博碩士論文 110322602 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:31 、訪客IP:18.118.33.98
姓名 白翰迪(Handy Prasetyo)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 不同礦渣乳化瀝青冷再生混合料力學性質及環境評估試驗研究
(Experimental Study on Cold Recycled Mixtures of Emulsified Asphalt Incorporating Various Slag: Mechanical Properties and Environmental Assessment)
相關論文
★ Engineering and Environmental Analysis of Maintenance Interval in Taiwan Freeway -the Case of Guanxi Section★ 3D 鋪面調查車之驗證與國道應用分析
★ 營建剩餘土石方物流監控及管理系統之建置★ 透水性鋪面保水與溫差成效之評估 -以中壢市龍慈路為例
★ 以生命週期評估滾筒碴與轉爐石應用於瀝青混凝土之研究★ 傳統單點雷射與2D雷射應用於平坦度之比較研究
★ 鋪面劣化影像自動辨識應用於鋪面巡查精進研究★ 自動化鋪面破壞影像辨識系統導入鋪面破壞維護管理系統之研究
★ 以ETC大數據結合FWD建立台灣區高速公路鋪面結構評估準則之研究★ The Comparison Study of Various Surface Maintenance Alternatives in Taiwan Freeway
★ The Preliminary Study of conducting Pavement Maintenance Model for Taiwan Provincial Highways using Life-Cycle Cost Analysis★ 冷拌再生瀝青混凝土應用於管線挖掘回填層之可行性研究
★ 台灣現行修補材料運用於柔性鋪面表層裂縫與坑洞修補之耐久性初步探討★ 以車載藍光雷射建構國道鋪面抗滑值與二維紋理之關聯模型
★ 以不同光譜雷射應用於鋪面平坦度量測之綜合性評估★ 冷拌再生瀝青混凝土應用於道路管線挖掘回填工程之現地驗證
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 與熱拌瀝青相比,冷再生混合物具有更大的環境效益;然而,它們的機械性能和耐用性較差。這項研究的目標是創造一種冷再生混合物,透過摻入爐渣來提高冷再生混合物的耐久性。該方法旨在透過以礦渣材料取代再生瀝青路面 (RAP) 來減少廢棄物處置。不幸的是,台灣不允許使用鹼性氧氣爐渣 (BOF)、電弧爐渣 (EAF) 和焚化爐底渣 (IBA) 進入 CRME。本研究評估了混合物中加入爐渣對性能和環境的影響。礦渣材料建議將RAP作為冷再生混合物中的添加材料。礦渣具有膠凝特性和石灰石 (CaO) 成分。將礦渣摻入混合物中可望提高冷回收混合物的機械性能。該研究檢查了 RAP、BOF、EAF 和 IBA 是否符合 AASHTO MP-31 標準,廢料含量最多為 15%。乳化瀝青用作黏合劑。在性能試驗前確定了乳化瀝青、水泥和水的最佳含量。實驗室測試包括間接拉伸強度 (ITS)、拉伸強度比 (TSR) 和靜態蠕變測試。使用毒性特徵浸出程序 (TCLP) 和體積膨脹測試 (ASTM D-4792) 評估環境影響。最佳乳化劑、水泥和水含量分別為3.5%、0.7%和2.5%。機械測試結果表明,BOF 和 EAF 混合物具有更高的強度、防潮損壞性和抗永久變形性。 在 TCLP 測試中,根據標準限制,所有材料的指定重金屬濃度均低於以下值。膨脹穩定性測試結果顯示,所有材料在7天時膨脹低於0.5%,符合ASTM D2940規定的限制。研究得出的結論是,礦渣值得在冷再生混合物中使用,因為它對機械性能和環境效益有正面影響。利用爐渣有助於減少台灣的爐渣浪費,並可望進一步研究。
摘要(英) Cold recycled mixtures offer greater environmental benefits compared to hot mix asphalt; however, their mechanical performance and durability are inferior. The goal of this research is to create a cold recycling mixture that improves the durability of a cold recycled mixture by incorporating slags. This approach aims to reduce waste disposal by substituting slag materials for Reclaimed Asphalt Pavement (RAP). Unfortunatelly, using Basic Oxygen Furnace slag (BOFs), Electric Arc Furnace slag (EAFs), and Incinerator Bottom Ash (IBA) not allowed into CRME in Taiwan. This study asses the impact of including slag in the mixture on the performance and environment. Slag materials propose to incorporate RAP as addition materials in cold recycled mixture. Slag has cementitious properties and limestone (CaO) compositions. Incorporating slag into the mixture is expected to increase the mechanical properties of a cold recycled mixture. The study examines RAP, BOFs, EAFs, and IBA conforming to the AASHTO MP-31 standard with a maximum of 15% waste materials. Emulsified asphalt is used as a binder. The optimum contents of emulsified asphalt, cement, and water were determined before performance testing. Laboratory tests included indirect tensile strength (ITS), tensile strength ratio (TSR), and static creep tests. Environmental impact was assessed using the Toxicity Characteristic Leaching Procedure (TCLP) and volume expansion tests (ASTM D-4792). The optimum emulsified, cement, and water content were found to be 3.5%, 0.7%, and 2.5% respectively. Results of mechanical tests showed that BOFs and EAFs mixture provide higher strength, moisture damage resistance, and resistance to permanent deformation. In the TCLP test, all materials show concentrations of specified heavy metals below according to standard limitation. The result of the expansion stability test showed all materials were expanded lower than 0.5% at 7 days which satisfies the limitation specified by ASTM D2940. The study concludes that slag is worth using in cold recycled mixtures due to its positive impact on mechanical properties and environmental benefits. Utilizing slag helps decrease slag waste in Taiwan and is promising for further research.
關鍵字(中) ★ 冷再生混合料
★ 乳化瀝青
★ 環境評估
★ 機械性質
★ 礦渣
關鍵字(英) ★ Cold recycled mixture
★ Emulsified asphalt
★ Environmental evaluation
★ Mechanical properties
★ Slag
論文目次 摘要 i
ABSTRACT ii
Acknowledgements iii
Table of Contents iv
List of Figures vii
List of Tables ix
List of Abbreviations x
CHAPTER I INTRODUCTION 1
1-1 Research Background 1
1-2 Research Objective 2
1-3 Research Scopes 3
1-4 Research Flowchart 4
CHAPTER II LITERATURE REVIEW 6
2-1 Cold Recycled Mixtures 6
2-2 Cold Recycled Mixtures Emulsified Asphalt 7
2-3 Factors Affecting Mix Design of CRME 8
2-3-1 Emulsified Content 8
2-3-2 Cement Content 9
2-3-3 Water Content 9
2-4 Slag as a Construction Material 10
2-4-1 Basic Oxygen Furnace slag (BOFs) 10
2-4-2 Electric Arc Furnace slag (EAFs) 10
2-4-3 Incinerator Bottom Ash 10
2-5 Mechanical Performance of CRME using Slags 11
2-5-1 Indirect Tensile Strength (ITS) 11
2-5-2 Tensile Strength Ratio (TSR) 12
2-5-3 Static Creep 13
2-6 Environmental Characteristics of Slag 13
CHAPTER III METHODOLOGY 15
3-1 Basic Properties of Emulsified Asphalt 15
3-1-1 Storage Stability 15
3-1-2 Oversized Particles in Emulsified Asphalts 16
3-1-3 Cement Mixing 17
3-1-4 Penetration at 25° C, 100g, 5 sec 18
3-1-5 Solubility in Trichloroethylene 18
3-1-6 Residue by Evaporation Test 19
3-2 Basic Properties of Slag 20
3-2-1 Sieve Analysis 20
3-2-2 Specific Gravity 21
3-3 Materials and Procedure 22
3-3-1 Materials and Equipment 22
3-3-2 Procedure Mixture Samples 26
3-3-3 Data Collected 26
3-4 Factor Affecting Mix Design CRME 27
3-4-1 Emulsified Content 27
3-4-2 Cement Content 27
3-4-3 Water Content 28
3-5 Mechanical Performance Test Procedures 28
3-5-1 Indirect Tensile Strength 28
3-5-2 Tensile Strength Ratio 29
3-5-3 Static Creep 30
3-6 Environmental Evaluation of Slags 31
3-6-1 Toxicity Characteristics Leaching Procedure (TCLP) 31
3-6-2 Volume Expansion Stability 32
CHAPTER IV RESULT AND DISCUSSION 33
4-1 Basic Properties of Emulsified Asphalt 33
4-2 Basic Properties of Slag 33
4-2-1 Materials Gradation 34
4-2-2 Specific Gravity and Water Absorption 38
4-3 Optimum Mixture Design CRME using Slags 39
4-3-1 Determine Optimum Emulsified and Cement Content 39
4-3-2 Determine Optimum Water Content 42
4-4 Mechanical Performance of CRME using Slags 43
4-4-1 Investigation Strength of Indirect Tensile Strength 43
4-4-2 Investigation Resistance Moisture Damage 46
4-4-3 Investigation Permanent Deformation with Static Creep Test 47
4-5 Environmental Evaluation 50
4-5-1 Toxicity Characteristics Leaching Procedure (TCLP) 50
4-5-2 Optimum Moisture Content 50
4-5-3 Volume Expansion Stability 55
4-6 Discussion 62
CHAPTER V CONCLUSION AND RECOMMENDATION 64
5-1 Conclusion 64
5-1 Recommendation 64
References 66
參考文獻 [1] S. S. Dash, A. K. Chandrappa, and U. C. Sahoo, “Design and performance of cold mix asphalt – A review,” Constr. Build. Mater., vol. 315, no. January 2021, p. 125687, 2022, doi: 10.1016/j.conbuildmat.2021.125687.
[2] W. Yang, J. Ouyang, Y. Meng, B. Han, and Y. Sha, “Effect of curing and compaction on volumetric and mechanical properties of cold-recycled mixture with asphalt emulsion under different cement contents,” Constr. Build. Mater., vol. 297, p. 123699, 2021, doi: 10.1016/j.conbuildmat.2021.123699.
[3] Y. Wang, Z. Leng, X. Li, and C. Hu, “Cold recycling of reclaimed asphalt pavement towards improved engineering performance,” J. Clean. Prod., vol. 171, pp. 1031–1038, 2018, doi: 10.1016/j.jclepro.2017.10.132.
[4] Y. Yang, Y. Yang, and B. Qian, “Performance and microstructure of cold recycled mixes using asphalt emulsion with different contents of cement,” Materials (Basel)., vol. 12, no. 16, 2019, doi: 10.3390/ma12162548.
[5] S. N. A. Aker and H. Ozer, “Cold recycling mix design approach targeting permanent deformation resistance,” Constr. Build. Mater., vol. 400, no. December 2022, p. 132704, 2023, doi: 10.1016/j.conbuildmat.2023.132704.
[6] D. Wang et al., “Compaction Characteristics of Cold Recycled Mixtures with Asphalt Emulsion and Their Influencing Factors,” Front. Mater., vol. 8, no. April, pp. 1–11, 2021, doi: 10.3389/fmats.2021.575802.
[7] N. Tran et al., “Effect of a Recycling Agent on the Performance of High-RAP and High-RAS Mixtures: Field and Lab Experiments,” J. Mater. Civ. Eng., vol. 29, no. 1, pp. 2–9, 2017, doi: 10.1061/(asce)mt.1943-5533.0001697.
[8] J. Zhu, T. Ma, and Z. Fang, “Characterization of agglomeration of reclaimed asphalt pavement for cold recycling,” Constr. Build. Mater., vol. 240, p. 117912, 2020, doi: 10.1016/j.conbuildmat.2019.117912.
[9] S. Du, “Performance Characteristic of Cold Recycled Mixture with Asphalt Emulsion and Chemical Additives,” Adv. Mater. Sci. Eng., vol. 2015, 2015, doi: 10.1155/2015/271596.
[10] J. M. Terrones-Saeta, F. J. Iglesias-Godino, F. A. Corpas-Iglesias, and C. Martínez-García, “Study of the incorporation of ladle furnace slag in the manufacture of cold in-place recycling with bitumen emulsion,” Materials (Basel)., vol. 13, no. 21, pp. 1–20, 2020, doi: 10.3390/ma13214765.
[11] A. Modarres and P. Ayar, “Comparing the mechanical properties of cold recycled mixture containing coal waste additive and ordinary Portland cement,” Int. J. Pavement Eng., vol. 17, no. 3, pp. 211–224, 2016, doi: 10.1080/10298436.2014.979821.
[12] J. W. Chew, S. Poovaneshvaran, M. R. Mohd Hasan, H. Wang, A. Sani, and B. Golchin, “Serviceability during asphaltic concrete production and leaching concerns of asphalt mixture prepared with recycled paper mill sludge,” Int. J. Pavement Eng., vol. 23, no. 2, pp. 137–147, 2022, doi: 10.1080/10298436.2020.1736291.
[13] “第 02727 章 冷拌再生瀝青混凝土,” vol. 61, no. 1, pp. 1–36, 2021.
[14] “AASHTO MP-31, ‘Standard Specification for Materials for Cold Recycled Mixtures with Emulsified Asphalt,’” vol. 3, no. August, pp. 4–6, 2017.
[15] AASHTO T 283, “Resistance of Compacted Asphalt Mixtures to Moisture-Induced Damage,” vol. 2, no. 25 mm, pp. 1–6, 2017.
[16] Z. Al-Hashimi, S. Al-Busaltan, and B. Al-Abbas, “Advancements and Challenges in the Use of Cold Mix Asphalt for Sustainable and Cost-Effective Pavement Solutions,” E3S Web Conf., vol. 427, pp. 1–12, 2023, doi: 10.1051/e3sconf/202342703006.
[17] W. U. Filho, L. M. Gutiérrez Klinsky, R. Motta, and L. L. Bariani Bernucci, “Cold Recycled Asphalt Mixture using 100% RAP with Emulsified Asphalt-Recycling Agent as a New Pavement Base Course,” Adv. Mater. Sci. Eng., vol. 2020, 2020, doi: 10.1155/2020/5863458.
[18] H. K. Shanbara, A. Dulaimi, and T. Al-Mansoori, “Studying the mechanical properties of improved cold emulsified asphalt mixtures containing cement and lime,” IOP Conf. Ser. Mater. Sci. Eng., vol. 1090, no. 1, p. 012006, 2021, doi: 10.1088/1757-899x/1090/1/012006.
[19] M. Zaumanis, V. Haritonovs, G. Brencis, and J. Smirnovs, “Assessing the Potential and Possibilities for the Use of Warm Mix Asphalt in Latvia,” pp. 53–59, 2012, doi: 10.2478/v10311-012-0008-8.
[20] H. K. Shanbara et al., “The future of eco-friendly cold mix asphalt,” Renew. Sustain. Energy Rev., vol. 149, no. July 2020, p. 111318, 2021, doi: 10.1016/j.rser.2021.111318.
[21] F. Tang, S. Zhu, G. Xu, T. Ma, L. Kong, and L. Kong, “Influence by chemical constitution of aggregates on demulsification speed of emulsified asphalt based on UV-spectral analysis,” Constr. Build. Mater., vol. 212, pp. 102–108, 2019, doi: 10.1016/j.conbuildmat.2019.03.309.
[22] S. Ignatavicius, A. Kavanagh, M. J. Brennan, D. Colleran, J. Sheahan, and S. Newell, “Experimental investigation of optimum adhesion properties for anionic emulsions in road maintenance applications,” Constr. Build. Mater., vol. 304, no. August, p. 124678, 2021, doi: 10.1016/j.conbuildmat.2021.124678.
[23] A. Al-mohammedawi and K. Mollenhauer, “Current Research and Challenges in Bitumen Emulsion Manufacturing and Its Properties,” Materials (Basel)., vol. 15, pp. 1–29, 2022, doi: 10.3390/ma15062026.
[24] L. Kiihnl and A. F. Braham, “Developing a particle size specification for asphalt emulsion,” Constr. Build. Mater., vol. 293, p. 123414, 2021, doi: 10.1016/j.conbuildmat.2021.123414.
[25] L. Gao, F. Ni, S. Charmot, and H. Luo, “Influence on Compaction of Cold Recycled Mixes with Emulsions Using the Superpave Gyratory Compaction,” J. Mater. Civ. Eng., vol. 26, no. 11, pp. 1–9, 2014, doi: 10.1061/(asce)mt.1943-5533.0000987.
[26] T. Ma, H. Wang, Y. Zhao, X. Huang, and Y. Pi, “Strength Mechanism and Influence Factors for Cold Recycled Asphalt Mixture,” Adv. Mater. Sci. Eng., vol. 2015, pp. 1–11, 2015, doi: 10.1155/2015/181853.
[27] S. Chakravarthi, G. Rajkumar, and S. Shankar, “Evaluation of cold emulsified bitumen mixes using recycled con-crete aggregates as a base course,” Rev. la Constr., vol. 22, no. 2, pp. 523–552, 2023, doi: 10.7764/RDLC.22.2.523.
[28] A. Saidi, A. Ali, W. Lein, and Y. Mehta, “A Balanced Mix Design Method for Selecting the Optimum Binder Content of Cold In-Place Recycling Asphalt Mixtures,” Transp. Res. Rec., vol. 2673, no. 3, pp. 526–539, 2019, doi: 10.1177/0361198119835806.
[29] J. Xu, S. Huang, Y. Qin, and F. Li, “The impact of cement contents on the properties of asphalt emulsion stabilized cold recycling mixtures,” Int. J. Pavement Res. Technol., vol. 4, no. 1, pp. 48–55, 2011.
[30] S. M. Saeed et al., “Optimization of rubber seed oil content as bio-oil rejuvenator and total water content for cold recycled asphalt mixtures using response surface methodology,” Case Stud. Constr. Mater., vol. 15, no. March, p. e00561, 2021, doi: 10.1016/j.cscm.2021.e00561.
[31] M. Hugener, M. N. Partl, and M. Morant, “Cold asphalt recycling with 100% reclaimed asphalt pavement and vegetable oil-based rejuvenators,” Road Mater. Pavement Des., vol. 15, no. 2, pp. 239–258, 2014, doi: 10.1080/14680629.2013.860910.
[32] T. S. Naidu, C. M. Sheridan, and L. D. van Dyk, “Basic oxygen furnace slag: Review of current and potential uses,” Miner. Eng., vol. 149, no. August 2019, p. 106234, 2020, doi: 10.1016/j.mineng.2020.106234.
[33] F. Gulisano, G. Flores, and J. Gallego, “Healing response of cold recycled asphalt mixtures with electric arc furnace slag under microwave heating and re-compaction,” Mater. Struct. Constr., vol. 57, no. 4, 2024, doi: 10.1617/s11527-024-02326-w.
[34] Y. Zhao, P. Sun, P. Chen, X. Guan, Y. Wang, and R. Liu, “Component Modification of Basic Oxygen Furnace Slag with C 4 AF as Target Mineral and Application,” Sustainability, vol. 13, pp. 1–9, 2021, doi: 10.3390/su13126536.
[35] C. Fleuriault, J. Grogan, and J. White, “Electric Arc Smelting,” Miner. Met. Mater. Soc., vol. 71, no. 1, pp. 321–322, 2018, doi: 10.1007/s11837-018-3249-6.
[36] M. Manana et al., “Increase of capacity in electric arc-furnace steel mill factories by means of a demand-side management strategy and ampacity techniques,” Int. J. Electr. Power Energy Syst., vol. 124, no. July 2020, p. 106337, 2021, doi: 10.1016/j.ijepes.2020.106337.
[37] J. M. Chimenos, M. Segarra, M. A. Fernández, and F. Espiell, “Characterization of the bottom ash in municipal solid waste incinerator,” J. Hazard. Mater., vol. 64, no. 3, pp. 211–222, 1999, doi: 10.1016/S0304-3894(98)00246-5.
[38] C. J. Lynn, G. S. Ghataora, and R. K. Dhir OBE, “Municipal incinerated bottom ash (MIBA) characteristics and potential for use in road pavements,” Int. J. Pavement Res. Technol., vol. 10, no. 2, pp. 185–201, 2017, doi: 10.1016/j.ijprt.2016.12.003.
[39] R. Carvalho, R. V. Silva, J. de Brito, and M. F. C. Pereira, “Alkali activation of bottom ash from municipal solid waste incineration: Optimization of NaOH- and Na 2SiO3-based activators,” J. Clean. Prod., vol. 291, p. 125930, 2021, doi: 10.1016/j.jclepro.2021.125930.
[40] M. Ameri and A. Behnood, “Laboratory studies to investigate the properties of CIR mixes containing steel slag as a substitute for virgin aggregates,” Constr. Build. Mater., vol. 26, no. 1, pp. 475–480, 2012, doi: 10.1016/j.conbuildmat.2011.06.047.
[41] Z. Wang et al., “Quantitative Assessment of Road Performance of Recycled Asphalt Mixtures Incorporated with Steel Slag,” Materials (Basel)., vol. 15, no. 14, pp. 1–18, 2022, doi: 10.3390/ma15145005.
[42] Chen Yuecun, “The performance influence of cold mix recycled asphalt mixture with various cement content and emulsion content in the laboratory,” 2023.
[43] C. Aggregates, F. Aggregate, P. Limit, and S. Precision, “Standard Specification for Graded Aggregate Material for Bases or Subbases for Highways or Airports 1,” no. May, pp. 1–3, 2020, doi: 10.1520/D2940.
[44] J. E. S. L. Teixeira, A. G. Schumacher, P. M. Pires, V. T. F. Castelo Branco, and H. B. Martins, “Expansion Level of Steel Slag Aggregate Effects on Both Material Properties and Asphalt Mixture Performance,” Transp. Res. Rec., vol. 2673, no. 3, pp. 506–515, 2019, doi: 10.1177/0361198119835513.
[45] G. Wang, Y. Wang, and Z. Gao, “Use of steel slag as a granular material: Volume expansion prediction and usability criteria,” J. Hazard. Mater., vol. 184, no. 1–3, pp. 555–560, 2010, doi: 10.1016/j.jhazmat.2010.08.071.
[46] D. Deniz, E. Tutumluer, and J. S. Popovics, “Evaluation of expansive characteristics of reclaimed asphalt pavement and virgin aggregate used as base materials,” Transp. Res. Rec., no. 2167, pp. 10–17, 2010, doi: 10.3141/2167-02.
[47] Y. Li, L. Fan, H. Wei, and Y. Zhang, “Performance comparison analysis of cold recycled mixture of emulsified asphalt using 100% rap before and after the adding of cement,” IOP Conf. Ser. Earth Environ. Sci., vol. 300, no. 3, 2019, doi: 10.1088/1755-1315/300/3/032023.
[48] ASTM D6930, “Standard Test Method for Settlement and Storage Stability of Emulsified Asphalts,” pp. 1–3, 2019.
[49] ASTM D6933, “Standard Test Method for Oversized Particles in Emulsified Asphalts (Sieve Test),” pp. 1–2, 2018.
[50] ASTM D6935, “Standard Test Method for Determining Cement Mixing of Emulsified Asphalt,” pp. 1–2, 2011.
[51] ASTM D5, “Standard Test Method for Penetration of Bituminous Materials,” pp. 1–4, 2020.
[52] ASTM D2042, “Standard Test Method for Solubility of Asphalt Materials in Trichloroethylene,” pp. 1–3, 2015, doi: 10.1520/D2042-15.2.
[53] ASTM D6934, “Standard Test Method for Residue by Evaporation of Emulsified Asphalt,” pp. 1–2, 2022.
[54] W. Zhang, M. Zakaria, and Y. Hama, “Influence of aggregate materials characteristics on the drying shrinkage properties of mortar and concrete,” Constr. Build. Mater., vol. 49, pp. 500–510, 2013, doi: 10.1016/j.conbuildmat.2013.08.069.
[55] B. Yang, H. Xu, P. Zhou, and Y. Tan, “Investigation of aggregate moisture content variation and its impact on pavement performance of WMA,” Constr. Build. Mater., vol. 255, p. 119350, 2020, doi: 10.1016/j.conbuildmat.2020.119350.
[56] ASTM C136, “Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates,” pp. 1–5, 2019.
[57] ASTM C127, “Standard Test Method for Relative Density ( Specific Gravity ) and Absorption of Coarse,” pp. 1–5, 2015.
[58] ASTM C128, “Standard Test Method for Relative Density ( Specific Gravity ) and Absorption of Fine Aggregate,” pp. 1–6, 2022.
[59] I. H. Mondal, L. Rangan, and R. V. S. Uppaluri, “Heliyon Effect of oven and intermittent air fl ow assisted tray drying methods on nutritional parameters of few leafy and non-leafy vegetables of,” Heliyon, vol. 5, no. January, p. e02934, 2019, doi: 10.1016/j.heliyon.2019.e02934.
[60] O. Y. Shibarshina, D. V Vinogradov, A. S. Stupin, E. V Pimakhina, and A. A. Pimakhin, “Increasing the efficiency of the process of mixing components in the industrial production of dry mixes Increasing the efficiency of the process of mixing components in the industrial production of dry mixes,” J. Phys. Conf. Ser., pp. 1–9, 2022, doi: 10.1088/1742-6596/2373/7/072039.
[61] L. Liu, Z. Han, P. Wu, G. Zheng, and L. Sun, “Study on the Laboratory Mixing and Compaction Methodology of Emulsified Asphalt Cold Recycled Mixture,” Front. Mater., vol. 7, no. October, pp. 1–11, 2020, doi: 10.3389/fmats.2020.00231.
[62] A. Chegenizadeh, A. Tufilli, I. S. Arumdani, M. A. Budihardjo, E. Dadras, and H. Nikraz, “Mechanical Properties of Cold Mix Asphalt ( CMA ) Mixed with Recycled Asphalt Pavement,” infrastructures, vol. 07, pp. 1–14, 2022, doi: https://doi.org/10.3390/ infrastructures7040045.
[63] S. Salih and H. H. Zghair, “Some Properties of Emulsified Asphalt Paving Mixture at Iraqi Environmental Conditions Some Properties of Emulsified Asphalt Paving Mixture at Iraqi Environmental Conditions,” Tikrit J. Eng. Sci., vol. 21, no. January, pp. 10–18, 2017, [Online]. Available: https://www.researchgate.net/publication/306092093.
[64] S. N. A. Aker and H. Ozer, “Cold recycling mix design approach targeting permanent deformation resistance,” Constr. Build. Mater., vol. 400, no. July, p. 132704, 2023, doi: 10.1016/j.conbuildmat.2023.132704.
[65] Q. Zhang, Z. Fang, Y. Xu, and Z. Ma, “Calculation derivation and test verification of indirect tensile strength of asphalt pavement interlayers at low temperatures,” Materials (Basel)., vol. 14, no. 20, pp. 1–15, 2021, doi: 10.3390/ma14206041.
[66] Z. Liu and L. Sun, “A review of effect of compaction methods on cold recycling asphalt mixtures,” Constr. Build. Mater., vol. 401, no. July, p. 132758, 2023, doi: 10.1016/j.conbuildmat.2023.132758.
[67] L. Guo and D. Q. Wu, “Study of recycling Singapore solid waste as land reclamation filling material,” Sustain. Environ. Res., vol. 27, no. 1, pp. 1–6, 2017, doi: 10.1016/j.serj.2016.10.003.
[68] ASTM D4792, “Standard Test Method for Potential Expansion of Aggregates from Hydration,” vol. 13, no. February, pp. 1–3, 2019.
[69] ASTM D1883, “Standard Test Method for California Bearing Ratio ( CBR ) of Laboratory-Compacted Soils,” pp. 1–16, 2021.
[70] ASTM D698, “Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort,” pp. 1–13, 2021.
[71] P. Orosa, P. Ignacio, and A. R. Pasandín, “Case Studies in Construction Materials Evaluation of water loss and stiffness increase in cold recycled mixes during curing,” vol. 18, no. November 2022, 2023, doi: 10.1016/j.cscm.2023.e01877.
[72] S. Du, “Performance Characteristic of Cold Recycled Mixture with Asphalt Emulsion and Chemical Additives,” Adv. Mater. Sci. Eng., vol. 2015, pp. 1–8, 2015, doi: 10.1155/2015/271596 Research.
[73] L. Gao, F. Ni, D. Ph, S. Charmot, D. Ph, and H. Luo, “Influence on Compaction of Cold Recycled Mixes with Emulsions Using the Superpave Gyratory Compaction,” pp. 1–9, 1994, doi: 10.1061/(ASCE)MT.1943-5533.0000987.
[74] G. A. F. Cuevas, “Optimization of Cold Mixtures with Emulsion and High RAP Content,” Universidad Politécnica de Madrid, 2019.
[75] G. Flores and J. Gallego, “Influence of the Compaction Method in the Volumetric Design of Cold Recycled Mixtures with Emulsion,” Materials (Basel)., vol. 14, pp. 1–15, 2021, doi: 10.3390/ma14051309.
[76] D. Wang et al., “Compaction Characteristics of Cold Recycled Mixtures with Asphalt Emulsion and Their Influencing Factors,” Front. Mater., vol. 8, no. April, pp. 1–11, 2021, doi: 10.3389/fmats.2021.575802.
[77] M. B. Bouraima and Y. Qiu, “Investigation of influential factors on the tensile strength of cold recycled mixture with bitumen emulsion due to moisture conditioning,” J. Traffic, vol. 4, no. 2, pp. 198–205, 2017, doi: 10.1016/j.jtte.2016.08.005.
[78] M. Jaczewski, “Case Studies in Construction Materials Stiffness of cold-recycled mixtures under variable deformation conditions in the IT-CY test,” Constr. Mater., vol. 18, no. April, 2023, doi: 10.1016/j.cscm.2023.e02066.
[79] C. Sangiovanni, “Use of Steel Slag as an Alternative to Aggregate and Filler in Road Pavements,” Materials (Basel)., pp. 1–13, 2021, doi: 10.3390/ ma14020345.
[80] M. B. Bouraima and Y. Qiu, “Investigation of influential factors on the tensile strength of cold recycled mixture with bitumen emulsion due to moisture conditioning,” J. Traffic Transp. Eng. (English Ed., no. March, 2017, doi: 10.1016/j.jtte.2016.08.005.
[81] P. Meena, G. Ransinchung, R. Naga, and P. Kumar, “Effect of Mechanical Properties on Performance of Cold Mix Asphalt with Recycled Aggregates Incorporating Filler Additives,” Sustainability, vol. 16, pp. 1–23, 2024, doi: 10.3390/su16010344.
[82] Y. Kim, A. M. Asce, S. Im, S. M. Asce, H. D. Lee, and A. M. Asce, “Impacts of Curing Time and Moisture Content on Engineering Properties of Cold In-Place Recycling Mixtures Using Foamed or Emulsified Asphalt,” Mater. Civ. Eng., no. May, pp. 542–553, 2011, doi: 10.1061/(ASCE)MT.1943-5533.0000209.
[83] Z. Zhao, “Evaluation of Curing Effects on Bitumen Emulsion-Based Cold In-Place Recycling Mixture Considering Field-Water Evaporation and Heat-Transfer Conditions,” Coatings, pp. 1–17, 2023, doi: 10.3390/coatings13071204.
[84] Department of Transportation New York State, Standard Specifications for Portland Cement Concrete (PCC) Production and Placement. 2024.
[85] A. Golalipour, E. Jamshidi, Y. Niazi, and Z. Afsharikia, “Effect of Aggregate Gradation on Rutting of Asphalt Pavements,” Procedia - Soc. Behav. Sci., vol. 53, pp. 440–449, 2012, doi: 10.1016/j.sbspro.2012.09.895.
[86] L. Huang and D. Lin, “Influence of Cooling Efficiency of Basic Oxygen Furnace Slag Used in Recycled Asphalt Mixtures,” Int. J. Pavement Res. Technol., vol. 4, no. 6, pp. 347–355, 2011, doi: 1997-1400.
[87] X. C. Qiao, “Production of lightweight concrete using incinerator bottom ash,” Constr. Build. Mater., vol. 22, pp. 473–480, 2008, doi: 10.1016/j.conbuildmat.2006.11.013.
指導教授 陳世晃(Shih-Huang Chen) 審核日期 2024-8-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明