博碩士論文 110322092 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:40 、訪客IP:18.222.102.33
姓名 林冠丞(Guan-Cheng Lin)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 含多項式摩擦單擺支承曲橋之振動台實驗
相關論文
★ 隔震橋梁含防落裝置與阻尼器之非線性動力反應分析研究★ 橋梁碰撞效應研究
★ 應用位移設計法於雙層隔震橋之研究★ 具坡度橋面橋梁碰撞效應研究
★ 橋梁極限破壞分析與耐震性能研究★ 應用多項式摩擦單擺支承之隔震橋梁研究
★ 橋梁含多重防落裝置之極限狀態動力分析★ 強震中橋梁極限破壞三維分析
★ 隔震橋梁之最佳化結構控制★ 跨越斷層橋梁之極限動力分析
★ 塑鉸極限破壞數值模型開發★ 橋梁直接基礎搖擺之極限分析
★ 考量斷層錯動與塑鉸破壞之橋梁極限分析★ Impact response and shear fragmentation of RC buildings during progressive collapse
★ 應用多項式滾動支承之隔震橋梁研究★ Numerical Simulation of Bridges with Inclined
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 多項式摩擦單擺支承(polynomial friction pendulum isolator,PFPI),其曲面為六次方程式的新式變頻滑動支承,其隔震週期隨位移變化,分為兩階段,軟化段:利用回復勁度遞減之特性減緩結構加速度反應;硬化段:利用回復勁度遞增之特性降低結構位移反應。過去研究已證實將PFPI用於等高與不等高橋梁受近域地震與遠域地震皆能有良好之表現。
過去研究少有使用PFPI應用於曲橋之案例,本研究採用基於等效節點割線特性之隱式動力分析程序(Implicit Dynamic Analysis Procedure based on Equivalent Nodal Secant Properties,簡稱為IDAP-ENSP),建立有限元素分析模型,並延續前年度採用之橋面板構件,設計下部結構橋墩,進行振動台實驗,並比較不同角度震波情況下,對曲線橋梁之影響,探討支承與橋墩位移、支承遲滯迴圈及支承軸力試驗結果。另進行水平雙向震波試驗以驗證PFPI於曲橋之耐震性能。研究結果顯示當震波由橋軸方向輸入逐漸轉變為由垂直橋軸向輸入時,內外曲梁之支承垂直向軸力差異增大,水平剪力變化亦有相同情形。橋墩位移亦受到震波輸入角度影響,有相反方向之變化。
摘要(英) The Polynomial Friction Pendulum Isolator (PFPI) is a novel variable frequency sliding bearing with a sixth-degree equation surface. Its isolation period varies with displacement and is divided into two stages: softening stage, which mitigates structural acceleration response by utilizing the decreasing characteristic of restoring stiffness; and hardening stage, which reduces structural displacement response by utilizing the increasing characteristic of restoring stiffness. Past studies have confirmed that PFPI performs well when applied to both level and unlevel bridge structures under near-field and far-field earthquakes.

There have been few studies applying PFPI to curved bridges. This study employs the Implicit Dynamic Analysis Procedure based on Equivalent Nodal Secant Properties (IDAP-ENSP) to establish a finite element analysis model. Continuing from previous years, the study designs the substructure piers using bridge deck components, conducts shake table tests, and compares the impact on curved bridges under different earthquake wave angles. It investigates the effects on bearing and pier displacements, bearing hysteresis loops, and bearing axial force test results. Additionally, bi-directional horizontal seismic wave tests are conducted to verify the seismic performance of PFPI on curved bridges.

Results indicate that as seismic waves transition from axial to perpendicular input on the bridge axis, the difference in vertical axial forces between inner and outer curved beams increases, similarly affecting horizontal shear changes. Pier displacements are also influenced by the angle of seismic wave input, showing opposite directional changes.
關鍵字(中) ★ 多項式摩擦單擺支承
★ 振動台實驗
★ 基於等效節點割線特性之隱式動力分析程序
★ 曲線橋樑
關鍵字(英) ★ Polynomial Friction Pendulum Isolator
★ Implicit Dynamic Analysis Procedure based on Equivalent Nodal Secant Properties
★ shake table test
★ curved bridge
論文目次 摘 要 I
ABSTRACT V
致謝 VI
目錄 VII
表目錄 IX
圖目錄 XI
第一章 緒論 1
1.1 研究背景和動機 1
1.2 文獻回顧 3
1.3 研究內容 8
第二章 多項式摩擦單擺支承 9
2.1 支承力學行為 10
2.2 瞬時隔震頻率 13
2.3 多項式摩擦單擺支曲面函數與特性 13
第三章 基於等效節點割線特性之隱式動力分析程序 20
3.1 非線性運動方程式 21
3.2 滑動元素 23
第四章 橋梁模型振動台實驗 34
4.1 實驗設備與實驗試體 35
4.2 實驗測量儀器及配置 36
4.3 實驗系統識別 37
4.4 輸入震波 38
第五章 討論與比較 58
5.1 有限元素模型之建立 58
5.2 含PFPI曲橋數值分析和試驗結果比較 59
5.3 水平雙向震波之隔震效能 63
5.4 有無橋墩之曲橋結果比較 65
5.5 小結 68
第六章 結果與比較 225
6.1 結論 225
6.2 建議及未來研究方向 226
參考文獻 227
參考文獻 參考文獻
1. Ian G Buckle and Ronald L. Mayes “Seismc Isolation History,Application,and Performance-A World View” Earthquake Spectra, 1990.
2. 盧煉元、鍾立來,「國內外結構控制技術之發展」,土木技術(防災科技專題),四月號,第14期,81-95頁,1999。
3. Asher, J.W. , Hoskere, S.N. , Ewing, R.D. , Mayes, R.L. , Button, M.R. , Van Volkingburg, D.R. , “Performance of Seismically Isolated Structures in the 1994 Northridge and 1995 Kobe Earthquakes”, Proceedings of Structures Congress XV (ASCE), 1128-1132,1997.
4. Celebi, M.,“Successful performance of a base-isolated hospital building during the 17 January 1994 Northridge earthquake.” The Structural Design of Tall Buildings, 5(2), 95-109,1996.
5. Fujita, T., “Seismic isolation of civil buildings in Japan.”, Progress in Structural Engineering and Materials, 1(3), 295-300, 1998.
6. Kelly, J. M., “Seismic isolation of civil buildings in USA.”,
Progress in Structural Engineering and Materials, 1(3), 279-285, 1998.
7. Martelli, A. and Forni, M.,“Seismic isolation of civil buildings in Europe.”, Progress in Structural Engineering and Materials, 1(3), 286- 294,1998.
8. Ghobarah, A. and Ali, H. M., “Seismic performance of highway bridges.”, Engineering Structures, 10(3), 157-166, 1988.
9. Kawashima, K., “Damage of bridge resulting from fault rupture in the 1999 KOCAELI and DUZCE, Turkey earthquakes and the 1999 Chi- Chi, Taiwan earthquake.”, Structural Engineering/Earthquake engineering, JSCE, 19(2), 179-197, 2002.
10. Kosa, K., Tazaki, K. and Yamaguchi, E., “Mechanism of Damage to Shiwei Bridge Caused by 1999 Chi-Chi Earthquake.”, A Workshop on Seismic Fault-induced Failures, 143-154, 2002.
11. Lee, G. C. and Loh, C., “Preliminary report from MCEER-NCREE
workshop on the 921 Taiwan earthquake.”, Multidisciplinary Center for Earthquake Engineering Research, Buffalo, New York, 1999.
12. Bruneau, M., Wilson, J. C. , and Tremblay, R., “Performance of steel bridges during the 1995 Hyogoken-Nanbu (Kobe, Japan) earthquake.”, Canadian Journal of Civil, 23(3), 678-713, 1996.
13. Otsuka, H. and et al., “Report on the Disaster Caused by the 1995 Hyogoken Nanbu Earthquake, Chapter 5, Damage to Highway Bridges.”, Journal of Research, Public Works Research Institute, 33, 1997.
14. Naeim, F. and Kelly, J. M., “Design of Seismic Isolated Structures: From Theory to Practice.”, 1999.
15. Zheng Liu, Tao Wang., “Application of Lead Rubber Bearing in
Curved Continuous Bridge.”, Advanced Materials Research, 2011.
16. R.S. Jangid., “Optimum friction pendulum system for near-fault motions.”, Engineering Structures, 2005.
17. Pranesh, M. and Sinha, R., “Earthquake Resistant Design of Structures using the Variable Frequency Pendulum Isolator.”, Journal of 157 Structural Engineering, ASCE, 128(7), 870-882, 2002.
18. Pranesh, M. and Sinha, R., “VFPI: an isolation device for aseismic design.”, Earthquake Engineering and Structural Dynamics, 29(5), 603- 627, 2000.
19. Pranesh, M., and Sinha, R., “Behavior of structures isolated using VFPI during bear source ground motions.”, The 13th World Conference on Earthquake Engineering, Vancouver, Canada, No. 3105,2004.
20. Pranesh, M. and Sinha, R., “Aseismic design of structure– equipment systems using variable frequency pendulum isolator” Nuclear Engineering and Design, 231(2), 129-139, 2004.
21. 王健,「變曲率滑動隔震防制近斷層震波之實驗與分析」,高雄第一科技大學營建工程系,碩士論文,2006。
22. 董佩宜,「應用多項式摩擦單擺支承之隔震橋梁研究」,國立中央大學土木系,碩士論文,2010。
23. 方嬿甄,「考量垂直效應之多項式摩擦單擺支承之分析與設計」,國立中央大學土木系,碩士論文,2011。
24. 曹哲瑋,「應用多項式摩擦單擺支承於不等高橋梁之研究」,國立中央大學土木系,碩士論文,2016。
25. 陳奕翔,「含變頻滑動支承及抗拉拔裝置橋梁在水平雙向震波下之振動台實驗」,國立中央大學土木系,碩士論文,2021。
26. Makris N. and Chang, S. P., “Effect of Damping Mechanisms on the Response of Seismically Isolated Structures.”, Report No. PEER-98/06, Pacific Earthquake Engineering Research Center, College of Engineering, University of California, Berkeley, 1998.
27. 張婉妮,「近斷層震波對滑動隔震結構之影響」,高雄第一科技大學營建工程系,碩士論文,2001。
28. Loh, C. S., “Interpretation of structural damage in 921 Chi-Chiearthquake.”, International Workshop on 921 Chi-Chi Earthquake Reconnaissance, Dec. 14-17, Taichung, Taiwan, 1999.
29. Hall, J. F., Heaton, T. H., Halling, M. W., and Wald, D. J., “NearSource Ground Motion and its Effects on Flexible Buildings.”, Earthquake Spectra, 11(4), 569-606, 1995.
30. Liao, W. I., Loh, C. H. and Wan, S., “Responses of isolated bridges subjected to near-fault ground motions recorded on Chi-Chi earthquake.”, International Workshop on Annual Commemoration of Chi-Chi Earthquake, Sep. 18-20, Taipei, 371-380, 2000.
31. Zayas, V. A., Low, S. S., and Mahin, S. A., “A simple pendulum technique for achieving seismic isolation.”, Earthquake Spectra, 6, 317- 333, 1990.
32. Mokha, A. S., Constantinou, M. C., Reinhorn, A. M., and Zayas, V. A., “Experimental Study of Friction Pendulum Isolation System.”, Journal of Structural Engineering, ASCE, 117(4), 1201-1217 , 1991.
33. 盧煉元、王亮偉、陳慶輝、李官峰、李姿瑩、蔡諄昶,「以性
能為導向之二階段隔震設計法」,結構工程,Vol. 31 (3),33-61,2016。
34. Wang, Y. P., Chung, L. L., and Liao, W. H., “Seismic response analysis of bridges isolated with friction pendulum bearing.”, Earthquake Engineering and Structural Dynamics, 27, 1069-1093, 1998.
35. Pranesh, M. and Sinha, R., “VFPI: an isolation device for aseismic design.”, Earthquake Engineering and Structural Dynamics, 29(5), 603- 627, 2000.
36. Pranesh, M. and Sinha, R., “Earthquake Resistant Design of Structures using the Variable Frequency Pendulum Isolator.”, Journal of 157 Structural Engineering, ASCE, 128(7), 870-882, 2002.

37. Pranesh, M., and Sinha, R., “Behavior of structures isolated using VFPI during bear source ground motions.”, The 13th World Conference on Earthquake Engineering, Vancouver, Canada, No. 3105, 2004.
38. Pranesh, M. and Sinha, R., “Aseismic design of structure– equipment systems using variable frequency pendulum isolator”, Nuclear Engineering and Design, 231(2), 129-139, 2004.
39. 盧煉元、李姿瑩、葉奕麟、張洵,「變頻式搖擺支承於近域隔震之運用」,中國土木水利工程學刊,第二十二卷第三期,283-298,2010。
40. Lu, L. Y., Shih, M. H. , and Wu, C. Y., “Near-fault seismic isolation using sliding bearings with variable curvatures.”, The 13th World Conference on Earthquake Engineering, Vancouver, Canada, No. 3264, 2004.
41. Lu, L. Y., Shih, M. H., and Wu, C. Y., “Sliding isolation using variable frequency bearings for near fault ground motions.”, The 4th International Conference on Earthquake Engineering, Taipei, Taiwan, No. 164, 2006.
42. Lu, L. Y., Wang, J., and Yeh, S. W., “Experimental verification of polynomial friction pendulum isolator for near-fault seismic isolation.”, The 4th International Structural Engineering and Construction Conference, Melbourne, Australia, 1065-1071, 2007.
43. Lu, L. Y., Lee, T. Y., and Yeh, S. W., “Theory and experimental study for sliding isolators with variable curvature.”, Earthquake Engineering and Structural Dynamics, DOI: 10.1002/eqe.1106, 2001.
44. Lee, T.Y., Chung, K.J. and Chang, H., “A new implicit dynamic finite element analysis procedure with damping included.”, Engineering Structures, 147, 530-544, 2017.

45. Lee, T.Y., Chung, K.J. and Chang, H., “A new procedure for nonlinear dynamic analysis of structures under seismic loading based on equivalent nodal secant stiffness”, International Journal of Structural Stability and Dynamics, 18(3), 1850043, 2018.
46. 鍾昆潤,「非耦合隱式動力有限元素分析及其於結構崩塌分析之應用」,國立中央大學土木系,博士論文,2018。
47. Klaus- Jürgen Bathe , Mirza M. Irfan Baig, “On a composite implicit time integration procedure for nonlinear dynamics “ Computers and Structures, 2005.
48. Klaus- Jürgen Bathe, “Conserving energy and momentum in nonlinear dynamics:A simple implicit time integration scheme”, Computers and Structures, 2007.
49. Klaus-Jürgen Bathe,Gunwoo Noh, “Insight into an implicit time integration scheme for structural dynamics”, Computers and Structures, 2012
50. Seo, J. and Linzell, D. G., “Horizontally curved steel bridge seismic vulnerability assessment.” Engineering Structures, 34(1), 21-32.0, 2012
51. Williams, D. and Godden, W., “Seismic response of long curved bridge: experimental model studies.”, Earthquake Engineering and Structural Dynamics, 7(2), 107-128.0, 1979.
52. Han, Q., Du, X., and Liu, J. et al., “Seismic damage of highway bridges during the 2008 Wenchuan earthquake. ”, Earthq. Eng. Eng. Vib., 8(2), 263–73.0, 2009.
53. Tondini, N., and Stojadinovic, B., “Probabilistic seismic demand model for curved reinforced concrete bridge.”, Bulletin of earthquake engineering, 10(5), 1455-1479, 2012.
54. Wilson, T., Mahmoud, H. and Chen, S., “Seismic performance of skewed and curved reinforced concrete bridges in mountainous states.”, Engineering Structures, 70(3), 158-167.0, 2014
55. Yan, L., Li, Q., Han, C., and Jiang, H., “Shaking table tests of curved bridge considering bearing friction sliding isolation.”, Shock Vib., 2016, 1-14, 2016.
56. Zhi, Z., Xiaojun, L., Riqing, L., and Chenning, S., “Shaking table tests and numerical simulations of a small radius curved bridge considering SSI effect.”, Soil Dynamics and Earthquake Engineering, 118, 1-18, 2019.
57. Constantinou, M.C., Mokha, A.M. and Reinhorn, A.M., “Teflon bearings in base isolation.Part 2: Modeling,” Journal of Structural Engineering, Vol. 116, No. 2, 455-474, 1990.
58. 王亮偉,「變曲率滑動隔震系統於三維震波作用下之實驗與理論研究」,國立成功大學土木系,碩士論文,2016。
59. Baker, J. W., Lin, T., Shahi, S. K., & Jayaram, N., “New ground motion selection procedures and selected motions for the PEER transportation research program.”, PEERreport, 3, 2011.
60. 黃靖軒,「含變頻滑動支承曲線橋梁之振動台實驗」,國立中央大學土木系,碩士論文,2023。
61. 羅定軒,「應用勁度可變式滑動隔震支承於平面曲梁橋之動力分析」,國立中央大學土木系,碩士論文,2023。
指導教授 李姿瑩(Tzu-Ying Lee) 審核日期 2024-7-31
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明