以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:86 、訪客IP:3.145.91.111
姓名 阮輝煌(Nguyen Huy Hoang) 查詢紙本館藏 畢業系所 土木工程學系 論文名稱
(The Effect of Testing Conditions on Automatic Compaction Results)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] 至系統瀏覽論文 (2027-7-31以後開放) 摘要(中) 摘要
土壤夯實在大地工程界中使用廣泛,而夯實試驗在其中起著非常重要的作用,夯實後
的土壤呈不飽合狀態,空隙中含有空氣和水,這些試驗目的在於優化土壤的乾密度,
從而減少未來在荷種下土壤的沉陷量並降低土壤的滲透性,夯實的完整程度會影響結
構的耐久性和穩定性,若夯實度未達標準會導致道路和飛行場的結構失效以及因基礎
沉降引起的損壞。因此,土壤夯實對於土木工程來說是非常重要的實驗。
本研究的主要目的是增強現有的土壤夯實過程知識,以及測試不同實驗條件對自
動夯實結果的影響;本研究將介紹自動夯實機的設計、開發過程和使用方法,並重點
介紹自動夯實機的實用性,自動夯實機將取代傳統的手工夯實,因為傳統夯實法有許
多限制。本研究的重點是針對具有不同塑性的各種土壤進行夯實試驗,在不同的水分
含量和多種測試條件下進行壓實試驗,例如超過手動方法能力的壓實能量、以探索土
壤在實驗階段的行為、觀察和評估其對結果的影響以及評估這種模型在預測土壤壓實
行為方面的有效性。
試驗結果顯示,自動夯實機在可比的能量水平下提供了穩定且可重複的夯實結果,
實現了更高的乾密度和更低的空隙含量。此外,自動夯實機能夠獨立控制夯實能量並
控制夯垂落下速度,顯示出自動夯實機的多功能性和高效性。
本研究發現,自動夯實機相較於傳統手動方法具有顯著優勢,包括較好的穩定性、高
效率以及潛在的更高壓實能量水平。這些發現表明,自動夯實機未來在大地工程界中
會是一個有價值的工具,值得進一步研究和發展。
關鍵詞: 自動夯實, 最佳含水量, 夯實曲線摘要(英) ABSTRACT
Soil compaction is widely applied and compaction tests play a crucial role in geotechnical
engineering. Compacted soils are inherently unsaturated, containing both air and water in their
voids. These tests aim to optimize the dry density of soils, which helps minimize future
settlement under load and decrease soil permeability. Achieving proper compaction is directly
linked to the durability and stability of various structures. Inadequate compaction often leads
to structural failures in roads and airfields, as well as damage due to foundation settlement.
Therefore, soil compaction is essential for any engineering projects involving earthworks.
The primary objective of this research is to enhance the existing knowledge of the soil
compaction process and the testing condition′s effect on automatic compaction results. This
study will introduce the design, development, and user manual and focus on the usefulness of
automatic compaction machines, which will replace traditional manual compaction because of
their many limitations. The research focuses on compaction tests conducted on various soils
with different plasticity characteristics combined with varying contents of water under diverse
testing conditions, such as compaction energy efforts that surpass the capabilities of manual
methods to explore the experimental behavior of soils, observe and evaluate the effect on
results in the experimental phase; and assessing the effectiveness of this model in predicting
soil compaction behavior.
The results indicate that the automatic compaction machine provides consistent and
reproducible compaction results, achieving higher dry densities and lower air void contents at
comparable energy levels. Additionally, the ability to control hammer velocity independently
from compaction energy highlights the machine′s versatility and efficiency.
This study concludes that the automatic compaction machine offers significant advantages
over traditional manual methods, including improved consistency, efficiency, and the potential
for higher compaction energy levels. These findings suggest that the automatic compaction
machine is a valuable tool for future geotechnical engineering applications, warranting further
research and development.
Keywords: automatic compaction, optimum water content, compaction curve關鍵字(中) ★ 自動夯實
★ 最佳含水量
★ 夯實曲線關鍵字(英) ★ automatic compaction
★ optimum water content,
★ compaction curve論文目次 TABLE OF CONTENTS
ABSTRACT i
摘要 ii
ACKNOWLEDGEMENTS iii
LIST OF TABLES ix
LIST OF FIGURES x
CHAPTER 1 1
INTRODUCTION 1
1.1 Problem statement 1
1.2 Aims of research 2
1.3 Concepts of the thesis 4
CHAPTER 2 6
LITERATURE REVIEW 6
2.1 Introduction 6
2.1.1 Soil mechanics 6
2.1.2 History and development of soil compaction techniques 6
2.1.3 Purpose and importance of soil compaction in engineering 7
2.2 Qualitative studies for compaction theory 9
2.2.1 Proctor’s Theory (1933) 9
2.2.2 Hogentogler’s Theory (1936) 10
2.2.3 Hilf’s theory (1956) 10
2.2.4 Lambe’s theory (1959) 11
2.2.5 Olson’s Theory (1963) 12
2.2.6 Barden and Sides’s theory (1970) 13
2.2.7 Summary of the compaction theories 13
2.3 Principles and mechanisms of soil compaction 14
2.3.1 Compaction principles 14
2.3.2 Differences between saturated and unsaturated soils 14
2.4 Volume change behavior of unsaturated soils 15
2.4.1 Stress variables 16
2.4.2 Volume change 17
2.4.3 Pore pressure development 17
2.4.4 Constitutive models for unsaturated soils 19
2.4.5 Concluding remarks 24
2.5 The Standards for Compaction Tests (ASTM and AASHTO) 25
2.5.1 ASTM Standards 25
2.5.2 AASHTO Standards 27
2.6 Traditional Compaction tests (Manual methods) 28
2.6.1 Overview of Traditional Compaction Tests 28
2.6.2 Challenges and Limitations 30
2.7 Automatic soil compaction 31
2.7.1 Overview of Existing Automated Compaction Equipment 31
2.7.2 Benefits of using automated compaction machines compared to manual methods 31
2.7.3 Previous studies on the effectiveness of automated compaction machines 31
2.7.4 Limitations 32
2.7.5 The existing automated compaction equipment: The controls compactor model 33
2.8 Concluding remarks 38
CHAPTER 3 40
MATERIALS, TESTING EQUIPMENT AND EXPERIMENTAL PROCEDURE 40
3.1 Materials 40
3.2 Physical properties 42
3.2.1 Sand 42
3.2.2 Silt 42
3.2.3 Clay 43
3.2.4 Bentonite 43
3.3 Overview testing equipment and experimental procedure 48
3.4. Existing compaction equipment 48
3.4.1 Traditional compaction test 48
3.4.2 California Bearing Ratio (CBR) test 51
3.4.3 The ELE’s machine 55
3.5 Automatic Compaction machine 62
3.5.1 Problem statement 62
3.5.2 Introduction 63
3.5.3 Development and Features 64
3.6 Experimental procedure 67
3.6.1 Material preparation 67
3.6.2 California Bearing Ratio (CBR) Test 70
3.6.3 Automatic compaction test 75
CHAPTER 4 89
EXPERIMENTAL RESULTS 89
4.1 Introduction 89
4.2 Automatic Compaction 90
4.2.1 Compaction Energy levels 90
4.2.2 The Effect of Velocity and Effort 90
4.2.3 Comparison of Compaction Methods 93
4.2.4. Problem encountered 95
4.3 Compaction characteristics 97
4.3.1 Soil: Sand and Bentonite 97
4.3.2 Soil: Sand, Clay, Silt, Red Earth 100
4.3.3 Correlation between compaction characteristics of energy 103
4.3.4 Prediction of compaction curves 105
CHAPTER 5 107
CONCLUSIONS AND RECOMMENDATION FOR FUTURE RESEARCH 107
5.1 Conclusions 107
5.1.1 Testing condition affect to the compaction results 107
5.1.2 Automatic Compaction Machine Review 109
5.1.3. Compaction behavior and prediction of its characteristics 109
5.2 Suggestions for future research 110
5.2.1 Recommendations for future research 111
5.2.2 Research about the behaviour of soil 112
REFERENCE 113參考文獻 REFERENCE
[1] Alonso, E. E., Gens, A., and Hight, D. W. (1987). Special problem soils. General report.
PROC IX ECSMFE, Dublin, Ireland. Balkema, Rotterdam, pages 1087-1146.125
[2] Alonso, E. E., Gens, A., and Josa, A. (1990). A constitutive model for partially
saturated soils. Géotechnique, 40(3):405-430.
[3] Ameta, N. K. and Wayal, A. S. (2008). Effect of bentonite on permeability of dune
sand. Electronic Journal of Geotechnical Engineering, 13:1-7
[4] ASTM International. (2023). ASTM D 968-12: Test Method for Laboratory
Compaction Characteristics of Soil using Standards Effort [12,400 ft-lb/ft3(600 kNm/m3)], Annual Book of ASTM Standard, ASTM Internation, West Conshohocken,
PA, Sec. 4, Vol. 04.08, pp. 69-76
[5] ASTM International (2023). ASTM D 1557-91: Test Method for Laboratory
Compaction Characteristics of Soil using Modified Effort [56,400 ft-lb/ft3(2,700 kNm/m3)], Annual Book of ASTM Standard, ASTM Internation, West Conshohocken,
PA, Sec. 4, Vol. 04.08, pp. 118-125.
[6] American Association of State Highway and Transportation Officials (AASHTO)
(2023). AASHTO T99-14: Standard Method of Test for Moisture-Density Relations of
Soils Using a 2.5 kg (5.5 lb) Rammer and a 305 mm (12 in.) Drop. Washington, D.C.:
AASHTO.
[7] American Association of State Highway and Transportation Officials (AASHTO)
(2023). AASHTO T180-19: Standard Method of Test for Moisture-Density Relations of
Soils Using a 4.54 kg (10 lb) Rammer and a 457 mm (18 in.) Drop. Washington, D.C.:
AASHTO.
[8] Baker, R. and Frydman, S. (2009). Unsaturated soil mechanics: critical review of
physical foundations. Engineering Geology, 106(1-2):26-39.
[9] Barden, L. and Sides, G. R. (1970). Engineering behavior and structure of compacted
clay. Journal of the Soil Mechanics and Foundations Division, 96(4):1171-1200.
[10] Bishop, A. W. (1959). The principle of effective stress. Teknisk Ukeblad, 106(39):859-
863.
[11] Bishop, A. W., Alpan, I., Blight, G. E., and Donald, I. B. (1960). Factors controlling
the strength of partly saturated cohesive soils. In Proceedings of the ASCE Conference
on Shear Strength of Cohesive Soils, Boulder, Colorado, USA, 1960.
[12] Bishop, A. W. and Blight, G. E. (1963). Some aspects of effective stress in saturated
and partially saturated soils. Géotechnique, 13(3):177-197.
[13] Blight, G. E. (1967). Effective stress evaluation for unsaturated soils. Journal of the
Soil Mechanics and Foundations Division, Proc. ASCE 93 SM2 (1967):125-146.126
[14] Bowles, J. E. (1996). Foundation Analysis and Design (5th ed.). McGraw-Hill.
[15] Brown, K. A., & Zhang, Y. (2015). Automation in Soil Compaction: A Review. Journal
of Construction Engineering and Management, 141(6), 04015011.
[16] Coduto, D. P. (2001). Foundation Design: Principles and Practices (2nd ed.). Prentice
Hall.
[17] Das, B. M. (2016). Principles of Geotechnical Engineering (9th ed.). Cengage
Learning.
[18] Estabragh, A. R., Javadi, A. A., and Boot, J. C. (2004). Effect of compaction pressure
on consolidation behaviour of unsaturated soil. Canadian Geotechnical Journal,
41:540-550.
[19] Hilf, J. W. (1956). An investigation of pore water pressure in compacted soils. Bureau
of Reclamation, Tech. Mem. 654.
[20] Hilf, J. W. (1975). Foundation Engineering Handbook, chapter Compacted fill, pages
249-316. Chapman & Hall Ltd., London, United Kingdom.
[21] Holtz, R. D., & Kovacs, W. D. (1981). An Introduction to Geotechnical Engineering.
Prentice-Hall.
[22] Johnson, D. L. (1957). Advancements in Mechanical Soil Compaction Equipment.
Journal of Geotechnical Engineering, 83(2), 112-124.
[23] Lambe, T. W., & Whitman, R. V. (1969). Soil Mechanics. John Wiley & Sons. Lee, S.
Y., & Kim, J. (2019). Intelligent Compaction Systems: Technology and Applications.
International Journal of Pavement Research and Technology, 12(5), 453-464.
[24] Li, Z. M. (1995). Compressibility and collapsibility of compacted unsaturated loessial
soils. In Proceedings of the 1st International Conference on Unsaturated Soils, pages
139{144, Paris, France, September, 1995
[25] Olson, R. E. (1963). Effective stress theory of soil compaction. Journal of the Soil
Mechanics and Foundations Devision, ASCE, 89(SM2):27-45.
[26] Terzaghi, K., Peck, R. B., & Mesri, G. (1996). Soil Mechanics in Engineering Practice
(3rd ed.). John Wiley & Sons.
[27] Proctor, R. R. (1933). Fundamental Principles of Soil Compaction. Transactions of the
American Society of Civil Engineers, 98, 102-115.
[28] Proctor, R. R. (1933). Fundamental principles of soil compaction. Engineering News
Record, 111(9):245-248.指導教授 洪汶宜(Wen - Yi Hung) 審核日期 2024-7-31 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare