博碩士論文 111322025 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:144 、訪客IP:3.133.152.26
姓名 黃承緒(Cheng Xu Huang)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 高強度梁主筋於梁柱接頭錨定與握裹伸展性能研究
(Study on Anchorage and Bond Development Performance of High-Strength Beam Main Bars in Beam-Column Joints)
相關論文
★ 變厚度X形消能裝置初步研究★ FRP筋對混凝土柱圍束效應之研究
★ 高強度鋼筋混凝土剪力牆連接梁耐震配筋之研究★ 高拉力SD690鋼筋截斷設計之研究
★ 高強度鋼筋混凝土梁構件耐震設計參數之研究★ 鋼筋混凝土梁疲勞行為之初步研究
★ 高拉力鋼筋混凝土滑移剪力設計之研究★ 鋼筋混凝土梁有斜向鋼筋配置之耐震性能提升研究
★ 非韌性鋼筋混凝土梁柱外接頭補強之研究★ 新澆置鋼筋混凝土梁受反覆荷重之影響
★ 非韌性鋼筋混凝土梁柱內接頭補強之研究★ 鋼筋混凝土擴柱補強工法對非韌性梁柱接頭耐震能力提升之探討
★ 雙層兩跨鋼筋混凝土抗彎構架耐震測試★ 受損RC梁柱接頭補強之耐震成效評估
★ 現有鋼筋混凝土建築物之耐震能力評估 ―以紐西蘭評估方法為基礎★ 桁架軟化模式應用於無水平箍筋梁柱接頭剪力及變形曲線預測之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-8-1以後開放)
摘要(中) 過去針對鋼筋混凝土抗彎矩構架中梁柱接頭的轉角變形容量在相關規範並無明確告知。然而對於過去一系列的梁柱接頭研究已證實,在符合規範的配置條件下,均可提供至少4%弧度層間位移角的變形容量。本研究係透過改變擴頭鋼筋與擴頭鋼筋耐震錨定伸展長度,對於外柱梁柱接頭觀察其轉角性能優劣,綜合內柱梁柱接頭試體一併探討梁柱接頭轉角變形需求為何?
本研究共進行9組梁柱接頭受反覆載重試驗,其中7組為外柱梁柱接頭,2組為內柱梁柱接頭。外柱梁柱接頭試驗梁縱向主筋設計長度基於先前研究成果(簡育淇,2023)所建議之彎鉤鋼筋與擴頭鋼筋耐震受拉伸展長度公式所配置。除此之外,也針對梁柱接頭梁構件有、無配置繫筋與柱構件接頭交會區域有、無配置繫筋對於試體整體破壞模式與耐震性能的影響。內柱梁柱接頭試驗之柱深配置則符合現行美國ACI 318-19規範中梁縱向鋼筋貫穿接頭區域的最小柱深限制(26d_b),比較先前研究成果(廖柏州 2017,劉志國 2019)所建議之內柱梁柱接頭握裹滑移模型所計算出的柱深長度,觀察在不同的混凝土設計強度條件下,兩者試體的破壞模式與性能進行比較。
試驗結果顯示,當外柱梁柱接頭梁主筋錨定伸展長度採用f_y/(65√(f_c^′ )) d_b(in, psi),無論以彎鉤鋼筋或擴頭鋼筋錨定,當梁縱向鋼筋間距為2.5d_b時,皆可提供試體發展至少5%弧度之層間位移角的變形容量,且4%弧度變形之第2或3圈強度衰減低於3%。此外本研究也顯示擴頭鋼筋錨定長度可再縮短0.8倍長度至f_y/(81√(f_c^′ )) d_b(in, psi),仍未發生錨定失敗的情形。而在相同的配置下,梁構件是否配置繫筋對於整體破壞模式與變形性能無明顯差異,但接頭交會區域未配置柱繫筋的影響十分顯著。就最終試體破壞模式來而言,交會區有配置柱繫筋的破壞模式為梁塑鉸破壞,儘管未配置柱繫筋的破壞模式本研究評定為梁降伏後接頭剪力破壞,試體發展至4%弧度層間位移角時仍保有其一定的耐震性能。
內柱梁柱接頭試驗結果則顯示當試體採用較低之混凝土強度(42 MPa)與鋼筋強度等級為SD 550W進行設計時,ACI 318-19所規定之最小柱深26d_b可能導致梁主筋在梁柱接頭內產生握裹滑移之現象,同時當試體採用高強度混凝土(70 MPa)配置時,整體內柱梁柱接頭試體最終破壞模式則順利發展為梁塑鉸破壞。顯示出當梁主筋貫穿梁柱接頭內部時,應合理考慮混凝土強度影響,建議合理制定混凝土強度之最小柱深設計公式,以提供梁柱接頭交會區足夠之握裹容量,使梁構件能有效發揮撓曲塑鉸藉此消散地震能量。
摘要(英) In the past, there has been no clear guidance in the relevant codes regarding the rotational deformation capacity of beam-column joints in reinforced concrete moment-resisting frames. However, a series of past studies on beam-column joints has confirmed that, under code-compliant configurations, they can provide a deformation capacity of at least 4% inter-story drift ratio. This study aims to observe the performance of exterior beam-column joints by varying the use of headed reinforcement bars and the seismic anchorage development length of these bars. Additionally, it explores the rotational deformation demands on beam-column joints, including those for interior beam-column joints.
This study involved a total of nine beam-column joint specimens subjected to cyclic loading tests, with seven specimens being exterior beam-column joints and two specimens being interior beam-column joints. The longitudinal reinforcement length in the exterior beam-column joint tests was designed based on the formula for seismic tensile development length of hooked and headed reinforcement bars recommended by previous research (Jian, 2023). Moreover, the study investigated the effects of the presence or absence of transverse reinforcement in beam components and in the joint intersection region of column components on the overall failure mode and seismic performance of the specimens. The column depth configuration in the interior beam-column joint tests complied with the minimum column depth requirement for longitudinal beam reinforcement passing through the joint region as specified in the current American ACI 318-19 code (26d_b). The results were compared with the column depths calculated using the bond-slip model for interior beam-column joints recommended by previous research (Liao, 2017; Liu, 2019), observing the failure modes and performance of the specimens under different concrete strength conditions.
The test results indicated that when the anchorage development length of the beam′s main reinforcement in the exterior beam-column joints was f_y/(65√(f_c^′ )) d_b (in, psi), both hooked and headed reinforcements could provide a deformation capacity of at least 5% inter-story drift angle, with longitudinal beam reinforcement spacing at 2.5d_b, and the strength degradation at the 2nd or 3rd cycle of 4% drift ratio was less than 3%. Furthermore, the study showed that the anchorage length for headed reinforcement could be further reduced by 0.8 times to f_y/(81√(f_c^′ )) d_b (in, psi) without resulting in anchorage failure. Under the same configuration, the presence or absence of transverse reinforcement in beam components did not significantly affect the overall failure mode and deformation performance, but the impact of the absence of column transverse reinforcement in the joint intersection region was quite significant. Regarding the final failure mode of the specimens, the failure mode for specimens with transverse reinforcement in the joint region was beam plastic hinge failure, while for those without column transverse reinforcement, the failure mode was joint shear failure after beam yielding. The specimens still retained a certain level of seismic performance at 4% inter-story drift ratio.
The test results of the interior beam-column joint tests indicated that when the specimens were designed with lower concrete strength (42 MPa) and reinforcement strength grade of SD 550W, the minimum column depth of 26d_b specified by ACI 318-19 could lead to bond-slip phenomena of the beam main reinforcement within the beam-column joint. Additionally, when the specimens were configured with high-strength concrete (70 MPa), the final failure mode of the interior beam-column joint specimens successfully developed into beam plastic hinge failure. This suggests that when longitudinal beam reinforcement passes through the beam-column joint, the influence of concrete strength should be reasonably considered. It is recommended to establish a reasonable design formula for the minimum column depth based on concrete strength to provide sufficient bond capacity in the beam-column joint region, allowing beam components to effectively develop flexural plastic hinges to dissipate seismic energy.
關鍵字(中) ★ 外柱梁柱接頭
★ 內柱梁柱接頭
★ 擴頭鋼筋伸展長度
★ 彎鉤鋼筋伸展長度
★ 梁繫筋
★ 柱繫筋
★ 接頭剪力容量
★ 握裹滑移
關鍵字(英) ★ exterior beam-column joint
★ interior beam-column joint
★ development length of headed bars
★ development length of hooked bars
★ beam transverse reinforcement
★ column transverse reinforcement
★ joint shear capacity
★ bond-slip
論文目次 摘要 i
Abstract iii
致謝 v
目錄 vi
表目錄 ix
圖目錄 xi
照片目錄 xiv
第一章 緒論 1
1.1 前言 1
1.2 研究動機 1
1.3 研究目的 2
1.4 論文架構 3
第二章 文獻回顧 4
2.1 耐震抗彎矩構架梁柱接頭設計規定 4
2.1.1 接頭剪力容量 5
2.1.2 接頭圍束量 7
2.1.3 特殊抗彎矩構架之梁橫向鋼筋設計 9
2.2 接頭鋼筋伸展與錨定 10
2.2.1 梁主筋貫穿梁柱接頭之最小柱尺度 11
2.2.2 梁主筋終止於接頭內之伸展長度 12
2.3 梁柱接頭耐震評估準則 22
2.3.1 ACI 374.1-05 22
2.3.2 林克強等人(2016) 24
2.3.3 簡育淇等人(2023) 26
2.4 內柱梁柱接頭耐震行為相關研究 27
2.4.1 高文良(2012) 27
2.4.2 廖柏州(2017) 29
2.4.3 劉志國(2019) 29
2.5 彎鉤鋼筋錨定梁柱接頭耐震行為相關研究 31
2.5.1 Marques等人(1975) 31
2.5.2 Sperry等人(2017) 32
2.6 擴頭鋼筋錨定梁柱接頭耐震行為相關研究 32
2.6.1 Thomas等人(2009) 32
2.6.2 Chien-Kuo Chiu等人(2016) 33
2.6.3 Hung-Jen Lee等人 (2017) 33
2.6.4 David Darwin等人 (2019) 34
2.6.5 高文良(2012) 34
2.6.6 許書豪(2014) 35
2.6.7 趙偉帆(2016) 37
2.6.8 劉志國(2019) 39
2.6.9 劉騰嶸(2022) 40
2.6.10 簡育淇(2023) 41
2.6.11 曹榮升(2023) 44
2.7 梁構件之橫向鋼筋相關研究 44
2.7.1 EGOR P. POPOV等人(1972) 44
2.7.2 James K. Wight 等人 (1975) 45
2.7.3 Yu-Chen Ou等人 (2024) 46
第三章 試驗計畫 48
3.1 試體規劃 48
3.1.1 外柱梁柱接頭試體設計參數 48
3.1.2 內柱梁柱接頭試體設計參數 53
3.1.3 相關設計細節 54
3.1.4 試體製作 57
3.2 試驗裝置與程序 61
3.3 試驗量測 64
3.3.1 外部量測 64
3.3.2 內部量測 65
3.4 材料試驗結果 68
3.4.1 鋼筋母材拉伸試驗 68
3.4.2 擴頭鋼筋單體拉伸試驗 70
3.4.3 混凝土抗壓試驗 72
3.5 試驗過程與裂縫發展 73
第四章 試驗結果與討論 88
4.1 外柱梁柱接頭試驗 88
4.1.1 強度與變形 88
4.1.2 破壞模式 98
4.1.3 梁柱接頭試驗耐震性能評估 102
4.1.4 梁繫筋配置比較 107
4.1.5 擴頭鋼筋與標準彎鉤鋼筋伸展長度 109
4.1.6 接頭剪力需求-容量比 112
4.1.7 試體裂縫發展與應變計量測 120
4.2 內柱梁柱接頭試驗 125
4.2.1 強度與變形 125
4.2.2 破壞模式 132
4.2.3 梁柱接頭耐震性能評估 134
4.2.4 梁主筋握裹勁度與滑移比較 136
4.2.5 接頭區域最小柱深探討 139
4.2.6 試體裂縫發展與應變計量測 142
第五章 結論與建議 144
5.1 結論 144
5.2 建議 146
5.3 未來研究方向 146
參考文獻 148
附錄A 試體於各尖峰位移角之試驗照片 151
附錄B 各試體設計詳圖與應變計配置圖 185
附錄C 外柱接頭各試體之應變計發展趨勢 231
附錄D 內柱接頭各試體之應變計發展趨勢 258
參考文獻 [1]ACI Committee 318, (2014, 2019) "Building Code Requirements for Structural Concrete and Commentary. ", American Concrete Institute, Farmington Hills, Michigan.
[2]ACI-ASCE Committee 352, “Recommendations for Design of Beam-Column Connections in Monolithic Reinforced Concrete Structures (ACI 352R-02),” American Concrete Institute, Farmington Hills, MI, 2002, 37 pp.
[3]ASTM A970/A970M-07a, “Standard Specification for Headed Steel Bars for Concrete Reinforcement,” ASTM International, West Conshohocken, PA, 2007, 6 pp.
[4]ACI Committee 374, “Acceptance Criteria for Moment Frames Based on Structural Testing and Commentary (ACI 374.1-05),” American Concrete Institute, Farmington Hills, MI, 2005, 9 pp.
[5]Chiu, C. K.; Chi, K. N.; and Lin, K. C., (2016), “Experimental investigation on the seismic anchorage behavior of headed bars based on full-size specimens of exterior and interior beam–column joints.” Advances in Structural Engineering, Vol. 19(5), pp.777–794.
[6]Ghimire, K. P., Shao, Y., Darwin, D., and O’Reilly, M., “Conventional and High-Strength Headed Bars – Part 1: Anchorage Tests,” ACI Structural Journal, Vol. 116, No. 4, May 2019, pp. 255-264.
[7]Kang, T. H.-K.; Shin, M.; Mitra, N.; and Bonacci, J. F., (2009), “Seismic Design of Reinforced Concrete Beam- Column Joints with Headed Bars,” ACI Structural Journal, V. 106, No. 6, Nov.-Dec., pp. 868-877.
[8]Lee, H. J., and Chang, C. J., (2017), “High-Strength Reinforcement in Exterior Beam-Column Joints under Cyclic Loading.” ACI Structural Journal, Vol. 114(5), pp. 1325−1338. DOI: 10.14359/51700788.
[9]Marques, J. L., and Jirsa, J. O., 1975, “A Study of Hooked Bar Anchorages in Beam-Column Joints,” ACI Journal Proceedings, V. 72, No. 5, May, pp. 198-209.
[10]Ou, Y. C., Sutejo, H., Huang, J. L., and Yen, S. I., (2024), “Cyclic Behavior of Beams with Double-Perimeter and Continuous-Stirrup Hoops,” ACI Structural Journal, Vol. 121(3), pp. 187−200. DOI: 10.14359/51740485.
[11]Popov, E. P.; Bertero, V. V.; and Krawinkler, H., “Cyclic Behavior of Three R/C Flexural Members with High Shear,” EERC Report No. 72-5, Earthquake Research Center, University of California, Berkeley, Oct. 1972.
[12]Sperry, J.; Yasso, S.; Searle, N.; DeRubeis, M.; Darwin, D.; O’Reilly, M.; Matamoros, A.; Feldman, L.; Lepage, A.; and Lequesne, R., 2017b,“Conventional and High-Strength Hooked Bars—Part 1: Anchorage Tests,” ACI Structural Journal, V. 114, No. 1, Jan.-Feb., pp. 255-266
[13]Wight, James K., and Sozen, Mete A., “Shear Strength Decay of RC Columns Under Shear Reversals,” Proceedings, ASCE, V.101, ST5, May 1975, pp. 1053-1065.
[14]內政部營建署(2023),「建築物混凝土結構設計規範」,台北市。
[15]內政部營建署(2024),「建築物耐震設計規範與解說」,台北市。
[16]中華民國國家標準(CNS,1996),「金屬材料拉伸試驗法」, CNS 560,中華民國經濟部標準檢驗局,1996。
[17]中華民國國家標準(CNS,2018),「鋼筋混凝土用鋼筋,Steel bars for concrete reinforcement」,CNS 560,中華民國經濟部標準檢驗局,2018。
[18]中華民國結構工程學會(2022),「高強度鋼筋混凝土結構設計手冊(第二版)」,科技圖書公司,台北市。
[19]中國土木水利工程學會(2020,2023),「混凝土工程設計規範與解說」,台北市。
[20]財團法人台灣混凝土學會(2014),「鋼筋混凝土用鋼筋SD 550-690-790」,台灣。
[21]高文良(2012),「T頭鋼筋錨定於梁柱接頭之行為研究」,國立台灣科技大學營建工程系碩士論文。
[22]許書豪(2014),「高剪力比鋼筋混凝土梁柱接頭使用擴頭鋼筋錨定之耐震行為研究」,國立台灣科技大學營建工程系碩士論文。
[23]趙偉帆(2016),「使用擴頭鋼筋錨定之高強度鋼筋混凝土梁柱接頭在P-δ效應下耐震行為研究」,國立台灣科技大學營建工程系碩士論文。
[24]廖柏州(2017),「鋼筋與混凝土在反覆載重下之直線拉力握裹行為研究」,國立台灣科技大學營建工程系碩士論文。
[25]劉志國(2019),「鋼筋混凝土梁主筋於內柱梁柱接頭之握裹滑移研究」,國立台灣科技大學營建工程系碩士論文。
[26]劉騰嶸(2022),「柱軸力對鋼筋混凝土梁柱接頭耐震性能之影響」,國立雲林科技大學營建工程系碩士論文。
[27]曹榮升(2023),「鋼筋混凝土之擴頭鋼筋錨定力學研究」,國立台北科技大學土木工程系土木與防災所碩士論文。
[28]簡育淇(2023),「梁擴頭鋼筋於梁柱接頭錨定之耐震伸展性能研究」,國立中央大學土木工程學系碩士論文。
[29]林克強(2016),「使用擴頭鋼筋之外柱梁柱接頭耐震性能」,中華民國結構工程學會,31卷2期,P.25-53。
[30]林克強、紀凱甯、莊勝智、陳勇亲、劉志國(2020),「採用 SD 550W 鋼筋之 RC 構件試驗研究」,國家地震工程研究中心NCREE 技術報告(NCREE-20-007)。
[31]林克強、紀凱甯、莊勝智(2022) ,「RC 梁柱接頭之彎鉤與擴頭鋼筋耐震伸展長度建議」,國家地震工程研究中心年度研究成果報告,P.98-101。
[32]林克強與李宏仁(2023),「鋼筋混凝土梁柱接頭擴頭鋼筋伸展長度研究」,國家地震工程研究中心研究報告。
指導教授 王勇智(Yung-Chih Wang) 審核日期 2024-7-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明