博碩士論文 111322063 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:60 、訪客IP:3.144.98.61
姓名 余承頷(Cheng-Han Yu)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 浮冰在流場中運動與融化之實驗與數值模擬
(Laboratory Experiment and Numerical Simulation of Floating Ice in Moving Waters)
相關論文
★ 定剪力流中二維平板尾流之風洞實驗★ 以大渦紊流模式模擬不同流況對二維方柱尾流之影響
★ 矩形建築物高寬比對其周遭風場影響之研究★ 台灣地區風速機率分佈之研究
★ 邊界層中雙棟並排矩形建築之表面風壓量測★ 排放角度與邊牆效應對浮昇射流影響之實驗研究
★ 低層建築物表面風壓之實驗研究★ 圓柱體形建築物表面風壓之實驗研究
★ 最大熵值理論在紊流剪力流上之應用★ 應用遺傳演算法探討海洋放流管之優化方案
★ 均勻流中圓柱體形建築物表面風壓之風洞實驗★ 大氣與森林之間紊流流場之風洞實驗
★ 以歐氏-拉氏法模擬煙流粒子在建築物尾流區中的擴散★ 以HHT分析法研究陣風風場中建築物之表面風壓
★ 以HHT時頻分析法研究陣風風場中物體所受之風力★ 風吹落物之軌跡預測模式與實驗研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-8-1以後開放)
摘要(中) 眾所皆知,全球氣候變遷造成世界各國的夏季氣溫屢創新高,導致南北極融冰速率增加。依據1994 - 2017年間的衛星數據,全球大約損失了28兆噸冰,而格陵蘭和南極冰蓋的融化速度最快。其研究顯示:由1990年代的每年0.8兆噸增加到2017年的每年1.2兆噸。大約2/3的融冰由於大氣暖化引起,1/3則由於海水變暖造成。直接導致全球海水水位上升,各國沿海地區淹水機率上升。但目前歐美各國科學家所發展的模式預測之浮冰溶解速率與實際觀測之溶冰速率有很大的差異,其中一項便是波浪、洋流對於浮冰溶解速率的影響被嚴重低估。本研究利用水槽實驗及數值模式探討浮冰在淡水和鹽水恆定水流及波浪中的融冰過程、以及浮冰周圍的水溫邊界層,並採用計算流體力學數值模式來釐清影響融冰速率的關鍵參數。實驗結果顯示:融冰速率與水冰界面熱傳速率成正比,而熱傳速率又和水流流速成線性正比,故可由水流的雷諾數來預測不同流速下的浮冰融化速率。且在相同流速下,由於淡水和鹽水的熱物理性質差異,海水的鹽度會增加水與冰塊之間的熱量傳遞,這表示鹽水中浮冰的溶化速率會略大於淡水中浮冰的溶化速率。
摘要(英) It is well known that global warming has caused rising temperatures around the world and ice melting in the Arctic and Antarctic. The ice melting between 1994 and 2017 has caused the global sea level to rise by 35 mm. However, there is a substantial discrepancy between the melting rate predicted by models and the actual melting rates observed in the Arctic Sea. One of the reasons for this difference is that the effects of ocean currents and surface waves on the melting rate of ice floes are under-estimated. This study employs laboratory experiments and a Computational Fluid Dynamics (CFD) model to investigate the melting process of ice floes caused by surface waves and the temperature boundary layer around floating ices. The experimental results indicate that the melting rate is linearly proportional to the current velocity. In other words, the convective heat transfer coefficient of the ice/water interface increases as the water velocity and the Reynolds number increases. In addition, the melting rate of ice in salty water is slightly greater than that in freshwater. The NCU model developed in this study can be used to predict the melting rates of floating ice under different current velocities.
關鍵字(中) ★ 全球暖化
★ 浮冰
★ 融冰速率
★ 溫度邊界層
★ 雷諾數
關鍵字(英) ★ Global warming
★ Ice melting
★ Thermal boundary layer
★ Melting rate
★ Reynolds number
論文目次 Abstract II
Contents III
Acknowledgments IV
Table captions V
Figure captions VI
Chapter 1. Introduction 1
Chapter 2. Laboratory Experiments 9
3.1 Circulating water flume 9
3.2 Wave flume 16
Chapter 3. Numerical Model 19
3.1 Governing equations 19
3.2 Model Validation 27
Chapter 4. Results and Discussion 31
4.1 Current effect 31
4.2 Size effect 32
4.3 Saltwater effect 33
Chapter 5. Conclusions 35
References 36
Tables 40
Figures 44
參考文獻 1. Cabot, W., and Moin, P. (2000). Approximate wall boundary conditions in the large-eddy simulation of high Reynolds number flow. Flow, Turbulence and Combustion, 63, 269-291.
2. Calkins, D.J. (1984) Ice cover melting in a shallow river. Canada J. Civil Eng., Vol.12, pp.255-265.
3. Cenedese, C., and Straneo, F. (2023). Icebergs melting. Annual Review of Fluid Mechanics, 55, 377-402.
4. Chu, C. R., Chung, C. H., Wu, T. R., and Wang, C. Y. (2016). Numerical analysis of free surface flow over a submerged rectangular bridge deck. J. Hydraulic Eng., 142(12), 04016060.
5. Chu, C. R., Lin, Y. A., Wu, T. R., and Wang, C. Y. (2018). Hydrodynamic force of a circular cylinder close to the water surface. Computers and Fluids, 171, 154-165.
6. Chu, C. R., Wu, Y. R., Wu, T. R., and Wang, C. Y. (2018). Slosh-induced hydrodynamic force in a water tank with multiple baffles. Ocean Engineering, 167, 282-292.
7. Chu, C. R., Wu, T. R., Tu, Y. F., Hu, S. K., and Chiu, C. L. (2020). Interaction of two free-falling spheres in water. Physics of Fluids, 32(3), 033304.
8. Chu, C. R., Huynh, L. E., and Wu, T. R. (2022). Large Eddy Simulation of the wave loads on submerged rectangular decks. Applied Ocean Research, 120, 103051.
9. Cundall, P. A., and Strack, O. D. (1979). A discrete numerical model for granular assemblies. Geotechnique, 29(1), 47-65.
10. Deardorff, J.W., (1970). A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers. J. Fluid Mech. 41(2), 453-480.
11. DeLong, M. (1997). Two Examples of the Impact of Partitioning with Chaco and Metis on the Convergence of Additive Schwarz-Preconditioned FGMRES (No. LA-UR-97-4181). Los Alamos National Lab.(LANL), Los Alamos, NM (United States).
12. Ding, F., and Mao, Z. (2021). Observation and Analysis of Water Temperature in Ice-Covered Shallow Lake: Case Study in Qinghuahu Lake. Water, 13(21), 3139.
13. Dingemans, M. W. (1997). Water Wave Propagation over Uneven Bottoms: Linear Wave Propagation, Vol. 13. World Scientific, Singapore.
14. Dittus F.W. and Boelter, L.M.K. (1985). Heat transfer in automobile radiators of the tubular type. Int. Comm. Heat Mass Transfer, Vol.12, pp.3-22.
15. El-Tahan, M., Venkatesh, S., and El-Tahan, H. (1987). Validation and quantitative assessment of the deterioration mechanisms of Arctic icebergs. J. of Offshore Mechanics and Arctic Engineering, 109(1), 102-108. doi.org/10.1115/1.3256983.
16. FitzMaurice, A. (2018). Parameterizing the Melting of Icebergs in Global Climate Model, Doctoral dissertation of Princeton University, USA.
17. FitzMaurice, A., Cenedese, C., and Straneo, F. (2017). Nonlinear response of iceberg side melting to ocean currents. Geophysical Research Letters, 44(11), 5637-5644.
18. FitzMaurice, A., Straneo, F., Cenedese, C., and Andres, M. (2016). Effect of a sheared flow on iceberg motion and melting. Geophysical Research Letters, 43(24), 12-520.
19. Gullbrand, J., and Chow, F. K. (2003). The effect of numerical errors and turbulence models in large-eddy simulations of channel flow, with and without explicit filtering. J. Fluid Mech., 495, 323-341.
20. He, T., Hu, H., Tang, D., Chen, X., Meng, J., Cao, Y., and Lv, X. (2023). Experimental Study on the Effects of Waves and Current on Ice Melting. J. of Marine Science and Eng., 11(6), 1209.
21. Hester, E. W., McConnochie, C. D., Cenedese, C., Couston, L. A., and Vasil, G. (2021). Aspect ratio affects iceberg melting. Physical Review Fluids, 6(2), 023802.
22. Hirt, C. W., and Nichols, B. D. (1981). Volume of fluid (VOF) method for the dynamics of free boundaries. J. of Computational Physics, 39(1), 201-225.
23. Huang, L., and Thomas, G. (2019). Simulation of wave interaction with a circular ice floe. J. of Offshore Mechanics and Arctic Engineering, 141(4), 041302.
24. Huynh, L. E., Chu, C. R., and Wu, T. R. (2023). Hydrodynamic loads of the bridge decks in wave-current combined flows. Ocean Engineering, 270, 113520.
25. Knoll, D. A., Kothe, D. B., and Lally, B. (1999). A new nonlinear solution method for phase-change problems. Numerical Heat Transfer: Part B: Fundamentals, 35(4), 439-459.
26. Lin, P., and Liu, P. L. F. (1999). Internal wave-maker for Navier-Stokes equations models. Journal of Waterway, Port, Coastal, Ocean Eng., 125(4), 207-215.
27. Nayar, K. G., Sharqawy, M. H., and Banchik, L. D. (2016). Thermophysical properties of seawater: A review and new correlations that include pressure dependence. Desalination, 390, 1-24.
28. Parra, S. M., Sree, D. K. K., Wang, D., Rogers, E., Lee, J. H., Collins, C. O., Law, A.W.-K. and Babanin, A. V. (2020). Experimental study on surface wave modifications by different ice covers. Cold Regions Science and Technology, 174, 103042.
29. Pope, S. B. (2000). Turbulent Flows, Cambridge University Press, Cambridge, UK. Combustion and Flame, 125, 1361-62.
30. Sarraf, S. and Zhang, X. T. (1996) Modeling ice-cover melting using a variable heat transfer coefficient. J. Eng. Mech., Vol.122 (10), pp.3-22.
31. Sharqawy, M. H., Lienhard, J. H., and Zubair, S. M. (2010). Thermophysical properties of seawater: a review of existing correlations and data. Desalination and water treatment, 16(1-3), 354-380.
32. Slater, T., Lawrence, I. R., Otosaka, I. N., Shepherd, A., Gourmelen, N., Jakob, L., Tepes, P., Gilbert, L., and Nienow, P. (2021). Earth′s ice imbalance. The Cryosphere, 15(1), 233-246.
33. Smagorinsky, J. (1963). General circulation experiments with the primitive equations: I. The basic experiment. Monthly Weather Review, 91(3), 99-164.
34. Soon, G., Zhang, H., Yang, C., and Law, A. W. K. (2021). Simulations of Melting in Fluid-filled Packed Media due to Forced Convection with Higher Temperature. Intern. J. of Heat and Mass Transfer, 175, 121358.
35. Toyota, T., Takatsuji, S., and Nakayama, M. (2006). Characteristics of sea ice floe size distribution in the seasonal ice zone. Geophysical Research Letters, 33(2).
36. Troch, P., and De Rouck, J. (1999). Development of two-dimensional numerical wave flume for wave interaction with rubble mound breakwaters. In Proceedings of 26th International Conference on Coastal Engineering, Copenhagen, Denmark, 1998 pp. 1638-1649.
37. Voller, V., and Cross, M. (1981). Accurate solutions of moving boundary problems using the enthalpy method. Intern. Journal of Heat and Mass Transfer, 24(3), 545-556.
38. Wu, T. R., Chu, C. R., Huang, C. J., Wang, C. Y., Chien, S. Y., and Chen, M. Z. (2014). A two-way coupled simulation of moving solids in free-surface flows. Computers and Fluids, 100, 347-355.
39. Wu, T. R., Lo, H. Y., Tsai, Y. L., Ko, L. H., Chuang, M. H., and Liu, P. L. F. (2021). Solitary wave interacting with a submerged circular plate. J. of Waterway, Port, Coastal, and Ocean Engineering, 147(1), 04020046.
40. Yiew, L. J., Bennetts, L. G., Meylan, M. H., French, B. J., and Thomas, G. A. (2016). Hydrodynamic responses of a thin floating disk to regular waves. Ocean Modelling, 97, 52-64.
41. Zhang, J., Schweiger, A., Steele, M., and Stern, H. (2015). Sea ice floe size distribution in the marginal ice zone: Theory and numerical experiments. J. of Geophysical Res.: Oceans, 120(5), 3484-3498.
指導教授 朱佳仁(Chia-Ren Chu) 審核日期 2024-7-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明