博碩士論文 112322043 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:122 、訪客IP:18.222.78.65
姓名 邱伯修(Bo-Siou Ciou)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 混凝土二氧化碳固碳技術之研究
(Study on CO2 Carbon Sequestration Technology in Concrete)
相關論文
★ 混凝土碳養護尺寸效應與耐久性之研究★ 飛灰及底灰混凝土碳養護對抗壓強度及耐久性之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-8-15以後開放)
摘要(中) 氣候變遷是21世紀的熱門話題,工業發展導致溫室效應日益嚴重,尤其二氧化碳排放影響最大,減少建築過程中的碳足跡成為新趨勢。本研究製作直徑10公分、高度20公分的混凝土圓柱試體,額外添加小蘇打和生石灰以水泥重量百分比計,並用廢棄混凝土骨材取代部分細骨材,用氣冷高爐石取代部分粗骨材,透過二氧化碳加速養護將二氧化碳封存於混凝土內。實驗控制兩種養護時間和壓力作為碳化條件,設計兩種碳化時機:拆模後的碳化養護和廢棄混凝土骨材的預碳化。探討不同碳化條件、添加物及碳化時機對混凝土碳吸收潛能的影響,同時進行抗壓強度、彈性模數、中性化、TGA和XRD測試。
結果顯示,二氧化碳吸收受碳養護時間和壓力影響甚大。6小時碳養護時間和4.08bar壓力下,各類混凝土達到最大碳吸收,其中純混凝土試體固碳率最高為6.08%,其次是添加2%小蘇打的試體,固碳率為4.69%,其餘混凝土碳吸收效果較差。結合碳吸收效果和抗壓強度試驗,確定了適當添加物比例:小蘇打2%、生石灰5%、廢棄混凝土骨材和氣冷高爐石各50%。碳養護對混凝土彈性模數係數影響不大,主要受混凝土種類影響;碳養護後試體的中性化深度最高為0.54mm,整體受中性化影響不大。XRD和TGA測試證實了碳酸鈣的存在。養護時間6小時、壓力4.08bar下,添加50%廢棄混凝土骨材的試體顯示最大碳酸鈣質量損失為4.179%。
摘要(英) Climate change is a popular topic in the 21st century. Industrial development has led to increasingly severe greenhouse effects, with carbon dioxide emissions having the most significant impact. Reducing the carbon footprint during the construction process has become a new trend. This study produced concrete cylinder specimens with a diameter of 10 cm and a height of 20 cm, and added baking soda and quicklime based on the percentage of cement weight. Waste concrete aggregates were used to replace a portion of the fine aggregates, and air-cooled blast furnace slag was used to replace a portion of the coarse aggregates. The specimens underwent accelerated carbon dioxide curing to sequester CO2 within the concrete.
The experiment controlled two curing durations and pressures as carbonation conditions, and designed two carbonation timings: carbonation curing after demolding and pre-carbonation of waste concrete aggregates. The study investigated the effects of different carbonation conditions, additives, and carbonation timings on the carbon absorption potential of concrete. Compressive strength, elastic modulus, neutralization, TGA, and XRD tests were conducted to understand the engineering and microstructural properties of the specimens.
The results showed that CO2 absorption was greatly influenced by the carbonation curing duration and pressure. Under 6 hours of carbonation curing and a pressure of 4.08 bar, various types of concrete reached maximum carbon absorption. Pure concrete specimens had the highest carbonation rate at 6.08%, followed by specimens with 2% baking soda at 4.69%. Other types of concrete showed less effective carbon absorption. Combining carbon absorption effects and compressive strength tests, the appropriate proportions of additives were determined: 2% baking soda, 5% quicklime, 50% waste concrete aggregates, and 50% air-cooled blast furnace slag.
Carbonation curing had little impact on the elastic modulus coefficient, which was mainly influenced by the type of concrete. The maximum neutralization depth after carbonation curing was 0.54mm, indicating minimal overall neutralization impact. XRD and TGA tests confirmed the presence of calcium carbonate. The specimen with 50% waste concrete aggregates showed the maximum calcium carbonate mass loss of 4.179% under 6 hours of curing and a pressure of 4.08 bar.
關鍵字(中) ★ 二氧化碳養護
★ 固碳率
★ 抗壓強度
★ 彈性模數
★ 中性化
關鍵字(英) ★ carbon dioxide curing
★ carbonation rate
★ compressive strength
★ modulus of elasticity
★ neutralization
★ XRD
★ TGA
論文目次 摘要 i
Abstract ii
致謝 iv
目錄 v
表目錄 ix
圖目錄 xi
第一章 緒論 1
1.1 研究動機 1
1.2 研究目的 2
第二章 文獻回顧 4
2.1 二氧化碳封存與利用 4
2.1.1 CCUS技術 5
2.1.2 二氧化碳封存方式(CCS) 5
2.1.3 二氧化碳利用方式(CCU) 7
2.2 混凝土養護方式 9
2.2.1 大氣養護 9
2.2.2 蒸氣養護 9
2.2.3 混凝土加速二氧化碳養護 11
2.2.4 混凝土碳養護結合飽和石灰水養護 15
2.3 影響混凝土二氧化碳加速養護之變數 18
2.3.1 二氧化碳養護參數 18
2.3.2 二氧化碳養護時機 22
2.3.3 額外摻料對碳養護混凝土的影響 24
2.3.4 骨材對碳養護混凝土的影響 27
2.4 混凝土碳吸收估算 30
2.4.1 質量增益法與質量曲線法 30
2.4.2 熱重分析法 30
2.4.3 理想氣體方程式估算法 30
2.5 碳養護對環境溫度的影響 31
2.6 小結 34
第三章 研究規劃與試驗方法 35
3.1 研究規劃與製作 35
3.2 試體配比與編號 40
3.2.1 試體配比 40
3.2.2 試體編號 40
3.3 試驗材料介紹 42
3.3.1 卜特蘭Ⅰ型水泥 42
3.3.2 天然粗骨材 43
3.3.3 天然細骨材 44
3.3.4 小蘇打 46
3.3.5 生石灰 47
3.3.6 廢棄混凝土骨材 47
3.3.7 氣冷高爐石 49
3.4 試體製備與養護處理 50
3.4.1 試體製備 50
3.4.2 試體養護處理流程與儀器介紹 51
3.4.3 廢棄混凝土骨材預碳化處理 54
3.4.4 混凝土碳吸收量及固碳率計算說明 58
3.5 試驗與設備介紹 59
3.5.1 抗壓強度試驗 59
3.5.2 彈性模數試驗 60
3.5.3 中性化深度試驗 61
3.5.4 X光粉末繞射試驗(X-ray Diffraction,XRD) 62
3.5.5 熱重分析試驗(Thermogravimetric Analyzer,TGA) 63
第四章 結果與討論 65
4.1 二氧化碳加速養護對混凝土碳吸收之影響 65
4.1.1 碳養護環境之溫度變化 65
4.1.2 碳養護環境之壓力變化 71
4.1.3 碳養護混凝土二氧化碳吸收量估算 74
4.1.4 碳養護時間對二氧化碳吸收量的影響 80
4.1.5 碳養護壓力對二氧化碳吸收量的影響 84
4.1.6 碳養護固碳率及每公斤混凝土碳吸收 87
4.1.7 碳養護過程之水分損失 89
4.2 二氧化碳加速養護對混凝土抗壓強度之影響 92
4.2.1 各類型混凝土隨齡期之抗壓強度發展 92
4.2.2 各類型混凝土相較於純混凝土之抗壓強度差別 96
4.3 二氧化碳加速養護及混凝土種類對彈性模數之影響 106
4.4 二氧化碳加速養護對中性化深度之影響 111
4.5 二氧化碳加速養護後試體結晶物定性與定量分析 116
4.5.1 XRD測試 116
4.5.2 TGA測試 120
第五章 結論與建議 123
5.1 結論 123
5.2 建議 126
參考文獻 127
附錄 134
參考文獻 [1] National Academy of Sciences. Climate change: Evidence and causes: Update 2020. The National Academies Press, Washington, DC, p. B-2,2020.
[2] Dvorak, M., et al. "Estimating the timing of geophysical commitment to 1.5 and 2.0 C of global warming", Nature Climate Change 12(6), Page 547-552, 2022.
[3] N. Müller, J. Harnisch, A blueprint for a climate friendly cement industry, 2008.
[4] Yixin Shao, Hilal El-Hassan."CO2 utilization in concrete", Sustainable Construction Materials and Technologies, 2013.
[5] J.G. Jang, G.M. Kim, H.J. Kim, H.K. Lee. "Review on recent advances in CO2 utilization and sequestration technologies in cement-based materials", Construction and Building Materials, Volume 127, Pages 762-773,2016.
[6] Kunal Krishna Das, Junjie Pei, Raju Sharma, et al. " Influence of silica fume and lime on belite-rich cement paste subjected to atmospheric and autoclave CO2 curing regime ", Construction and Building Materials, Volume 436,2024.
[7] Han Seong Ho, Jun Yubin, Shin, Tae Yong, Kim Jae Hong. "CO2 Curing Efficiency for Cement Paste and Mortars Produced by a Low Water-to-Cement Ratio ",Multidisciplinary Digital Publishing Institute, Vol. 13 Issue 17, p3883. 1p, 2020.
[8] IEA, " CO2 Emissions in 2023 ", Paris, 2024.
[9] IEA, " World Energy Outlook 2020 ", Paris, 2020.
[10] Cembureau, " Cementing the European Green Deal, Reaching Climate Neutrality along the Cement and Concrete Value Chain by 2050 ", 2020.
[11] Dooley, J. J., et al. "Carbon dioxide capture and geologic storage: a key component of a global energy technology strategy to address climate change." Joint Global Change Research Institute, Battelle Pacific Northwest Division, 2006.
[12] Blunt, Martin. "Carbon dioxide storage." Grantham Institute Briefing Paper 4, 2010.
[13] Bachu, S. " Screening and ranking of sedimentary basins for sequestration of CO2 in geological media in response to climate change. " Env Geol 44, Page 277–289, 2003.
[14] Celia, Michael Anthony, et al. "Status of CO2 storage in deep saline aquifers with emphasis on modeling approaches and practical simulations." Water Resources Research, Volume 51, Issue 9, Page 6846-6892, 2015.
[15] Dooley, J. J., et al. "Carbon dioxide capture and geologic storage: a key component of a global energy technology strategy to address climate change." Joint Global Change Research Institute, Battelle Pacific Northwest Division, 2006.
[16] Herzog, Howard J., Elisabeth M. Drake, and E. Eric Adams. " CO2 capture, reuse, and storage technologies for mitigating global climate change: A White Paper, Final Report. " Energy Laboratory, Massachusetts Institute of Technology, 1997.
[17] Lackner, Klaus S., A-H. Alissa Park, and Bruce G. Miller. "Eliminating CO2 emissions from coal-fired power plants." Generating electricity in a carbon-constrained world, Page 127-173, 2010.
[18] Godec, Michael L. "Global technology roadmap for CCS in industry sectoral assessment CO2 enhanced oil recovery." United Nations Industrial Development Organization, 2011.
[19] Monteiro, Juliana, and Simon Roussanaly. "CCUS scenarios for the cement industry: Is CO2 utilization feasible?." Journal of CO2 Utilization, Volume 61, 102015, 2022.
[20] Mac Dowell, N., Fennell, P., Shah, N. et al. " The role of CO2 capture and utilization in mitigating climate change. " Nature Clim Change 7, 243–249, 2017.
[21] Ravikumar, D., Zhang, D., Keoleian, G. et al. " Carbon dioxide utilization in concrete curing or mixing might not produce a net climate benefit. " Nat Commun, Volume 12, 855, 2021.
[22] 黃兆龍,「混凝土性質與行為」,台北市:詹氏書局,2005年。
[23] Mindess, Sidney, ed. " Developments in the Formulation and Reinforcement of Concrete. " Woodhead Publishing, 2019.
[24] Zeyad, Abdullah M., et al. "Review on effect of steam curing on behavior of concrete." Cleaner Materials, Volume 3, 100042, 2022.
[25] Saetta, Anna V., Bernhard A. Schrefler, and Renato V. Vitaliani. "The carbonation of concrete and the mechanism of moisture, heat and carbon dioxide flow through porous materials." Cement and Concrete Research, Volume 23, Issue 4, Page 761-772,1993.
[26] Johannesson, Björn, and Peter Utgenannt. "Microstructural changes caused by carbonation of cement mortar." Cement and concrete Research, Volume 31, Issue 6, Page 925-931, 2001.
[27] Jang, Jeong Gook, et al. "Review on recent advances in CO2 utilization and sequestration technologies in cement-based materials." Construction and Building Materials Volume 127 , Page 762-773, 2016.
[28] Morandeau, Antoine, Mickaël Thiery, and Patrick Dangla. "Investigation of the carbonation mechanism of CH and C-S-H in terms of kinetics, microstructure changes and moisture properties." Cement and Concrete Research, Volume 56, Page 153-170, 2014.
[29] Ibanez, Jordi, et al. "Hydration and carbonation of monoclinic C2S and C3S studied by Raman spectroscopy." Journal of Raman Spectroscopy: An International Journal for Original Work in all Aspects of Raman Spectroscopy, Including Higher Order Processes, and also Brillouin and Rayleigh Scattering, Volume 38, Issue 1 Page 61-67, 2007.
[30] Fang Yanfeng, et al. "Strength development and products evolution of β-C2S and γ-C3S induced by accelerated carbonation curing." Journal of Wuhan University of Technology-Mater. Sci. Ed. Volume 35, Issue 6 Page 1053-1060, 2020.
[31] Li, Zhen, Zhen He, and Xiaorun Chen. "The performance of carbonation-cured concrete." Materials, Volume 12, Issue 22, Page 3729, 2019.
[32] ASTM C511. "Standard specification for mixing rooms, moist cabinets, moist rooms, and water storage tanks used in the testing of hydraulic cements and concretes." 2013.
[33] Pan, Xiaoying, et al. "Properties and microstructure of CO2 surface treated cement mortars with subsequent lime-saturated water curing." Cement and Concrete Composites, Volume 99 Page 89-99, 2019.
[34] Zhan, Bao Jian, Dong Xing Xuan, and Chi Sun Poon. "Enhancement of recycled aggregate properties by accelerated CO2 curing coupled with limewater soaking process." Cement and concrete composites, Volume 89 Page 230-237, 2018.
[35] El-Hassan, Hilal, and Yixin Shao. "Carbon storage through concrete block carbonation curing." Journal of Clean Energy Technologies, Volume 2, Issue 3, Page 287-291, 2014.
[36] Xuan, Dongxing, Baojian Zhan, and Chi Sun Poon. "Development of a new generation of eco-friendly concrete blocks by accelerated mineral carbonation." Journal of Cleaner Production, Volume 133 Page 1235-1241, 2016.
[37] Ahmad, Shamsad, et al. "Effects of carbonation pressure and duration on strength evolution of concrete subjected to accelerated carbonation curing." Construction and Building Materials, Volume 136, Page 565-573, 2017.
[38] Xue, Quan, et al. "Evolution of structural and mechanical properties of concrete exposed to high concentration CO2." Construction and Building Materials, Volume 343, 128077, 2022.
[39] Li, Liang, and Min Wu. "An overview of utilizing CO2 for accelerated carbonation treatment in the concrete industry." Journal of CO2 Utilization, Volume 60, 102000, 2022.
[40] Taylor, Harry FW. Cement chemistry. Vol. 2. London: Thomas Telford, 1997.
[41] Zhang, Duo, Victor C. Li, and Brian R. Ellis. "Optimal pre-hydration age for CO2 sequestration through portland cement carbonation." ACS Sustainable Chemistry & Engineering, Volume 6, Issue 12 Page 15976-15981, 2018.
[42] Loh, Hyun-Chae, et al. "Time-space-resolved chemical deconvolution of cementitious colloidal systems using Raman spectroscopy." Langmuir, Volume 37, Issue 23 Page 7019-7031, 2021.
[43] Haynes, William M. CRC handbook of chemistry and physics. CRC press, 2016.
[44] Jang, J. G., et al. "The influence of sodium hydrogen carbonate on the hydration of cement." Construction and Building Materials, Volume 94, Page 746-749,2015.
[45] Damian Stefaniuk, Marcin Hajduczek, James C Weaver, Franz J Ulm, Admir Masic, Cementing CO2 into C-S-H: A step toward concrete carbon neutrality, PNAS Nexus, Volume 2, Issue 3, March 2023.
[46] Steinour, Harold H. "Some effects of carbon dioxide on mortars and concrete-discussion." J. Am. Concr. Inst, Volume 30, Issue 2 Page 905-907, 1959.
[47] Campbell, F. R., A. W. D. Hills, and A. Paulin. "Transport properties of porous lime and their influence on the decomposition of porous compacts of calcium carbonate." Chemical Engineering Science, Volume 25, Issue 6, Page 929-942,1970.
[48] Choi, Sunho, Jeffrey H. Drese, and Christopher W. Jones. "Adsorbent materials for carbon dioxide capture from large anthropogenic point sources." ChemSusChem: Chemistry & Sustainability Energy & Materials, Volume 2, Issue 9, Page 796-854, 2009.
[49] Zheng, Hao, et al. "Novel procedure of CO 2 capture of the CaO sorbent activator on the reaction of one-part alkali-activated slag." RSC advances, Volume 11, Issue 21, Page 12476-12483, 2021.
[50] Li, Ning, Liwu Mo, and Cise Unluer. "Emerging CO2 utilization technologies for construction materials: A review." Journal of CO2 Utilization, Volume 65, Page 102237, 2022.
[51] Fang, Yanfeng, and Jun Chang. "Microstructure changes of waste hydrated cement paste induced by accelerated carbonation." Construction and Building Materials, Volume 76, Page 360-365, 2015.
[52] Vasanthi, P. "Flexural behaviour of reinforced concrete slabs using steel slag as coarse aggregate replacement." Int. J. Res. Eng. Technol, Volume 3, Page 141-146, 2014.
[53] El-Tair, Ahmed Maher, et al. "Utilization of Water-Cooled and Air-Cooled Slag Aggregate in Concrete: A Solution to the Secular Economy." Eng, Volume 1, Issue 1, Page 48-59, 2020.
[54] Baciocchi, Renato, et al. "Carbonation of stainless steel slag as a process for CO 2 storage and slag valorization." Waste and biomass valorization, Volume 1, Page 467-477, 2010.
[55] Pullin, Huw, et al. "Atmospheric carbon capture performance of legacy iron and steel waste." Environmental science & technology, Volume 53, Issue 16, Page 9502-9511,2019.
[56] Lu, Bao, et al. "Effect of temperature on CO2 curing, compressive strength and microstructure of cement paste." Cement and Concrete Research Volume 157, 106827, 2022.
[57] 高士軒,「二氧化碳養護對混凝土性質影響之研究」,國立中央大學土木工程研究所,碩士論文,指導老師:王勇智、李明君,2017年。
[58] Goodbrake, Chris J., J. Francis Young, and Richard L. Berger. "Reaction of beta‐dicalcium silicate and tricalcium silicate with carbon dioxide and water vapor." Journal of the American Ceramic Society, Volume 62, Issue 3‐4, Page 168-171, 1979.
[59] Li, Zhen, Zhen He, and Yixin Shao. "Early age carbonation heat and products of tricalcium silicate paste subject to carbon dioxide curing." Materials, Volume 11, Issue 5, Page 730, 2018.
[60] 中華民國內政部國土管理署,「棄土計畫簡報」,1999年。
[61] 蕭宛瑄,「二氧化碳養護對高強度透水混凝土性質之影響」,國立中央大學土木工程研究所,碩士論文,指導老師:王勇智、李明君,2018年。
[62] 蔡念璇,「底灰及飛灰混凝土碳養護之工程性質研究」,國立中央大學土木工程研究所,碩士論文,指導老師:王勇智、李明君,2023年。
[63] 廖正文、林致淳、詹穎雯,「台灣混凝土彈性模數建議公式研究」,第31卷 第3期,5-31頁,結構工程,2016年。
[64] 王傳暉,「台灣地區鋼筋混凝土橋中性化效應之耐久性評估」,國立台北科技大學土木與防災技術研究所,碩士論文,指導教授:宋裕祺,2005年。
指導教授 王勇智 李明君(Yung-Chih Wang Ming-Gin Lee) 審核日期 2024-8-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明