博碩士論文 110322041 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:46 、訪客IP:18.226.93.139
姓名 黃梓益(ZI-YI HUANG)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 軟弱黏土深開挖破壞之數值模擬-以基泰大直為例
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-8-13以後開放)
摘要(中) 近年來台北地區因為地狹人稠關係,對於高樓與地下室需求與日俱增,都市深開
挖工程顯得尤為重要,但考慮到大台北地區主要地盤為軟弱的松山層,土層之間砂土
與軟弱黏土交錯,導致在進行深開挖工程中時常會碰到深厚軟弱黏土層,對於施工過
程得謹慎小心注意連續壁位移情況,必要造成施工區外有損鄰事件發生,對於工程師
是極大的挑戰。
而在民國112年9月7日晚間台北市中山區大直街發生深開挖施工破壞,此破壞
使連續壁壁體往開挖面內內擠造成壁體破壞,周遭鄰房也隨之發生大量沉陷與傾斜等
情況,而破壞原因有很多細節值得進行深入研究與討論。
本研究以 FLAC2D 模擬大直基泰工地的深開挖施工過程,蒐集地質、設計與施
工資料,依照實際施工順序,先設置地盤改良樁後,再設置連續壁與中間樁,來進行
基地開挖前的施工模擬,接續再進行四次開挖與三層支撐架設之後續施工模擬,直至
開挖至預定高程。後續變化連續壁貫入深度與厚度,支撐有無塑性鉸、地盤改良等因
素,探討其對深開挖破壞行為之影響。
摘要(英) Due to the limited land and dense population in the Taipei area in recent years, the
demand for high-rise buildings and basements has been increasing day by day, making deep
excavation projects in urban areas particularly important. However, considering that the
main stratum in the Greater Taipei area is the soft Songshan Formation, with layers of sand
and weak clay interlaced, deep excavation projects often encounter thick, soft clay layers.
This requires careful attention to the displacement of diaphragm walls during construction
to prevent damage outside the construction area, posing a significant challenge for engineers.
On the evening of September 7, 112th year of the Republic (2023), a deep excavation
construction failure occurred on Dazhi Street in the Zhongshan District of Taipei City. This
failure caused the diaphragm wall to squeeze inward toward the excavation face, resulting
in wall damage. The surrounding neighboring houses also experienced substantial
subsidence and tilting. There are many details of the cause of the destruction that are worth
in-depth research and discussion.
This study uses FLAC2D simulation to model the deep excavation construction process
at the Dazhi Ketai construction site. Geological, design, and construction data were collected,
and the actual construction sequence was followed. First, ground improvement piles were
set up, followed by the diaphragm wall and middle piles, to simulate the construction before
the excavation of the site. Subsequently, the simulation continued through four excavations
and the installation of three layers of support, until the excavation reached the predetermined
elevation.
The study explored the impact of variations in the penetration depth and thickness of
the diaphragm wall, the presence or absence of plastic hinges in the support, ground
improvement, and other factors on the behavior of deep excavation failure.
關鍵字(中) ★ 深開挖
★ FLAC2D
關鍵字(英)
論文目次 摘要 I
Abstract II
致謝 III
圖目錄 I
表目錄 IX
1 第一章 緒論 1
1-1 研究動機與目的 1
1-2 研究方法 2
1-3 論文架構 2
2 第二章 文獻回顧 4
2-1 擋土壁土壓理論與破壞模式 4
2-1-1剛性擋土壁破壞理論 5
2-1-2柔性擋土壁破壞模式 10
2-2 深開挖之變形行為 11
2-2-1深開挖之擋土壁變形 11
2-2-2深開挖之擋土壁變形因素 13
2-2-3擋土壁變形與地表沉陷之關係 17
2-3 擋土壁開挖穩定性分析 19
2-4 地盤改良工法 25
3 第三章 模擬方法與使用參數之說明 26
3-1 模擬方法 26
3-2 數值模擬建模 27
3-2-1元素網格 27
3-2-2邊界條件 28
3-2-3土壤組成模式 28
3-3 施工介紹 28
3-3-1現地施工介紹 28
3-3-2模擬施工介紹 29
3-4 模擬土層之基本參數 32
3-4-1砂土層之楊氏模數與柏松比(Poisson′s ratio) 33
3-4-2軟弱黏土層之楊氏模數與柏松比(Poisson′s ratio) 33
3-4-3統體模數與剪切模數之計算 35
3-4-4模擬土層參數統整 37
3-4-5模擬土層之實體元素設置 38
3-5 改良樁基本參數設定 40
3-5-1改良樁之實體元素設置 42
3-6 連續壁基本參數設定 44
3-6-1連續壁之極限彎矩 45
3-6-2連續壁之結構元素建立 46
3-7 連續壁壁體與土層之界面元素 48
3-8 中間柱基本參數設定 48
3-8-1中間柱與底部固定水泥砂漿之結構與實體元素建立 49
3-9 橫向支撐基本參數設定 51
3-9-1橫向支撐之容許軸力Na 53
3-9-2橫向支撐之容許彎矩Ma 57
3-9-3橫向支撐之結構元素設置 58
4 第四章 模擬結果與分析 60
4-1 數值模擬說明 60
4-1-1物理量正負號定義 62
4-2 無塑性鉸連續壁厚度為60 cm之模擬結果(Case 1-1) 63
4-3 有塑性鉸之連續壁厚度為60 cm模擬結果(Case 1-2) 78
4-4 假設改良樁失效有塑性鉸之模擬結果(Case 1-3) 89
4-5 拔除第三支撐至開挖完成模擬結果(Case 1-4) 96
4-6 有塑性鉸連續壁厚度為80 cm模擬結果(Case 1-5) 99
4-7 Case 1-2與Case 1-5綜合比較 104
4-8 長度3.15 m改良體模擬結果(Case2-1) 112
4-9 長度4.42m改良體模擬結果Case 2-2 118
4-10 Case 2-1與Case 2-2綜合比較 123
5 第五章 結論 129
6 參考文獻 130
7 附錄A 132
參考文獻 1. Bowles J. E., Foundation Analysis and Design., McGraw-Hill, Singapore, pp. 313-316, (1997).
2. Clough G. W. and O’Rourke T. D., “Construction Induced Movements of In-situ Walls.” Proceeding, Design and Performance of Earth Retaining Structure, ASCE Special Conference, No. 25, pp. 439-470, (1990).
3. Clough G. W. and Hansen L. A., “Clay Anisotropy and Braced Wall Behavior.” Journal of the Geotechnical Engineering Division, ASCE, Vol.107, No. 7, pp.893-913, (1981).
4. Hsieh P. G. and Ou C. Y., “Shape of Ground Surface Settlement Profiles Casued by Excavation.” Canadian Geotechnical Journal, Vol.35, No.6, pp. 1004-1017, (1998).
5. Masuda T., Einstein H. H. and Mitachi T., “Prediction of Lateral Deflection of Diaphragm Wall in Deep Excavation. ”Journal of Geotechnical Engineering, No. 505, pp. 19-29, (1994).
6. Mana A. I. and Clough G.W. “Prediction of Movements for Braced Cut in Clay.” Journal of Geotechnical Engineering Division, ASCE, Vol.107, No.7, pp. 759-777, (1981).
7. Mesri, G., “A re-evaluation of Su(mob)≈0.22σp using laboratory shear tests, ”Canadian Geotechnical Journal, Vol. 26, No.1, pp. 162-164.
8. Ou C. Y., Hsieh P. G. and Chiou D. C., “Characteristics of Ground Surface Settlement During Excavation.” Canadian Geotechnical Journal, Vol.35, pp. 758-767, (1993).
9. Terzaghi, K, Theoretocal Soil Mechanics, Wiley, New York, (1943).
10. Woo S. M. and Moh Z. C., “Geotechnical Characteristics of Soils in Taipei Basin.” Proceedings, 10th Southeast Asian Geotechnical Conference, Vol.2, pp. 51-65, (1990).
11. 中華民國內政部營建署,「建築技術規則」,2014。
12. 吳沛軫、王明俊、彭嚴儒,「連續壁變形行為探討」,第七屆大地工程學術研究討論會,台北金山,第601-608頁(1997)。
13. 歐章煜,進階深開挖工程分析與設計,科技圖書,台北,2017。
指導教授 黃俊鴻 盧志杰(Jin-Hung Hwang Chih-Chieh Lu) 審核日期 2024-8-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明