參考文獻 |
[1] Abidi, M. H., Mohammed, M. K., & Alkhalefah, H. (2022). Predictive Maintenance Planning for Industry 4.0 Using Machine Learning for Sustainable Manufacturing. Sustainability, 14(6).
[2] Alom, M. Z., Taha, T. M., Yakopcic, C., Westberg, S., Sidike, P., Nasrin, M. S., Hasan, M., Van Essen, B. C., Awwal, A. A. S., & Asari, V. K. (2019). A State-of-the-Art Survey on Deep Learning Theory and Architectures. Electronics, 8(3).
[3] Balasch, A., Beinhofer, M., & Zauner, G. (2020). The Relative Confusion Matrix, a Tool to Assess Classifiablility in Large Scale Picking Applications. 2020 IEEE International Conference on Robotics and Automation (ICRA)
[4] Castelo-Branco, I., Oliveira, T., Simões-Coelho, P., Portugal, J., & Filipe, I. (2022). Measuring the fourth industrial revolution through the Industry 4.0 lens: The relevance of resources, capabilities and the value chain. Computers in Industry, 138.
[5] Çınar, Z. M., Abdussalam Nuhu, A., Zeeshan, Q., Korhan, O., Asmael, M., & Safaei, B. (2020). Machine Learning in Predictive Maintenance towards Sustainable Smart Manufacturing in Industry 4.0. Sustainability, 12(19).
[6] Compare, M., Baraldi, P., & Zio, E. (2020). Challenges to IoT-Enabled Predictive Maintenance for Industry 4.0. IEEE Internet of Things Journal, 7(5), 4585-4597.
[7] Decelle, A. (2023). An Introduction to Machine Learning: a perspective from Statistical Physics. Physica A: Statistical Mechanics and its Applications, 631.
[8] Fila, R., Khaili, M. E., & Mestari, M. (2020). Cloud Computing for Industrial Predictive Maintenance Based on Prognostics and Health Management. Procedia Computer Science, 177, 631-638.
[9] Fink, O., Wang, Q., Svensén, M., Dersin, P., Lee, W.-J., & Ducoffe, M. (2020). Potential, challenges and future directions for deep learning in prognostics and health management applications. Engineering Applications of Artificial Intelligence, 92.
[10] Florian, E., Sgarbossa, F., & Zennaro, I. (2021). Machine learning-based predictive maintenance: A cost-oriented model for implementation. International Journal of Production Economics, 236.
[11] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., & Bengio, Y. (2014). Generative adversarial nets. Advances in neural information processing systems, 27.
[12] Huang, J., Chang, Q., & Arinez, J. (2020). Deep reinforcement learning based preventive maintenance policy for serial production lines. Expert Systems with Applications, 160.
[13] Islam, S., Elmekki, H., Elsebai, A., Bentahar, J., Drawel, N., Rjoub, G., & Pedrycz, W. (2024). A comprehensive survey on applications of transformers for deep learning tasks. Expert Systems with Applications, 241, 122666.
[14] Kerkhof, M., Wu, L., Perin, G., & Picek, S. (2023). No (good) loss no gain: systematic evaluation of loss functions in deep learning-based side-channel analysis. Journal of Cryptographic Engineering, 13(3), 311-324.
[15] Khan, S., & Yairi, T. (2018). A review on the application of deep learning in system health management. Mechanical Systems and Signal Processing, 107, 241-265.
[16] Lee, J., Wu, F., Zhao, W., Ghaffari, M., Liao, L., & Siegel, D. (2014). Prognostics and health management design for rotary machinery systems—Reviews, methodology and applications. Mechanical Systems and Signal Processing, 42(1-2), 314-334.
[17] Maria Navin, J., & Pankaja, R. (2016). Performance analysis of text classification algorithms using confusion matrix. International Journal of Engineering and Technical Research (IJETR), 6(4), 75-78.
[18] Masum, S., Liu, Y., & Chiverton, J. (2018). Multi-step Time Series Forecasting of Electric Load Using Machine Learning Models. In Artificial Intelligence and Soft Computing (pp. 148-159).
[19] Mercioni, M. A., & Holban, S. (2020). The Most Used Activation Functions: Classic Versus Current. 2020 International Conference on Development and Application Systems (DAS).
[20] Nguyen, H. D., Tran, K. P., Thomassey, S., & Hamad, M. (2021). Forecasting and Anomaly Detection approaches using LSTM and LSTM Autoencoder techniques with the applications in supply chain management. International Journal of Information Management, 57.
[21] Pech, M., Vrchota, J., & Bednar, J. (2021). Predictive Maintenance and Intelligent Sensors in Smart Factory: Review. Sensors (Basel), 21(4).
[22] Roque, A. S., Krebs, V. W., Figueiro, I. C., & Jazdi, N. (2022). An analysis of machine learning algorithms in rotating machines maintenance. IFAC-PapersOnLine, 55(2), 252-257.
[23] Shao, M., & Gu, N. (2021). Anomaly Detection Algorithm Based on Semi-Supervised Collaborative Strategy. Journal of Physics: Conference Series, 1944(1), 012017.
[24] Sharma, D. B., Sripradha, Nikita, Kodipalli, A., Rao, T., & R, B. R. (2023). Machine Predictive Maintenance Classification Using Machine Learning. 2023 International Conference on Computational Intelligence for Information, Security and Communication Applications (CIISCA).
[25] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł., & Polosukhin, I. (2017). Attention is all you need. Advances in neural information processing systems, 30.
[26] Vogl, G. W., Weiss, B. A., & Helu, M. (2019). A review of diagnostic and prognostic capabilities and best practices for manufacturing. J Intell Manuf, 30(1), 79-95.
[27] Xu, P. (2019). Review on Studies of Machine Learning Algorithms. Journal of Physics: Conference Series, 1187(5), 052103.
[28] Yang, G., Ma, Q., Sun, H., & Zhang, X. (2022). State of Health Estimation Based on GAN-LSTM-TL for Lithium-ion Batteries. International Journal of Electrochemical Science, 17(11).
[29] Zonta, T., da Costa, C. A., da Rosa Righi, R., de Lima, M. J., da Trindade, E. S., & Li, G. P. (2020). Predictive maintenance in the Industry 4.0: A systematic literature review. Computers & Industrial Engineering, 150. |