of GPS/MET data in the neutral atmosphere, J. Geophys. Res., 102(D25), 29849–29866, https://doi.org/10.1029/97JD02400.
Pham, G. H., Yang, S.-C., Chang, C.-C., Chen, S.-Y., and Huang, C. Y. , 2024: Estimating the refractivity bias of FORMOSAT-7/COSMIC-2 Global Navigation Satellite System (GNSS) radio occultation in the deep troposphere, Atmos. Meas. Tech., 17, 3605–3623, https://doi.org/10.5194/amt-17-3605-2024.
Schreiner, W. S., Weiss, J. P., Anthes, R. A., Braun, J., Chu, V., Fong, J., et al., 2020: COSMIC-2 radio occultation constellation: First results. Geophysical Research Letters, 47. https://doi.org/10.1029/2019GL086841.
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Liu, Z., Berner, J., … Huang, X. -yu., 2021: A Description of the Advanced Research WRF Model Version 4.3 (No. NCAR/TN-556+STR). http://dx.doi.org/10.5065/1dfh-6p97.
Sokolovskiy, S., 2003: Effect of superrefraction on inversions of radio occultation signals in the lower troposphere, Radio Sci., 38, 1058, https://doi.org/10.1029/2002RS002728.
Sokolovskiy, S., and Coauthors, 2024: Detection of Superrefraction at the Top of the Atmospheric Boundary Layer from COSMIC-2 Radio Occultations. J. Atmos. Oceanic Technol., 41, 65–78, https://doi.org/10.1175/JTECH-D-22-0100.1.
Takaya, Y., I. Ishikawa, C. Kobayashi, H. Endo, and T. Ose, 2020: Enhanced Meiyu‐Baiu rainfall in early summer 2020: Aftermath of the 2019 super IOD event. Geophys. Res. Lett., 47, https://doi.org/10.1029/2020GL090671.
Turton, J.D., Bennetts, D.A., & Farmer, S.F., 1988: An introduction to radio ducting. Meteorological Magazine, 117, 245-254.
Wang, K.-N., Ao, C.O., de la Torre Juárez, M, 2020: GNSS-RO Refractivity Bias Correction Under Ducting Layer Using Surface-Reflection Signal. Remote Sens. 2020, 12, 359. https://doi.org/10.3390/rs12030359.
Wang, K.-N., de la Torre Juárez, M., Ao, C. O., and Xie, F, 2017: Correcting negatively biased refractivity below ducts in GNSS radio occultation: an optimal estimation approach towards improving planetary boundary layer (PBL) characterization, Atmos. Meas. Tech., 10, 4761–4776, https://doi.org/10.5194/amt-10-4761-2017.
Ware, R., and Coauthors, 1996: GPS Sounding of the Atmosphere from Low Earth Orbit: Preliminary Results. Bull. Amer. Meteor. Soc., 77, 19–40, https://doi.org/10.1175/1520-0477(1996)077<0019:GSOTAF>2.0.CO;2.
William Emery, Adriano Camps, 2017: Chapter 6 - Remote Sensing Using Global Navigation Satellite System Signals of Opportunity, Introduction to Satellite Remote Sensing, Elsevier, Pages 455-564, ISBN 9780128092545, https://doi.org/10.1016/B978-0-12-809254-5.00006-3.
Xie, F., S. Syndergaard, E. R. Kursinski, and B. M. Herman, 2006: An Approach for Retrieving Marine Boundary Layer Refractivity from GPS Occultation Data in the Presence of Superrefraction. J. Atmos. Oceanic Technol., 23, 1629–1644, https://doi.org/10.1175/JTECH1996.1.
Xie, F., Wu, D. L., Ao, C. O., Kursinski, E. R., Mannucci, A. J., and Syndergaard, S, 2010: Super-refraction effects on GPS radio occultation refractivity in marine boundary layers, Geophys. Res. Lett., 37, L11805, https://doi.org/10.1029/2010GL043299.
Yang, S., S. Chen, S. Chen, C. Huang, and C. Chen, 2014: Evaluating the Impact of the COSMIC RO Bending Angle Data on Predicting the Heavy Precipitation Episode on 16 June 2008 during SoWMEX-IOP8. Mon. Wea. Rev., 142, 4139–4163, https://doi.org/10.1175/MWR-D-13-00275.1.
Zeng, W., G. Chen, L. Bai, Q. Liu, and Z. Wen, 2022: Multiscale processes of heavy rainfall over East Asia in summer 2020: Diurnal cycle in response to synoptic disturbances. Mon. Wea. Rev., 150, 1355–1376, https://doi.org/10.1175/MWR-D-21-0308.1. |