博碩士論文 111322603 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:59 、訪客IP:18.188.227.192
姓名 王努力(Andhy Setyo Raharjo)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 TDR非飽和土水力特性測量離心滲透儀之研發
(TDR Centrifuge Permeameter Development for Hydraulic Characteristics Measurement of Unsaturated Soils)
相關論文
★ 時域反射法於土壤含水量與導電度遲滯效應之影響因子探討★ TDR監測資訊平台之改善與 感測器觀測服務之建立
★ 用過核子燃料最終處置場緩衝材料之 熱-水耦合實驗及模擬★ 堰塞壩破壞歷程分析及時域反射法應用監測
★ 深地層最終處置場緩衝材料小型熱-水耦合實驗之分層含水量量測改善★ 應用時域反射法於地層下陷監測之改善研發
★ 深地層處置場緩衝材料小型熱-水-力耦合實驗精進與模擬比對★ 淺層崩塌物聯網系統與深層型時域反射邊坡監測技術之整合
★ Modification of TDR Penetrometer for Water Content Profile Monitoring★ 利用線上遊戲於國小一年級至三年級學童防災教育推廣效益之研究—以桃園防災教育館為例
★ 低放射性最終處置場混合型緩衝材料之工程特性及潛變試驗與模擬★ Improved TDR Deformation Monitoring by Integrating Centrifuge Physical Modeling
★ 用於滑坡監測的 PS- 和 SBAS-InSAR 處理的參數研究——以阿里山為例★ 穿戴式偵測墜落及跌倒裝備於本國建築工地之研發測試
★ 機器學習在水庫入流與濁度預測之應用-以石岡壩為例★ 深度學習與資料擴增於山崩監測預測之可行性評估
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-7-31以後開放)
摘要(中) 強降雨經常引發山區潛層滑動與大規模土石流動,造成生命損失和經濟損失。本研究深入探討水和土壤之間的複雜互動,特別是在地下水位以上的丘陵地帶不飽和土壤條件下。這些條件在強降雨滲入地面時可能導致土壤穩定性突然變化。因此本研究研發創新的離心滲透儀,利用離心技術快速確定土壤-水分保持曲線(SWCC)的關鍵參數。先前的研究已經證明離心技術在測量土壤水力特性方面取得顯著進展,離心滲透儀在穩態條件下可提供可靠的數據收集,並有效縮短測試時間。此外,相關研究還成功地使用離心滲透儀測量各種類型土壤的水力特性,突顯其適用性。所以本研究重點在於創建一種可安裝於中央大學離心機的多功能混合離心滲透儀,以確保靈活性和成本效益。其多功能混合模型容納了時域反射法(TDR)、基質吸力和傳感器,同時允許部件的易於拆卸和互換。實驗結果表明,TDR混合離心滲透儀有效測量不飽和土壤中的體積含水量、電導率和基質吸力。初始和最終讀數顯示出一致和可靠的數據,證明系統的準確性。TDR和其他傳感器的整合允許實時監控和數據獲取,增強了對土壤-水分互動的理解。研究結論顯示TDR混合離心滲透儀是一種測量不飽和土壤水力特性的強大而有效的工具,與傳統方法相比,具有顯著的速度、準確性和靈活性優勢。未來的研究應集中於進一步精確化設計,並探索其在更廣泛的土壤類型和環境條件中的應用。這一創新方法具有顯著推動岩土研究的潛力,並改進對降雨響應的土壤穩定性預測模型。
摘要(英) In mountainous regions, heavy rainfall often triggers mass movements, posing significant threats and causing loss of life and economic damage. This study delves into the intricate interplay between water and soil, particularly in unsaturated soil conditions found in hilly terrains above the groundwater table. These conditions can lead to sudden shifts in soil stability when heavy rains infiltrate the ground. To examine this problem, this research introduces an innovative Centrifuge Permeameter, which utilizes centrifuge technology to determine crucial parameters quickly for the Soil-Water Retention Curve (SWCC). Previous studies have demonstrated the efficacy of centrifuge technology in geotechnical research, with significant advancements in measuring soil hydraulic properties. These studies have shown that centrifuge permeameters allow reliable data collection under steady-state conditions, significantly reducing testing time. Additionally, research has successfully measured the hydraulic properties of various soil types using centrifuge permeameters, highlighting their applicability. This new approach, built upon previous successful implementations, streamlines data collection and offers significant time savings compared to conventional methods. The study focuses on creating a versatile hybrid centrifuge permeameter that can be attached to the NCU beam-centrifuge. This approach ensures flexibility and cost-effectiveness without disrupting existing equipment. The hybrid-versatile model accommodates Time Domain Reflectometry (TDR), matric suction, and transducers while allowing for components′ easy removal and interchangeability. The experimental results indicated that the hybrid centrifuge permeameter effectively measured the volumetric water content, electric conductivity, and matric suction in unsaturated soils. Specifically, the volumetric water content ranged from 0.02 to 0.4 m³/m³, electric conductivity varied between 80 and 2200 S/m, and matric suction was measured from 0.035 to 165 kPa. The initial and final readings showed consistent and reliable data, proving the system′s accuracy. The integration of TDR and other transducers allowed for real-time monitoring and data acquisition, enhancing the understanding of soil-water interactions. The study concludes that the developed hybrid centrifuge permeameter is a robust and efficient tool for measuring the hydraulic characteristics of unsaturated soils. It offers significant advantages in terms of speed, accuracy, and flexibility over traditional methods. Future research should focus on refining the design for even greater precision and exploring its application to a wider range of soil types and environmental conditions. This innovative approach has the potential to significantly advance geotechnical research and improve predictive models for soil stability in response to rainfall.
關鍵字(中) ★ 混合多功能離心滲透儀
★ 水力特性
★ 水分保持曲線(SWCC)
★ 不飽和土壤
★ 時域反射法(TDR)
關鍵字(英) ★ Hybrid-Versatile Centrifuge Permeameter
★ Hydraulic Characteristics
★ Soil-Water Retention Curve (SWCC)
★ Unsaturated Soils
★ Time Domain Reflectometry (TDR)
論文目次 1 Introduction
1.1 Research Motivation
1.2 Study Objectives
2 Literature Review
2.1 Landslide
2.1.1 Landslide Causes
2.1.2 Introduction to Landslides
2.1.3 Landslide Mechanisms
2.1.4 Understanding Suction in Soil
2.2 Soil Water Characteristics Curve (SWCC)
2.2.1 Typical Forms of SWCC
2.2.2 Factors Affecting SWCC
2.2.3 Application of SWCC in Landslide Study
2.3 Methods for Determining SWCC
2.3.1 Laboratory Methods
2.3.1.1 Tempe Pressure Cell
2.3.1.2 Hanging Water Column Method:
2.3.1.3 Pressure Plate Apparatus
2.3.1.4 Filter Paper Method
2.3.1.5 Capillary Rise Method
2.3.2 Field Methods
2.3.2.1 In Situ Measurements
2.3.2.2 Piezometer Method
2.3.3 Empirical and Predictive Models
2.3.3.1.1 Brooks Corey (1964)
2.3.3.1.2 Campell (1974)
2.3.3.1.3 Van genutchen (1980)
2.3.3.1.4 Cosby-Hornberger-Clapp (1984)
2.3.3.1.5 Fredlund-Xing (1994)
2.3.3.1.6 Kosugi (1996)
2.3.3.1.7 Tani (2002)
2.3.3.1.8 Model Comparison
2.3.4 Advanced Techniques
2.3.4.1 X-ray Computed Tomography (CT)
2.3.4.2 Electrical Resistivity Tomography (ERT)
2.3.4.3 Centrifugation method
2.3.5 Method Comparison
2.4 Centrifuge Permeameter and Its Related Research
2.4.1 Centrifuge
2.4.2 Centrifuge Permeameter Principle
2.4.2.1 Time Domain Reflectometry (TDR)
2.4.2.2 Tensiometer Principles
2.4.2.3 LVDT Principles
2.4.3 Centrifuge Permeameter Cases
2.4.4 Relevance to Landslide Research
2.5 Summary and Discussion of Literature Review
3 Material and Method
3.1 Research Flow Chart
3.2 Element Test
3.2.1 Water Content
3.2.2 Specific Gravity
3.2.3 Grain Distribution
3.2.4 Atterberg Limits Determination
3.2.5 Proctor Test
3.2.6 Falling Head
3.2.7 Consolidation
3.2.8 Summarized Results
3.2.9 Soil type determination
3.3 Geotechnical Centrifuge
3.4 Time Domain Reflectometry (TDR)
3.4.1 Probe Length Calibration
3.4.2 Water Content Measurement Test
3.4.3 Electric Conductivity Calibration
3.5 Centrifuge Permeameter Model Design
3.5.1 Electric Tensiometer
3.5.2 Linear Variable Differential Transformer (LVDT)
3.5.3 Laser Surface Scanner
3.6 Experiment Planning and Calculation
3.6.1 Sample Box
3.6.2 Soil Sample
3.6.3 Pre-Calculation
3.6.4 Experiment Planning Calculation
3.6.4.1 Gravel Reservoir Capacity Test
3.6.4.2 Gravel Water Capacity
3.6.4.3 Determining Content in The Soil Sample
3.6.4.3.1 Sample Area
3.6.4.3.2 Total Sample Volume
3.6.4.3.3 Total Sample Weight
3.6.4.3.4 Sample Weight Distribution
3.6.4.3.5 Sample Volume Distribution
3.6.4.3.6 Sample content
3.6.4.4 Pressure Water Tube
3.6.4.5 Rainfall Calibration
3.6.4.6 Water Pressure Determination
3.6.5 Proposed Planning Conclusion
4 Results and Discussions
4.1 Theoretical Analysis
4.1.1 COMSOL Multiphysics
4.1.1.1 Study and Physics Definition
4.1.1.2 Geometry Drawing
4.1.1.3 Material Definition
4.1.1.4 Boundary Condition Definition
4.1.1.5 Mesh Definition
4.1.1.6 Results and Analyses
4.1.2 Geostudio
4.1.2.1 Project Definition
4.1.2.2 Geometry Drawing
4.1.2.3 Material Definition
4.1.2.4 Boundary Condition Definition
4.1.2.5 Mesh Definition.
4.1.2.6 Results and Analyses
4.1.3 Manual Deflection Calculation
4.1.4 Summarized of Theoretical Analysis
4.2 1G Preliminary Test Results
4.2.1 Volumetric Water Content (θ)
4.2.2 Electric Conductivity
4.2.3 Matric suction
4.3 20G Test Results
4.3.1 Volumetric Water Content (θ)
4.3.1.1 Initial Reading
4.3.1.2 Final Reading
4.3.2 Electric Conductivity (ρ)
4.3.2.1 Initial Reading
4.3.2.2 Final Reading
4.3.3 Matric suction (Ψ)
4.3.3.1 Initial Reading
4.3.3.2 Final Reading
4.3.4 Deflection
4.3.5 Surface 3D
4.4 20G Test Results with Extend Time
4.4.1 Volumetric Water Content (θ)
4.4.1.1 Initial Reading
4.4.1.2 Final Reading
4.4.2 Electric Conductivity (ρ)
4.4.2.1 Initial Reading
4.4.2.2 Final Reading
4.4.3 Matric suction (Ψ)
4.4.3.1 Initial Reading
4.4.3.2 Final Reading
4.4.4 Deflection
4.4.5 Surface 3D
4.4.6 Archie’s slope
4.5 SWCC models
4.5.1 SWCC Main Data
4.5.2 Brooks Corey (1966)
4.5.3 Campell (1974)
4.5.4 Van genutchen (1980)
4.5.5 Cosby-Hornberger-Clapp (1984)
4.5.6 Fredlund-Xing (1994)
4.5.7 Kosugi (1996)
4.5.8 Tani (2002)
4.5.9 Comparison
4.5.10 Hysteresis Analyses
4.5.11 Comparison of SWCC with Reference
4.6 Estimated Relationship
4.6.1 SWCC and Electric Conductivity
4.6.2 SWCC and Deflection
4.6.3 SWCC and Bulk Density
4.6.4 SWCC and Degree of Saturation
4.6.5 SWCC and Relative Hydraulic Conductivity
4.7 Discussion
4.7.1 Volumetric Water Content and Electric Conductivity
4.7.2 Matric suction
4.7.3 Deformation and Surface Profiles
4.7.4 Rainfall System and Water Infiltration
5 Conclusion and Suggestion
5.1 Conclusion
5.2 Suggestion
參考文獻 Agarwal, T. (2018, 2018-09-26). Linear Variable Differential Transformer : Construction & Its Working. https://www.elprocus.com/linear-variable-differential-transformer-and-its-working/

Al-Jaf, P., Smith, M., & Gunzel, F. (2022). Measurement of the hydraulic properties of chalk using centrifuge permeameter; the study of chalk hydraulic properties under accelerated gravitational force. Quarterly Journal of Engineering …. https://doi.org/10.1144/qjegh2021-159

Alsubal, S., bin Sapari, N., Harahap, I. S., & Al-Bared, M. A. M. (2019). A review on mechanism of rainwater in triggering landslide. IOP Conference Series: Materials Science and Engineering,

Archie, G. E. (1942). The electrical resistivity log as an aid in determining some reservoir characteristics. Transactions of the AIME. https://onepetro.org/TRANS/article-abstract/146/01/54/161691

Arduino. (2023). Arduino Mega 2560 Rev3. @arduino. https://store-usa.arduino.cc/products/arduino-mega-2560-rev3

ASTM. (2017). Standard Test Method for Determining Unsaturated and Saturated Hydraulic Conductivity in Porous Media by Steady-State Centrifugation (Withdrawn 2017). ASTM. https://www.astm.org/d6527-00r08.html

Aubertin, M., Mbonimpa, M., Bussière, B., & Chapuis, R. (2003). A model to predict the water retention curve from basic geotechnical properties. Canadian Geotechnical Journal, 40(6), 1104-1122.

Avirut, C., Taworn, T., Chanathip, S., Somjai, Y., Suksun, H., Rattana, S., & Panich, V. (2019, 2019/09/01). Stability characteristics of shallow landslide triggered by rainfall. Journal of Mountain Science, 16(9), 2171-2183. https://doi.org/10.1007/s11629-019-5523-7

Azhar, M. (2020). Dielectric spectrum analysis ofsoils due to drying-wetting rate and environment influences using TDR pressure plate National Central University]. Taiwan.

Backus, B. E. (2020). Soil Classification: Foundation and Pavement Design Starts Here. https://www.globalgilson.com/blog/soil-classification-foundation-and-pavement-design-starts-here

Baker, J., & Allmaras, R. (1990). System for automating and multiplexing soil moisture measurement by time‐domain reflectometry. Soil Science Society of America Journal, 54(1), 1-6.

Beutner, E. C., & Gerbi, G. P. (2005). Catastrophic emplacement of the Heart Mountain block slide, Wyoming and Montana, USA. GSA Bulletin, 117(5-6), 724-735. https://doi.org/10.1130/b25451.1

BGS. (2020). How to classify a landslide - British Geological Survey. https://www.bgs.ac.uk/discovering-geology/earth-hazards/landslides/how-to-classify-a-landslide/

Bishop, A. W. (1961). The experimental study of partly saturated soil in the triaxial apparatus. Proc. 5th International Conference on Soil Mechanics and Foundation Engineering, Paris, 1961,

Bogaard, T. A., & Greco, R. (2016). Landslide hydrology: from hydrology to pore pressure. Wiley Interdisciplinary Reviews: Water, 3(3), 439-459.

Borgatti, L., Corsini, A., Barbieri, M., Sartini, G., Truffelli, G., Caputo, G., & Puglisi, C. (2006). Large reactivated landslides in weak rock masses: a case study from the Northern Apennines (Italy). Landslides, 3, 115-124.

Boulanger, R. W., Wilson, D. W., Kutter, B. L., De, J. T., Colleen, J., & Bronner, E. (2020). NHERI Centrifuge Facility: Large-Scale Centrifuge Modeling in Geotechnical Research. Sec. Earthquake Engineering. https://doi.org/doi:10.3389/fbuil.2020.00121

Bouzalakos, S., & Timms, W. (2013). Geotechnical centrifuge permeameter for characterizing the hydraulic integrity of partially saturated confining strata for CSG operations. … School of Mines …. https://www.connectedwaters.unsw.edu.au/sites/all/files/publication_related_files/Bouzalakos%20et%20al_IMWA_2013_POSTER%20FINAL.pdf

Brooks, R. H. (1964). Hydraulic properties of porous media. Colorado State University.

By Karl Terzaghi, R. B. P., Gholamreza Mesri. (1940). Soil Mechanics in Engineering Practice. https://books.google.com/books/about/Soil_Mechanics_in_Engineering_Practice.html?id=XjH6DwAAQBAJ

C.-C. Chung, & Lin, C.-P. (2008). Apparent Dielectric Constant and Effective Frequency of TDR Measurements: Influencing Factors and Comparison - Chung - 2009 - Vadose Zone Journal - Wiley Online Library. https://doi.org/10.2136/vzj2008.0089

Campbell, G. (1974). A simple method for determining unsaturated conductivity from moisture retention data. Soil Science. https://journals.lww.com/soilsci/abstract/1974/06000/A_Simple_Method_for_Determining_Unsaturated.1.aspx

CDC. (2020, 2020-01-15T03:39:05Z). Landslides and Mudslides|CDC. https://www.cdc.gov/disasters/landslides.html

Çellek, S. (2020). Effect of the Slope Angle and Its Classification on Landslide. Nat. Hazards Earth Syst. Sci. Discuss., 2020, 1-23. https://doi.org/10.5194/nhess-2020-87

Charles, B. M. (2007). Advanced unsaturated soil mechanics and Engineering. digilib.unkhair.ac.id. http://digilib.unkhair.ac.id/id/eprint/318

Cheng, D. K. (1989). Field and wave electromagnetics. Pearson Education India.

Chung, C.-C. (2008). Improved Time Domain Reflectometry Measurements and Its Application to Characterization of Soil-Water Mixtures National Chiao Tung University].

Chung, C.-C., Huang, C.-Y., Guan, C.-R., & Jian, J.-H. (2019). Applying OGC Sensor Web Enablement Standards to Develop a TDR Multi-Functional Measurement Model. Sensors, 19(19), 4070. https://www.mdpi.com/1424-8220/19/19/4070

Chung, C.-C., & Lin, C.-P. (2019). A comprehensive framework of TDR landslide monitoring and early warning substantiated by field examples. Engineering Geology, 262, 105330.

Chung, C.-C., Lin, C.-P., Wu, I.-L., Chen, P.-H., & Tsay, T.-K. (2013). New TDR waveguides and data reduction method for monitoring of stream and drainage stage. Journal of Hydrology, 505, 346-351.

Chung, C.-C., Lin, C.-P., Yang, S.-H., Lin, J.-Y., & Lin, C.-H. (2019). Investigation of non-unique relationship between soil electrical conductivity and water content due to drying-wetting rate using TDR. Engineering Geology, 252, 54-64.

Clarke, C., & Carswell, B. (2007). Bernoulli′s equation. In C. Clarke & B. Carswell (Eds.), Principles of Astrophysical Fluid Dynamics (pp. 107-127). Cambridge University Press. https://doi.org/DOI: 10.1017/CBO9780511813450.010

Conca, J. L., & Wright, J. (1992, 1992/01/01). Diffusion And Flow In Gravel, Soil, And Whole Rock. Applied Hydrogeology, 1(1), 5-24. https://doi.org/10.1007/PL00010963

Coppola, L., Reder, A., Tarantino, A., Mannara, G., & Pagano, L. (2022). Pre-failure suction-induced deformation to inform early warning of shallow landslides: Proof of concept at slope model scale. Engineering Geology, 309, 106834. https://doi.org/https://doi.org/10.1016/j.enggeo.2022.106834

Cosby, B., Hornberger, G., & Clapp, R. (1984). A statistical exploration of the relationships of soil moisture characteristics to the physical properties of soils. Water resources …. https://doi.org/10.1029/WR020i006p00682

Cruden, D. (1996). The first classification of landslides? Special Report - National Research Council, Transportation Research Board, 247, 76.

Cruden, D. (2003). The first classification of landslides? Environmental &Engineering Geoscience. https://pubs.geoscienceworld.org/aeg/eeg/article-abstract/9/3/197/60680

D’Ippolito, A., Lupiano, V., Rago, V., Terranova, O. G., & Iovine, G. (2023). Triggering of Rain-Induced Landslides, with Applications in Southern Italy. Water, 15(2), 277. https://www.mdpi.com/2073-4441/15/2/277

Das, B. M. (2019). Advanced Soil Mechanics, Fifth Edition. CRC Press. https://doi.org/https://doi.org/10.1201/9781351215183

David, I. (2017). Why Salt in Water Can Conduct Electricity. https://sciencing.com/salt-water-can-conduct-electricity-5245694.html

De’an, S., Daichao, S., & Scott, W. S. (2007). Elastoplastic modelling of hydraulic and stress–strain behaviour of unsaturated soils. Mechanics of Materials, 39(3), 212-221. https://doi.org/https://doi.org/10.1016/j.mechmat.2006.05.002

Di Napoli, M., Marsiglia, P., Di Martire, D., Ramondini, M., Ullo, S. L., & Calcaterra, D. (2020). Landslide Susceptibility Assessment of Wildfire Burnt Areas through Earth-Observation Techniques and a Machine Learning-Based Approach. Remote Sensing, 12(15), 2505. https://www.mdpi.com/2072-4292/12/15/2505

Dowding, C. H., Pierce, C. E., Nicholson, G. A., Taylor, P. A., & Agoston, A. (1996). Recent advancements in TDR monitoring of ground water levels and piezometric pressures. 2nd North American Rock Mechanics Symposium,

Dowding, C. H., Su, M. B., & Connors, K. O. (1988). Principles of time domain reflectometometry applied to measurement of rock mass deformation. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 25(5), 287-297. https://doi.org/https://doi.org/10.1016/0148-9062(88)90005-8

Emadi-Tafti, M., & Ataie-Ashtiani, B. (2019, //). A modeling platform for landslide stability: A hydrological approach. Water. https://www.mdpi.com/2073-4441/11/10/2146
https://www.mdpi.com/2073-4441/11/10/2146/pdf

Ender. (2018). How Landslides Work! (Animation). https://www.youtube.com/watch?v=uv1lv1U4hVU

Escario, V., & Sáez, J. (1986). The shear strength of partly saturated soils. Geotechnique, 36(3), 453-456. https://doi.org/10.1680/geot.1986.36.3.453

Etech. (2019). LVDT- Construction, Working, Application, Advantages, and Disadvantages. https://www.electrical-technology.com/2019/05/LVDT-Construction-Working-Application-Advantages-and-Disadvantages.html

Etymology, D. o. (2023). landslide | Etymology, origin and meaning of landslide by etymonline. In https://www.etymonline.com/word/landslide

Eyo, E., Ng′ambi, S., & Abbey, S. (2020, 07/30). An overview of soil-water characteristic curves of stabilised soils and their in‐ fluential factors. Journal of King Saud University - Science, 34. https://doi.org/10.1016/j.jksues.2020.07.013

Farouk, A., Lamboj, L., & Kos, J. (2004). Influence of matric suction on the shear strength behaviour of unsaturated sand. Acta Polytechnica, 44(4).

Francesca, B., Ivan, C., Paolo, M., & Alberto, P. (2011, 2011/12/01). Displacement patterns of a landslide affected by human activities: insights from ground-based InSAR monitoring. Natural Hazards, 59(3), 1377-1396. https://doi.org/10.1007/s11069-011-9840-6

Fredlund, D., Rahardjo, H., & Fredlund, M. (2013). Unsaturated soil mechanics in engineering practice. 대한토목학회지, 61(5), 101-101.

Fredlund, D. G. (2006). Unsaturated soil mechanics in engineering practice. Journal of Geotechnical and Geoenvironmental Engineering, 132(3), 286-321.

Fredlund, D. G. (2024). The International Society for Soil Mechanics and Geotechnical Engineering. @ISSMGE. https://www.issmge.org/education/recorded-webinars/introduction-to-unsaturated-soil-mechanics

Fredlund, D. G., & Xing, A. (1994). Equations for the soil-water characteristic curve. Canadian Geotechnical Journal, 31(4), 521-532.

Fredlund, D. G., Xing, A., Fredlund, M. D., & Barbour, S. (1996). The relationship of the unsaturated soil shear strength to the soil-water characteristic curve. Canadian Geotechnical Journal, 33(3), 440-448.

Gambill, D. R., Wall, W. A., Fulton, A. J., & Howard, H. R. (2016). Predicting USCS soil classification from soil property variables using Random Forest. Journal of Terramechanics, 65, 85-92.

Gan, K. J., & Fredlund, D. G. (1988). Multistage direct shear testing of unsaturated soils. Geotechnical Testing Journal, 11(2), 132-138.

Garcia-Chevesich, P., Wei, X., Ticona, J., Martínez, G., Zea, J., García, V., Alejo, F., Zhang, Y., Flamme, H., & Graber, A. (2020). The impact of agricultural irrigation on landslide triggering: a review from Chinese, English, and Spanish literature. Water, 13(1), 10.

Gardner, R. (1937). A method of measuring the capillary tension of soil moisture over a wide moisture range. Soil Science, 43(4), 277-284.

Gatter, R., Clare, M., Kuhlmann, J., & Huhn, K. (2021). Characterisation of weak layers, physical controls on their global distribution and their role in submarine landslide formation. Earth-Science Reviews, 223, 103845.

Giles, S., Knight, M., & Jung, J. K. (2015, //). Determination of Clay Barriers Hydraulic Conductivity Using a Centrifuge Permeameter. Journal of Solid Waste Technology & …. https://www.researchgate.net/profile/Jai-Kyoung-Jung/publication/350588423_Determination_of_Clay_Barriers_Hydraulic_Conductivity_Using_a_Centrifuge_Permeameter/links/60671f9a92851c91b199012f/Determination-of-Clay-Barriers-Hydraulic-Conductivity-Using-a-Centrifuge-Permeameter.pdf

Govi, M., Pasuto, A., Silvano, S., & Siorpaes, C. (1993). An example of a low-temperature-triggered landslide. Engineering Geology, 36(1-2), 53-65.

Grayling, K. M., Young, S. D., Roberts, C. J., M.I, Shirley, I. M., Sturrock, C. J., & Mooney, S. J. (2018). The application of X-ray micro Computed Tomography imaging for tracing particle movement in soil. Geoderma, 321, 8-14. https://doi.org/https://doi.org/10.1016/j.geoderma.2018.01.038

Gu, D., & Huang, D. (2016). A complex rock topple-rock slide failure of an anaclinal rock slope in the Wu Gorge, Yangtze River, China. Engineering Geology, 208, 165-180.

Guo, H., Yi, B., Yao, Q., Gao, P., Li, H., Sun, J., & Zhong, C. (2022, Aug 19). Identification of Landslides in Mountainous Area with the Combination of SBAS-InSAR and Yolo Model. Sensors (Basel), 22(16). https://doi.org/10.3390/s22166235

Guo, Z.-q., Lai, Y.-m., Jin, J.-f., Zhou, J.-r., Sun, Z., & Zhao, K. (2020, 2020/05/26). Effect of Particle Size and Solution Leaching on Water Retention Behavior of Ion-Absorbed Rare Earth. Geofluids, 2020, 4921807. https://doi.org/10.1155/2020/4921807

Guzzetti, F., Cardinali, M., & Reichenbach, P. (1996). The Influence of Structural Setting and Lithology on Landslide Type and Pattern. Environmental & Engineering Geoscience, II(4), 531-555. https://doi.org/10.2113/gseegeosci.II.4.531

Guzzetti, F., Gariano, S. L., Peruccacci, S., Brunetti, M. T., Marchesini, I., Rossi, M., & Melillo, M. (2020). Geographical landslide early warning systems. Earth-Science Reviews, 200, 102973.

Guzzetti, F., Gariano, S. L., Peruccacci, S., Brunetti, M. T., & Melillo, M. (2022). Rainfall and landslide initiation. In Rainfall (pp. 427-450). Elsevier.

Haque, U., Da Silva, P. F., Devoli, G., Pilz, J., Zhao, B., Khaloua, A., Wilopo, W., Andersen, P., Lu, P., & Lee, J. (2019). The human cost of global warming: Deadly landslides and their triggers (1995–2014). Science of the Total Environment, 682, 673-684.

Heimovaara, T. (1993). Design of triple‐wire time domain reflectometry probes in practice and theory. Soil Science Society of America Journal, 57(6), 1410-1417.

Hendry, M. T. (2018). Pore Pressure. In P. T. Bobrowsky & B. Marker (Eds.), Encyclopedia of Engineering Geology (pp. 732-732). Springer International Publishing. https://doi.org/10.1007/978-3-319-73568-9_226

HFSS, A. (2023). Ansys HFSS | 3D High Frequency Simulation Software. https://www.ansys.com/products/electronics/ansys-hfss

Hodson, T. O. (2022). Root-mean-square error (RMSE) or mean absolute error (MAE): when to use them or not. Geosci. Model Dev., 15(14), 5481-5487. https://doi.org/10.5194/gmd-15-5481-2022

Hong, C.-Y., Zhang, Y.-F., Zhang, M.-X., Leung, L. M. G., & Liu, L.-Q. (2016, 2016/06/15/). Application of FBG sensors for geotechnical health monitoring, a review of sensor design, implementation methods and packaging techniques. Sensors and Actuators A: Physical, 244, 184-197. https://doi.org/https://doi.org/10.1016/j.sna.2016.04.033

Howard, A. K. (1986). Soil classification handbook : unified soil classification system. Second edition. Denver, Colo. : Geotechnical Branch, Division of Research and Laboratory Services, Engineering and Research Center, Bureau of Reclamation, 1986. https://search.library.wisc.edu/catalog/999656841702121

Huang, A.-B., Wu, K.-W., Elshafie, M. Z. E. B., & Wen-Yi Hung, Y.-T. H. (2018). Development of an FBG-Sensed Miniature Pressure Transducer and Its Applications to Geotechnical Centrifuge Modelling | SpringerLink. https://doi.org/10.1007/978-3-319-97112-4_155

Huang, W.-C., Li, K.-C., Hsieh, J.-Y., Weng, M.-C., & Hung, W.-Y. (2019, 2019-11-13). Deformation behaviors of dip slopes considering the scale effect and their geological properties [OriginalPaper]. Bulletin of Engineering Geology and the Environment, 79(3), 1605-1617. https://doi.org/doi:10.1007/s10064-019-01652-6

Huat, B. B., Gue, S. S., & Ali, F. H. (2004). Tropical residual soils engineering. Crc Press.

Hung, W.-Y. (2020). Principles and Application of Geotechnical Centrifuge Modeling.

Hung, W.-Y., & Liao, T.-W. (2020). LEAP-UCD-2017 Centrifuge Tests at NCU. In B. L. Kutter, M. T. Manzari, & M. Zeghal, Model Tests and Numerical Simulations of Liquefaction and Lateral Spreading Cham.

Hung, W.-Y., Soegianto, D. P., Wang, Y.-H., & Huang, J.-X. (2022, 2022-01-16). Reverse fault slip through soft rock and sand strata by centrifuge modeling tests [OriginalPaper]. Acta Geotechnica, 17(8), 3337-3356. https://doi.org/doi:10.1007/s11440-021-01447-8

Hung, W.-Y., Tran, M.-C., & Bui, V.-K. (2022, 2022-05-04). Seismic Response of Anchored Sheet Pile Walls by Centrifuge Modelling Tests [OriginalPaper]. International Journal of Civil Engineering, 20(9), 1041-1065. https://doi.org/doi:10.1007/s40999-022-00710-7

Hungr, O., Leroueil, S., & Picarelli, L. (2014, 2014/04/01). The Varnes classification of landslide types, an update. Landslides, 11(2), 167-194. https://doi.org/10.1007/s10346-013-0436-y

Hyunwook, C., Junghee, P., Thi, D. T., & Changho, L. (2022). Estimating the electrical conductivity of clayey soils with varying mineralogy using the index properties of soils. Applied Clay Science, 217, 106388.

IC. (2015, 2015-01-15). What is Carbon Fiber? | Innovative Composite Engineering. @ICEcomposite. https://www.innovativecomposite.com/what-is-carbon-fiber/

Idris, A. A., Mohammed, Y. F., & Haidar, M. (2020). Relationship between the matric suction and the shear strength in unsaturated soil. Case Studies in Construction Materials, 13, e00441. https://doi.org/https://doi.org/10.1016/j.cscm.2020.e00441

Jakob, M., Hungr, O., Savage, W., & Baum, R. (2005). Instability of steep slopes. Debris-flow hazards and related phenomena, 53-79.

Jeong, S., Kim, J., & Lee, K. (2008). Effect of clay content on well-graded sands due to infiltration. Engineering Geology, 102(1-2), 74-81.

Jeong, S., Lee, K., Kim, J., & Kim, Y. (2017). Analysis of Rainfall-Induced Landslide on Unsaturated Soil Slopes. Sustainability, 9(7), 1280. https://www.mdpi.com/2071-1050/9/7/1280

JG.Zornberg, & McCartney, J. (2010). Centrifuge Permeameter for Unsaturated Soils. l: Theoretical Basis and Experimental Developments. Journal of Geotechnical and Geoenvironmental Engineering, 136(8), 1051-1063.

Johnson, C., Affolter, M. D., Inkenbrandt, P., & Mosher, C. (2019). Slope Strength. https://geo.libretexts.org/Bookshelves/Geology/Book:_An_Introduction_to_Geology_(Johnson_Affolter_Inkenbrandt_and_Mosher)/10:_Mass_Wasting/10.01:_Slope_Strength

Kabwe, L. K., Wilson, G. W., Beier, N. A., & Barsi, D. (2023). Application of Tempe Cell to Measure Soil Water Characteristic Curve along with Geotechnical Properties of Oil Sands Tailings. Geosciences, 13(2), 36. https://www.mdpi.com/2076-3263/13/2/36

Kalsoom, T., Ramzan, N., Ahmed, S., & Ur-Rehman, M. (2020). Advances in Sensor Technologies in the Era of Smart Factory and Industry 4.0. Sensors, 20(23).

Khedun, C. P., Flores, R., Rughoonundun, H., & Kaiser, R. A. (2014). World Water Supply and Use: Challenges for the Future. In (pp. 450-465). https://doi.org/10.1016/B978-0-444-52512-3.00083-8

Khubab, S. (2021). 11 - Mechanical characterization. Woodhead Publishing Series in Composites Science and Engineering, 269-298. https://doi.org/https://doi.org/10.1016/B978-0-12-821984-3.00009-7

Kim, D.-S., Kim, N.-R., Choo, Y. W., & Cho, G.-C. (2013, 2013/01/01). A newly developed state-of-the-art geotechnical centrifuge in Korea. KSCE Journal of Civil Engineering, 17(1), 77-84. https://doi.org/10.1007/s12205-013-1350-5

Kim, J., Jeong, S., Park, S., & Sharma, J. (2004). Influence of rainfall-induced wetting on the stability of slopes in weathered soils. Engineering Geology, 75(3-4), 251-262.

Kim, J., Lee, K., Jeong, S., & Kim, G. (2014). GIS-based prediction method of landslide susceptibility using a rainfall infiltration-groundwater flow model. Engineering Geology, 182, 63-78.

Klemunes, J. A., Witczak, M. W., & López, A. (1996). Analysis of Methods Used in Time Domain Reflectometry Response. Transportation Research Record, 1548(1), 89-96. https://doi.org/10.1177/0361198196154800113

Klute, A. (1986). Water Retention: Laboratory Methods. In Methods of Soil Analysis (pp. 635-662). https://doi.org/https://doi.org/10.2136/sssabookser5.1.2ed.c26

Knight, M. A., & Mitchell, R. J. (1996, //). A similitude and dimensional design guide for centrifuge modelling of multiphase contaminant transport. Environmental Geotechnics. https://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=6277350

Ko, H., Choo, H., & Ji, K. (2023, 2023/08/01/). Effect of temperature on electrical conductivity of soils – Role of surface conduction. Engineering Geology, 321, 107147. https://doi.org/https://doi.org/10.1016/j.enggeo.2023.107147

Kokutse, N. K., Temgoua, A. G. T., & Kavazović, Z. (2016). Slope stability and vegetation: Conceptual and numerical investigation of mechanical effects. Ecological Engineering, 86, 146-153.

Kosugi, K. (1996). Lognormal distribution model for unsaturated soil hydraulic properties. Water resources research. https://doi.org/10.1029/96wr01776

Krisdani, H., Rahardjo, H., & Leong, E.-C. (2008). Measurement of geotextile-water characteristic curve using capillary rise principle. Geosynthetics International, 15(2), 86-94. https://doi.org/10.1680/gein.2008.15.2.86

Krzeminska, D. M., Steele‐Dunne, S. C., Bogaard, T. A., Rutten, M. M., Sailhac, P., & Geraud, Y. (2012). High‐resolution temperature observations to monitor soil thermal properties as a proxy for soil moisture condition in clay‐shale landslide. Hydrological Processes, 26(14), 2143-2156.

Kuriakose, S. L., Sankar, G., & Muraleedharan, C. (2009, June 01, 2009). History of landslide susceptibility and a chorology of landslide-prone areas in the Western Ghats of Kerala, India. Environmental Geology, 57, 1553-1568. https://doi.org/10.1007/s00254-008-1431-9

[Record #1003 is using a reference type undefined in this output style.]

Laimer, H. J. (2017). Anthropogenically induced landslides–A challenge for railway infrastructure in mountainous regions. Engineering Geology, 222, 92-101.

Larsen, M. C., & Simon, A. (1993). A rainfall intensity-duration threshold for landslides in a humid-tropical environment, Puerto Rico. Geografiska Annaler: Series A, Physical Geography, 75(1-2), 13-23.

Lee, C.-J., Hung, W.-Y., Tsai, C.-H., Chen, T., Tu, Y., & Huang, C.-C. (2013, 2013-11-15). Shear wave velocity measurements and soil–pile system identifications in dynamic centrifuge tests [OriginalPaper]. Bulletin of Earthquake Engineering, 12(2), 717-734. https://doi.org/doi:10.1007/s10518-013-9545-1

Lee, C.-J., Wang, C.-R., Wei, Y.-C., & Hung, W.-Y. (2011, 2011-09-09). Evolution of the shear wave velocity during shaking modeled in centrifuge shaking table tests [OriginalPaper]. Bulletin of Earthquake Engineering, 10(2), 401-420. https://doi.org/doi:10.1007/s10518-011-9314-y

Lee, S.-W., Kim, G.-H., Yune, C.-Y., Ryu, H.-J., & Hong, S.-J. (2012). Development of landslide-risk prediction model thorough database construction. Journal of the Korean Geotechnical Society, 28(4), 23-33.

Li, B., Liu, K., Wang, M., He, Q., Jiang, Z., Zhu, W., & Qiao, N. (2022). Global Dynamic Rainfall-Induced Landslide Susceptibility Mapping Using Machine Learning. Remote Sensing. https://doi.org/https://doi.org/10.3390/rs14225795

Li, B. V., Jenkins, C. N., & Xu, W. (2022). Strategic protection of landslide vulnerable mountains for biodiversity conservation under land-cover and climate change impacts. Proceedings of the National Academy of Sciences, 119(2), e2113416118. https://doi.org/doi:10.1073/pnas.2113416118

Li, Y., Wang, X., & Mao, H. (2020, 2020/12/01). Influence of human activity on landslide susceptibility development in the Three Gorges area. Natural Hazards, 104(3), 2115-2151. https://doi.org/10.1007/s11069-020-04264-6

Li, Z., Yang, G., & Liu, H. (2020). The influence of regional freeze–thaw cycles on loess landslides: Analysis of strength deterioration of loess with changes in pore structure. Water, 12(11), 3047.

Lin, C.-P. (2003). Analysis of nonuniform and dispersive time domain reflectometry measurement systems with application to the dielectric spectroscopy of soils - Lin - 2003 - Water Resources Research - Wiley Online Library. https://doi.org/10.1029/2002WR001418

Lu, N., & Likos, W. (2004). Rate of Capillary Rise in Soil. Journal of Geotechnical and Geoenvironmental Engineering - J GEOTECH GEOENVIRON ENG, 130. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:6(646)

Madabhushi, G. (2014). Centrifuge Modelling for Civil Engineers. Taylor & Francis. https://books.google.co.uk/books?id=x2QLBAAAQBAJ

Malaya, & Sreedeep. (2013). A study on unsaturated hydraulic conductivity of hill soil of north-east India. ISH Journal of Hydraulic Engineering, 19(3), 276-281 , year = 2013. https://doi.org/10.1080/09715010.2013.806399

Malmberg, C. G., & Maryott, A. A. (2011). Dielectric Constant of Water from 0 0 to 100 0 C.

Mambretti, S. (2012). Landslides (Vol. 2). Wit Press.

Manual, G. (2012). Geo-slope international Ltd.

Marc, O., Turowski, J. M., & Meunier, P. (2021). Controls on the grain size distribution of landslides in Taiwan: the influence of drop height, scar depth and bedrock strength. Earth Surface Dynamics, 9(4), 995-1011.

Mathieu, N., & Lyesse, L. (2008). Advances in modelling hysteretic water retention curve in deformable soils. Computers and geotechnics, 35(6), 835-844. https://doi.org/https://doi.org/10.1016/j.compgeo.2008.08.001

McBeth, J. (2023). Factors That Control Slope Stability.

McCartney, J. (2007). Determination of the hydraulic characteristics of unsaturated soils using a centrifuge permeameter. search.proquest.com. https://search.proquest.com/openview/d7a61fe45147518897b82db83b2cba23/1?pq-origsite=gscholar&cbl=18750

McCartney, J., & Zornberg, J. (2010). Centrifuge Permeameter for Unsaturated Soils II: Measurement of the Hydraulic Characteristics of an Unsaturated Clay. Journal of Geotechnical & Geoenvironmental Engineering, 136.

Mendes, A. (2020). Made for Spinning: The Centrifuge. Conduct Science. https://conductscience.com/made-for-spinning-the-centrifuge/

Meng, X. (2023). Landslide | Definition, Types, Causes, & Facts. @britannica. https://www.britannica.com/science/landslide

Multiphysics, C., & Comsol, A. (2022). Stockholm.

N. Moriasi, D., G. Arnold, J., W. Van Liew, M., L. Bingner, R., D. Harmel, R., & L. Veith, T. (2007). Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Transactions of the ASABE, 50(3), 885-900. https://doi.org/https://doi.org/10.13031/2013.23153

NCU. (2020). Geotechnical Centrifuge and Hydraulic Shaker.

Nejad, M. M., Momeni, M. S., & Manahiloh, K. N. (2018). Shear wave velocity and soil type microzonation using neural networks and geographic information system. Soil Dynamics and Earthquake Engineering, 104, 54-63.

Ng, C. W. W. (2014, 2014/01/01). The state-of-the-art centrifuge modelling of geotechnical problems at HKUST. Journal of Zhejiang University SCIENCE A, 15(1), 1-21. https://doi.org/10.1631/jzus.A1300217

Nimmo, J. R., Rubin, J., & Hammermeister, D. P. (1987). Unsaturated flow in a centrifugal field: Measurement of hydraulic conductivity and testing of Darcy′s Law. Water resources research, 23, 124-134.

Nomleni, I. A., Hung, W.-Y., & Soegianto, D. P. (2023, 2023-02-24). Dynamic performance of root-reinforced slopes by centrifuge modeling tests [OriginalPaper]. Landslides, 1-24. https://doi.org/doi:10.1007/s10346-023-02035-5

NPCIL. (2023). Linear Variable Differential Transformer (LVDT). https://testbook.com/question-answer/lvdt-has--5fbe98139d4286e3b461ff93

NXP. (2018). MPX5100, 0 to 100 kPa, Differential, Gauge, and Absolute, Integrated, Pressure Sensors NXP.

NXP. (2023). MPXV6115VC6U Product Information|NXP. https://www.nxp.com/part/MPXV6115VC6U#/

O′Connor, K. M., & Dowding, C. H. (1999). Geomeasurements by pulsing TDR cables and probes. CRC Press.

Omuto, C. T. (2009). Biexponential model for water retention characteristics. Geoderma, 149(3), 235-242. https://doi.org/https://doi.org/10.1016/j.geoderma.2008.12.001

Ornelas, G., McCartney, J., & ... (2013). Water Drainage from Unsaturated Soils in a Centrifuge Permeameter. AGU Fall Meeting …. https://ui.adsabs.harvard.edu/abs/2013AGUFM.H33D1383O/abstract

Oswaldo, A. F., & Alher, F. M. (2019, 2019/09/01). Landslide analysis of unsaturated soil slopes based on rainfall and matric suction data. Bulletin of Engineering Geology and the Environment, 78(6), 4167-4185. https://doi.org/10.1007/s10064-018-1392-5

P., C.-M., N., M.-B., F., M.-C., A., Q.-R., & B., A.-M. (2021, Sep 7). Worldwide Research Trends in Landslide Science. Int J Environ Res Public Health, 18(18). https://doi.org/10.3390/ijerph18189445

Parks, J. (2010). Investigation of infiltration and drainage flow processes in unsaturated soil using a centrifuge permeameter. search.proquest.com. https://search.proquest.com/openview/88558e2c9fbf70a95ab659b46b4f8aac/1?pq-origsite=gscholar&cbl=18750

Parks, J., Stewart, M., & McCartney, J. (2011). Validation of a centrifuge permeameter for investigation of transient infiltration and drainage flow processes in unsaturated soils. Geotechnical Testing Journal. https://www.astm.org/gtj103625.html

Petley, D. N., Dunning, S. A., & Rosser, N. J. (2005). The analysis of global landslide risk through the creation of a database of worldwide landslide fatalities. CRC Press. https://doi.org/10.1201/9781439833711-18

Plaisted, M., & Zornberg, J. (2010). Testing of an expansive clay in a centrifuge permeameter. sites.utexas.edu. https://sites.utexas.edu/zornberg/files/2022/03/Plaisted_Zornberg_2010.pdf

Polemio, M., & Petrucci, O. (2000). Rainfall as a landslide triggering factor an overview of recent international research. Landslides in research, theory and practice.

Preti, F., Dani, A., Alliu, E., & Togni, M. (2010). Deforestation and Danger from Surface Landslide. XXXII National Hydraulic Conference and Hydraulic Constructions. Palermo,

Rahardjo, H., Kim, Y., & Satyanaga, A. (2019, 2019/06/13). Role of unsaturated soil mechanics in geotechnical engineering. International Journal of Geo-Engineering, 10(1), 8. https://doi.org/10.1186/s40703-019-0104-8

Rahardjo, H., Lee, T. T., Leong, E. C., & Rezaur, R. B. (2005). Response of a residual soil slope to rainfall. Canadian Geotechnical Journal, 42(2), 340-351. https://doi.org/10.1139/t04-101

Rahardjo, H., & Leong, E. C. (1997). Soil Water Characteristic Curves and Flux Boundary Problems. Unsaturated Soil Engineering Practice, 88-112. (Utah)

Ramo, S., Whinnery, J. R., & Van Duzer, T. (1994). Fields and waves in communication electronics. John Wiley & Sons.

Regmi, A. D., Yoshida, K., Dhital, M. R., & Pradhan, B. (2014). Weathering and mineralogical variation in gneissic rocks and their effect in Sangrumba Landslide, East Nepal. Environmental Earth Sciences, 71, 2711-2727.

Renforth, P. (2011). Soil Suction. https://www.youtube.com/watch?v=Ow4Lbs4ixbg&t=28s

Richards, L. (1941). A pressure-membrane extraction apparatus for soil solution. Soil Science, 51(5), 377-386.

Roda‐Boluda, D. C., D′Arcy, M., McDonald, J., & Whittaker, A. C. (2018). Lithological controls on hillslope sediment supply: insights from landslide activity and grain size distributions. Earth surface processes and landforms, 43(5), 956-977.

Rotaru, A., Oajdea, D., & Răileanu, P. (2007). Analysis of the landslide movements. International journal of geology, 1(3), 70-79.

Rummel, R. (2005). Gravity And Topography Of Moon And Planets. In J. Flury & R. Rummel (Eds.), Future Satellite Gravimetry and Earth Dynamics (pp. 103-111). Springer New York. https://doi.org/10.1007/0-387-33185-9_9

Sabo, F. (2016). Mechanism of the Landslide. https://www.cbr.mlit.go.jp/fujisabo/en/yui/yuikatudo/yuikatudo-mechanism.html

Samouëlian, A., Cousin, I., Tabbagh, A., Bruand, A., & Richard, G. (2005, 2005/09/01/). Electrical resistivity survey in soil science: a review. Soil and Tillage Research, 83(2), 173-193. https://doi.org/https://doi.org/10.1016/j.still.2004.10.004

Samuel, T. M. (2022). Chapter 2 - Landslide causes and triggers. Hazards and Disasters Series, 13-41. https://doi.org/https://doi.org/10.1016/B978-0-12-818464-6.00011-1

Santangelo, M., Marchesini, I., Cardinali, M., Fiorucci, F., Rossi, M., Bucci, F., & Guzzetti, F. (2015, 2015/04/01). A method for the assessment of the influence of bedding on landslide abundance and types. Landslides, 12(2), 295-309. https://doi.org/10.1007/s10346-014-0485-x

SaylorAcademy. (2012). F-tests for Equality of Two Variances. https://saylordotorg.github.io/text_introductory-statistics/s15-03-f-tests-for-equality-of-two-va.html

Schilter, J. (2019). Identifying Key Factors Affecting Translational Landslides in Part of the Yakima Fold and Thrust Belt, Washington State.

Schuster, R. L., & Wieczorek, G. F. (2018). Landslide triggers and types. Landslides, 59-78.

Shamsan, A., Nasiman bin, S., Indra, S. H. H., & Mohammed Ali Mohammed, A.-B. (2019). A review on mechanism of rainwater in triggering landslide. IOP Conference Series: Materials Science and Engineering, 513(1), 012009. https://doi.org/10.1088/1757-899X/513/1/012009

Sheldon, R. (2022). What Are Sensors and How Do They Work? @WhatIsDotCom. https://www.techtarget.com/whatis/definition/sensor

Shiferaw, H. M. (2021, 2021/05/07). Study on the influence of slope height and angle on the factor of safety and shape of failure of slopes based on strength reduction method of analysis. Beni-Suef University Journal of Basic and Applied Sciences, 10(1), 31. https://doi.org/10.1186/s43088-021-00115-w

Sim, K. B., Lee, M. L., & Wong, S. Y. (2022, 2022/01/25). A review of landslide acceptable risk and tolerable risk. Geoenvironmental Disasters, 9(1), 3. https://doi.org/10.1186/s40677-022-00205-6

Smith, G. M. (2022). Data Acquisition (DAQ) - The Ultimate Guide. https://dewesoft.com/blog/what-is-data-acquisition

Soga, K., Ewais, A., Fern, E., & Park, J. (2019). Advances in Geotechnical Sensors and Monitoring. In (pp. 29-65). https://doi.org/10.1007/978-3-030-06249-1_2

SPC. (2018, 2018-02-19). What Materials Are Used in the 3D Printing Process? | SPC. https://www.sharrettsplating.com/blog/materials-used-3d-printing/

Stanley, M. (2022). Landslide. National Geographic. https://education.nationalgeographic.org/resource/landslide

Stefano Luigi, G., & Fausto, G. (2016). Landslides in a changing climate. Earth-Science Reviews, 162, 227-252. https://doi.org/https://doi.org/10.1016/j.earscirev.2016.08.011

Stephen R. Grattan, J. O. (2003). Field Use of Tensiometers :: Department of Land, Air and Water Resources - UC Davis. USDA. https://lawr.ucdavis.edu/cooperative-extension/irrigation/drought-tips/field-use-tensiometers

Sun, W., & Sun, D. a. (2011). Coupled modelling of hydro‐mechanical behaviour of unsaturated compacted expansive soils - Sun - 2012 - International Journal for Numerical and Analytical Methods in Geomechanics - Wiley Online Library. https://doi.org/10.1002/nag.1036

SWP. (2024). History Notebook: The Aberfan Disaster October 1966.

Tapley, B. D., Bettadpur, S., Watkins, M., & Reigber, C. (2004). The gravity recovery and climate experiment: Mission overview and early results. Geophysical Research Letters, 31(9). https://doi.org/https://doi.org/10.1029/2004GL019920

Terzaghi, K. (1936). The shearing resistance of saturated soils and the angle between the planes of shear. cir.nii.ac.jp. https://cir.nii.ac.jp/crid/1571698601182271232

Thalheimer, M. (2013). A low-cost electronic tensiometer system for continuous monitoring of soil water potential. Journal of Agricultural Engineering, 44(3). https://doi.org/10.4081/jae.2013.e16

Thanh Son Nguyen, K.-H. Y., Wen-Yi Hung, Truong Nhat Phuong Pham. (2023). Centrifuge modelling of geosynthetic-reinforced soil walls at failure | SpringerLink. https://doi.org/10.1007/978-981-15-2184-3_62

Thomas, M. M., Steven, A. F. S., Mark, H. A., Giulio, Stefan, N., Andrea, C., & Andrew, D. B. (2015). Catastrophic emplacement of giant landslides aided by thermal decomposition: Heart Mountain, Wyoming. Earth and Planetary Science Letters, 411, 199-207. https://doi.org/https://doi.org/10.1016/j.epsl.2014.10.051

Thomsen, A., Hansen, B., & Schelde, K. (2000). Application of TDR to water level measurement. Journal of Hydrology, 236(3-4), 252-258.

Timms, W., Whelan, M., Acworth, I., & ... (2019). A novel centrifuge permeameter to characterize flow through low permeability strata. … : Proceedings of the …. https://books.google.com/books?hl=en&lr=&id=KGDLBQAAQBAJ&oi=fnd&pg=PA193&dq=centrifuge+permeameter&ots=LyIYUX58P0&sig=1V3sWgjDaWBRqEuXSBjI7ygq5lw

Timms, W. A., Crane, R., Anderson, D. J., Bouzalakos, S., Whelan, M., McGeeney, D., Rahman, P. F., Guinea, A., & Acworth, R. I. (2014). Vertical hydraulic conductivity of a clayey-silt aquitard: accelerated fluid flow in a centrifuge permeameter compared with in situ conditions. Hydrol. Earth Syst. Sci. Discuss., 2014, 3155-3212. https://doi.org/10.5194/hessd-11-3155-2014

Tiranti, D., Rabuffetti, D., Salandin, A., & Tararbra, M. (2013, 2013/04/01). Development of a new translational and rotational slides prediction model in Langhe hills (north-western Italy) and its application to the 2011 March landslide event. Landslides, 10(2), 121-138. https://doi.org/10.1007/s10346-012-0319-7

Tomiša, A. (2018, 2018-08-31). Geotech Landslide - types, parts and causes of landslide I Geotech d.o.o. I. https://www.geotech.hr/en/landslides/

Topp, Clarke, G., Davis, J. l., & Annan, A. P. (1980). Electromagnetic determination of soil water content: Measurements in coaxial transmission lines. Water resources research, 16, 574-582.

Turner, P. (2000). Geotechnical Centrifuges.

USGS. (2004). Landslide Types and Processes.

USGS. (2018). What is a landslide and what causes one? | U.S. Geological Survey. https://www.usgs.gov/faqs/what-landslide-and-what-causes-one

USGS. (2020). What was the largest landslide in the United States? In the world? | U.S. Geological Survey. https://www.usgs.gov/faqs/what-was-largest-landslide-united-states-world

USGS. (2021). The largest landslide in the world | U.S. Geological Survey. https://www.usgs.gov/observatories/yvo/news/largest-landslide-world

Vähä, P., Heikkilä, T., Kilpeläinen, P., Järviluoma, M., & Gambao, E. (2013). Extending automation of building construction—Survey on potential sensor technologies and robotic applications. Automation in construction, 36, 168-178.

Van Genuchten, M. T. (1980). A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils. Soil Science Society of America Journal, 44(5), 892-898. https://doi.org/10.2136/sssaj1980.03615995004400050002x

Varnes, D. (1996). LANDSLIDE TYP ES AND PROCESSES. onlinepubs.trb.org. https://onlinepubs.trb.org/Onlinepubs/sr/sr247/sr247-003.pdf

Wang, K., Xia, Z., & Li, X. (2021). Matrix Suction Evaluation of Soil-Rock Mixture Based on Electrical Resistivity. Water, 13(20), 2937. https://www.mdpi.com/2073-4441/13/20/2937

Wang, Q., Wang, D., Huang, Y., Wang, Z., Zhang, L., Guo, Q., Chen, W., Chen, W., & Sang, M. (2015). Landslide susceptibility mapping based on selected optimal combination of landslide predisposing factors in a large catchment. Sustainability, 7(12), 16653-16669.

Warren, S. N., Kallu, R. R., & Barnard, C. K. (2016). Correlation of the rock mass rating (RMR) system with the unified soil classification system (USCS): introduction of the weak rock mass rating system (W-RMR). Rock mechanics and rock engineering, 49, 4507-4518.

Wen-Yi Hung, C.-J. L. (2023). Seismic Response of Geosynthetic Reinforced Earth Embankment on Different Soil Foundation | SpringerLink. https://doi.org/10.1007/978-4-431-56205-4_7

WGS. (2017). What are landslide and how do they occur? https://www.dnr.wa.gov/publication/gerfslandslideprocesses#

Wheeler, S. J. (1996). Inclusion of specific water volume within an elasto-plastic model for unsaturated soil. Canadian Geotechnical Journal, 33(1), 42-57. https://doi.org/10.1139/t96-023

Xie, X., Li, P., Hou, X., Li, T., & Zhang, G. (2020). Microstructure of Compacted Loess and Its Influence on the Soil-Water Characteristic Curve. Advances in Materials Science and Engineering, 2020, 1-12. https://doi.org/10.1155/2020/3402607

Yang, C., Wu, J., Li, P., Wang, Y., & Yang, N. (2023). Evaluation of Soil-Water Characteristic Curves for Different Textural Soils Using Fractal Analysis. Water, 15(4), 772. https://www.mdpi.com/2073-4441/15/4/772

Yang, H., Rahardjo, H., Leong, E.-C., & Fredlund, D. G. (2004). Factors affecting drying and wetting soil-water characteristic curves of sandy soils. Canadian Geotechnical Journal, 41(5), 908-920. https://doi.org/10.1139/t04-042

Yi-Hsiu Wang, J.-X. H., Yen-Hung Lin & Wen-Yi Hung. (2022). Centrifuge Modeling on the Behavior of Sheet Pile Wall Subjected Different Frequency Content Shaking | SpringerLink. https://doi.org/10.1007/978-3-031-11898-2_166

Yoder, N. C., & Adams, D. E. (2014). 3 - Commonly used sensors for civil infrastructures and their associated algorithms. Woodhead Publishing Series in Electronic and Optical Materials, 55, 57-85. https://doi.org/https://doi.org/10.1533/9780857099136.57

Zeitoun, R., Vandergeest, M., Vasava, H. B., & Machado, P. V. F. (2021, //). In-situ estimation of soil water retention curve in silt loam and loamy sand soils at different soil depths. Sensors. https://www.mdpi.com/1424-8220/21/2/447
https://www.mdpi.com/1424-8220/21/2/447/pdf

Zhang, L. L., Fredlund, D. G., Fredlund, M. D., & Wilson, G. W. (2014). Modeling the unsaturated soil zone in slope stability analysis. Canadian Geotechnical Journal, 51(12), 1384-1398. https://doi.org/10.1139/cgj-2013-0394
指導教授 鐘志忠(Chung-Chih Chung) 審核日期 2024-7-31
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明