博碩士論文 111322038 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:13.59.133.194
姓名 鮑暐文(Wei-Wen Pao)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 紅土礫石層剪力波速剖面與明挖隧道受振行為模擬
(Shear wave velocity profile of lateritic gravel and seismic behavior simulation of open cut tunnel)
相關論文
★ 以離心振動臺試驗模擬緩衝材料中廢棄物罐之振動反應★ 緩衝材料在不同圍壓下之工程性質
★ 具裂縫的緩衝材料自癒行為模擬★ 具不同上部結構之樁基礎受振行為
★ 基盤土壤液化對上方土堤位移的影響★ 回填與緩衝材料之動態強度
★ 砂質土壤中柔性擋土牆在動態載重下的行為★ Effect of Vertical Drain Methods on The Soil Liquefaction
★ Centrifuge Modelling on Failure Behaviours of Sandy Slope Caused by Gravity, Rainfall and Earthquake★ 微生物膠結作用對砂質土壤性質的影響
★ 基盤土壤液化引致的側潰對上方土堤之影響及其改善對策★ 土壤液化引致側向滑移對樁基礎之影響及其對策
★ 挖掘機鏟斗上土壤黏附問題的基礎研究★ 低放射性廢棄物最終處置回填材料於不同配比下之工程力學特性
★ 以離心振動台試驗探討 基盤振動方向與坡向夾角對側向滑移之反應★ 應用時域反射法於地層下陷監測之改善研發
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-8-23以後開放)
摘要(中) 本研究以離心振動台共進行5組離心模型振動台試驗,將30 cm高之自由場試體放置於 80 g的人造離心重力場,模擬24 m厚紅土礫石層之自由場受振反應,紀錄不同深度之加速度歷時、地表沉陷與土體側向位移量歷時,以探討土層的剪力波速、放大倍率、地表沉陷量及地層沿深度之側向變位,以及隧道受振期間引致的動態特性。
試驗結果顯示,(1) 無連續壁僅埋置隧道的試驗情況下,輸入振動條件為1 Hz、15 cycle、PBA = 0.25 g,試驗量測土層最大剪應變於深度8.4 m ~ 14.8 m為同深層隧道最大剪應變之30倍,為經驗公式 γ=V_max/C_s 求得土層最大剪應變之2倍,故以公式推求隧道最大剪應變較為合理,安全係數為15,其中2 Hz與3 Hz輸入之基盤加速度較小,故只比較各試驗條件下1 Hz的振動事件;(2) 土層的放大倍率,以能量的觀點來看(累積絕對加速度,CAV),由深度24 m往上傳遞至深度16.7 m大約放大1.1倍;深度24 m傳遞至深度7.3 m大約放大2.3倍;深度24 m傳遞至深度2 m大約放大2.9倍;(3) 隧道頂部無覆土、隧道頂部有覆土及無連續壁僅埋置隧道的不同試驗情況下,都將會於隧道頂版及底版角落位置產生較大的應變量。無連續壁僅埋置隧道的試驗條件下產生最大的應變量約為埋置連續壁與隧道條件的3 ~ 5倍,連續壁的存在可減少隧道角落位置產生的應變量;(4) 受振後隧道產生的殘餘應變量約為受振期間最大應變量的十分之一,且殘餘應變會隨振動事件次數累加;(5) 土層剪應變量隨輸入PBA越大而有遞增的趨勢,趨勢並非為線性增長。
摘要(英) This study involves five sets of centrifuge shaking table tests, with a free-field model 30 cm in height placed within an 80g artificial gravity field to simulate the seismic response of a 24-meter-thick red clay gravel layer in a free field. The acceleration time histories at different depths, surface settlements, and lateral displacements of the soil were recorded to investigate shear wave velocity, amplification factors, surface settlements, and lateral displacements along the depth of the soil layer, as well as the dynamic characteristics induced by tunnel vibrations.
The test results indicate the following: (1) Without continuous walls, the maximum shear strain in the soil was 30 times greater than that in the tunnel and double the amount calculated by the empirical formula. Using the formula provides a more reasonable estimate for the tunnel′s maximum shear strain, with a safety factor of 15. (2) The amplification factor of the soil layer increased with depth, with 1.1 times at 16.7 m, 2.3 times at 7.3 m, and 2.9 times at 2 m. (3) Significant strain occurred at the corners of the tunnel roof and floor, with the absence of continuous walls resulting in strains 3 to 5 times higher. Continuous walls help reduce this strain. (4) Residual strain after vibration was about one-tenth of the maximum strain and accumulated with repeated vibration events. (5) Shear strain in the soil layer increased with larger input PBA, though the increase was not linear.
關鍵字(中) ★ 地工離心機
★ 振動台
★ 紅土礫石
★ 剪力波速
★ 隧道
關鍵字(英) ★ Geotechnical centrifuge
★ Shaking table
★ Lateritic gravel
★ Shear wave velocity
★ Tunnel
論文目次 摘要 i
Abstract ii
目錄 iii
圖目錄 vi
表目錄 xix
一、前言 1
1-1 研究背景與目的 1
1-2 研究方法 2
1-3 論文架構 2
二、文獻回顧 3
2-1 離心模型原理 3
2-1-1 離心模型縮尺率 5
2-1-2 尺寸效應對離心模型之影響 6
2-1-3 科氏加速度對離心模型之影響 7
2-1-4 模型模擬 7
2-2 鐵路明挖覆蓋隧道設計規範 10
2-3 離心模型動態試驗中剪力波速之演變 11
2-4 離心隧道模型振動台試驗 12
2-5 1g模型振動台試驗 16
2-6 周圍土壤液化隧道上浮機制 17
2-7 防治液化引致隧道上浮的對策 18
三、試驗設備與試體準備 21
3-1 試驗儀器與設備 21
3-1-1 地工離心機 21
3-1-2 單軸向振動台 22
3-1-3 資料擷取系統 24
3-1-4 各式感測器 25
3-1-5 積層版試驗箱(laminar box)及橡皮囊袋 28
3-2 試驗土樣 30
3-3 模型製作及試體準備 30
3-3-1 連續壁模型製作 31
3-3-2 隧道模型製作 33
3-3-3 橡皮囊袋製作與積層版試驗箱組立 37
3-3-4 試體製作 38
3-4 離心模型試驗 43
四、試驗規劃與結果討論 44
4-1 試驗規劃 44
4-2 分析方法 53
4-2-1 地層剪力波速(Shear wave velocity, Vs) 53
4-2-2 顯著頻率 54
4-2-3 加速度反應及歷時圖 55
4-2-4 累積絕對速度值(CAV)之放大倍率 56
4-2-5 地表沉陷量與地層延深度之側向變位 56
4-2-6 地層延深度之側向剪應變 57
4-2-7 隧道應變量 58
4-2-8 隧道剪應變 58
4-3 試驗結果 60
4-3-1 SG–F試驗結果(粉土礫石–自由場) 60
4-3-2 LG–F 試驗結果(紅土礫石–自由場) 79
4-3-3 LG–TD1 試驗結果(紅土礫石–隧道頂端無覆土) 102
4-3-4 LG–TD2 試驗結果(紅土礫石–隧道頂端有覆土) 130
4-3-5 LG–T 試驗結果(紅土礫石–僅隧道埋至於土層中央) 158
4-4 結果比較 186
4-4-1 不同試驗情況於不同深度的剪應變及正規化剪應變值比較 186
4-4-2 不同試驗情況下隧道剪應變與土層剪應變之比較 187
4-4-3 不同試驗情況下土層剪應變之比較 188
五、結論與建議 191
5-1 結論 191
5-2 建議 193
參考文獻 194
附件 197
參考文獻 [1] Angelo Amorosi, Daniela Boldini, and Gaetano Falcone, "Numerical prediction of tunnel performance during centrifuge dynamic tests," Springer-Verlag Berlin Heidelberg, Vol.9, No. 4, pp. 581-596, (2014).
[2] Baziar, M.H., Moghadam, M.R., Kim, D.S., and Choo, Y.W., "Effect of underground tunnel on the ground surface acceleration," Tunnelling and Underground Space Technology, Vol. 44, pp.10-22, (2014).
[3] Chou, H.S., Yang, C.Y., Hseieh, and Chang, S.S., “A Study of Liquefaction Related Damages on Shield Tunnels,” Tunnelling and Underground Space Technology, Vol. 16, pp.185-193, (2001).
[4] Chen, H.T., and Chen W.H., “Effectiveness of Diaphragm Wall in Reducing The Potential of Soil Liquefaction Induced by Earthquakes,” 2nd International Conference on Urban Earthquake Engineering, Tokyo, Japan, pp. 36-43, (2005).
[5] Chen, Z.F., and Bian, M.H., “Dynamic centrifuge test and numerical modelling of the seismic response of the tunnel in cohesive soil foundation,” Buildings, Vol. 12, No. 3, (2012).
[6] Hashash, Y.M.A, Hook, J.J., Schmidt,B., and Tao, J.I., “Seismic Design and Analsis of Underground Structures,” Tunnelling and Underground Space Technology, Vol. 16, pp.247-293, (2001).
[7] Hung, W.Y., Lee, C.J., Chung, W.Y., Tsai, C.H., Chen, T., Huang, C.C., and Wu, Y.C., “Seismic behavior of pile in liquefiable soil ground by centrifuge shaking table tests,” Journal of Vibroengineering, Vol. 16, Issue 2, pp. 712-720, (2014).
[8] Juneja, A., Hegde, A., Lee, F.H., and Yeo, C.H., "Centrifuge modelling of tunnel face reinforcement using forepoling," Tunnelling and Underground Space Technology, Vol.25, No.4, pp. 377-381, (2010).
[9] Koseki, J., Matsuo, O., and Koga, Y., “Uplift Behavior of Underground Structures Caused by Liquefaction of Surrounding Soil During Earthquake,” Soils and Foundations, Vol. 37, No.1, pp. 97-108, (1997).
[10] Kutter, B.L., Chou, J.C., and Travasarou, T., “Centrifuge Testing of the Seismic Performance of a Submerged Cut-and-Cover Tunnel in Liquefiable Soil,” Geotechnical Earthquake Engineering and Soil Dynamics, IV GSP 181 ASCE, (2008).
[11] Ling, H.I., Mohri, Y., Kawabata, T., Liu, H., Burke, C., and Sun, L., “Centrifuge Modeling of Seismic Behavior of Large-Diameter Pipe in Liquefiable Soil,” Journal of Geotechnical and Geoenviromental Engineering, Vol. 129, No. 12, pp.1092-1101, (2003).
[12] Lee, C.J., Wang, C.R., Wei, Y.C., and Hung, W.Y., “Evolution of the shear wave velocity during shaking modeled in centrifuge shaking table tests,” Bulletin of Earthquake Engineering, Vol. 10, No. 2, pp. 401-420, (2012).
[13] Nazri, F.M., Tan, C.G., and Ramli, M.Z., “Investigation of site-specific shear wave velocity for geotechnical engineering applications using microtremor array measurement,” Soil mechanics and foundation engineering, Vol. 53, pp. 332-335, (2016).
[14] Poulos, H.G., “Use of shear wave velocity for foundation design,” Geotechnical and geological engineering, Vol. 12, pp. 1-18, (2021).
[15] Tani, K., Ueta, K., and Onizuka, N., “Discussion on Earthquake fault rupture propagation through soil,” Journal of geotechnical engineering, ASCE, Vol. 122, No. 1, pp. 80-82, (1996).
[16] Tanimoto, S., Sugita, H., Takahashi, A., and Takiuchi, T., “Physical Modeling and Evaluation of Pile Foundations Retrofitted with Sheet Piles as a Measure Against Liquefaction,” Public Works Research Report, No. 22, (2001).
[17] Yan, D, Naesgaard, E, Byrne, P.M., Adalier, K., and Abdoun, T., “Numerical Model Verification and Calibration of George Massey Tunnel Using Centrifuge Models,” Candian Geotechnical Journal, Vol. 41, pp. 921-942, (2004).
[18] Yuan, Z.H., Cai, Y.Q., Sun, H.L., Shi, L., and Pan, X.D., “The influence of a neighboring tunnel on the critical velocity of a three-dimensional tunnel-soil system,” International Journal of Solids and Structures, Vol. 212, pp. 23-45, (2021).
[19] 周功台,「液化區基礎修復補強工法」,台灣省大地技師公會,科技圖書公司,(1990)。
[20] 安田進,「液狀とその對策」,基礎工程,Vol. 12,pp.64-70,(1993)。
[21] 李崇正,「離心機模型原理」,實驗土壤力學講義,臺灣,(1997)。
[22] 簡茂洲,「擋土設施及支撐之種類及其工作原理」,台北市土木技師公會,(2003)。
[23] 交通部公路工程部,「隧道設計標準」,市區道路及附屬工程設計規範,(2003)。
[24] 日本隧道工學委員會,日本隧道工程標準規範及解說-[明挖覆蓋篇],(2003)。
[25] 賴建名、黃繼鋒、黃啟修、蘇福來、胡庭豪,中興工程顧問股份有限公司;陳俊宏,台北市捷運工程局,「捷運車站旁深開挖與下方潛盾穿越影響」,地工技術第123期,第 85-96 頁,臺北,(2010)。
[26] 何樹根,富國技術工程股份有限公司;高世鍊,台灣邁達斯股份有限公司,「都會區大範圍無支撐開挖案例」,地工技術第128期,第 89-98 頁,臺北,(2011)。
[27] 交通部鐵道局,「鐵路明挖覆蓋隧道設計規範」,市區道路及附屬工程設計規範,(2016)。
[28] 黃俊學,「基盤土壤液化對上方土堤位移的影響」,碩士論文,國立中央大學土木工程學系,中壢,(2016)。
[29] 張睿庭,「以離心模型試驗探討輸電鐵塔於不同地盤條件下之動態反應」,碩士論文,國立中央大學土木工程學系,中壢,(2020)。
[30] 汪祐毅,「以離心模型試驗探討輸電鐵塔於不同地盤條件下之動態反應」,碩士論文,國立中央大學土木工程學系,中壢,(2021)。
[31] 黃偉祥,「以離心模型探討地下水位高程對矩形隧道動態反應的影響」,碩士論文,國立中央大學土木工程學系,中壢,(2022)。
指導教授 洪汶宜(Wen-Yi Hung) 審核日期 2024-8-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明