參考文獻 |
Ahmad, S., Lavin, A., Purdy, S., & Agha, Z. (2017). Unsupervised real-time anomaly detection for streaming data. Neurocomputing, 262, 134–147.
Biggio, L. and I. Kastanis (2020). "Prognostics and health management of industrial assets: Current progress and road ahead." Frontiers in Artificial Intelligence 3: 578613.
Calabrese, F., Regattieri, A., Botti, L., & Galizia, F. G. (2019). Prognostic Health Management of Production Systems. New Proposed Approach and Experimental Evidences. Procedia Manufacturing, 39, 260–269.
Gharib, H., & György Kovács. (2023). A Review of Prognostic and Health Management (PHM) Methods and Limitations for Marine Diesel Engines: New Research Directions. Machines, 11(7), 695–695.
Hwang, S.Y., & Kim, J.J. (2023). A Universal Activation Function for Deep Learning. Computers, Materials & Continua, 75(2), 3553–3569.
Kanawaday, A. and A. Sane (2017). Machine learning for predictive maintenance of industrial machines using IoT sensor data. 2017 8th IEEE international conference on software engineering and service science (ICSESS), IEEE.
Khan, P., Kader, M. F., Islam, S. M. R., Rahman, A. B., Kamal, M. S., Toha, M. U., & Kwak, K.S. (2021). Machine Learning and Deep Learning Approaches for Brain Disease Diagnosis: Principles and Recent Advances. IEEE Access, 9, 37622–37655.
Kim, S., Choi, J.H., & Kim, N. H. (2021). Challenges and Opportunities of System-Level Prognostics. Sensors, 21(22), 7655.
Lai, C.F., Chien, W.C., Yang, L. T., & Qiang, W. (2019). LSTM and Edge Computing for Big Data Feature Recognition of Industrial Electrical Equipment. IEEE Transactions on Industrial Informatics, 15(4), 2469–2477.
Lasi, H., Fettke, P., Kemper, H.G., Feld, T., & Hoffmann, M. (2014). Industry 4.0. Business & Information Systems Engineering, 6(4), 239–242.
Lee, J., Bagheri, B., & Kao, H.A. (2015). A Cyber-Physical Systems architecture for Industry 4.0-based manufacturing systems. Manufacturing Letters, 3(1), 18–23.
Li, Y., Zhang, T., Ma, Y. Y., & Zhou, C. (2016). Anomaly detection of user behavior
for database security audit based on ocsvm. 2016 3rd International Conference on
Information Science and Control Engineering (ICISCE)
Mckinsey&Company. (2022). Transforming advanced manufacturing through Industry 4.0. Mckinsey&Company.
Mohammed, M., Khan, M. B., & Bashier, E. B. M. (2016). Machine learning:
algorithms and applications. Crc Press.
Navamani, T. (2019). Efficient deep learning approaches for health informatics. In Deep
learning and parallel computing environment for bioengineering systems (pp. 123-137).
Elsevier.
Nguyen, H. D., Tran, K. P., Thomassey, S., & Hamad, M. (2021). Forecasting and Anomaly Detection approaches using LSTM and LSTM Autoencoder techniques with the applications in supply chain management. International Journal of Information Management, 57, 102282.
Rawat, W., & Wang, Z. (2017). Deep Convolutional Neural Networks for Image Classification: A Comprehensive Review. Neural Computation, 29(9), 2352–2449.
Sarker, I. H. (2021). Machine learning: Algorithms, real-world applications and
research directions. SN computer science, 2(3), 160.
Sharifani, K., & Amini, M. (2023). Machine learning and deep learning: A review of
methods and applications. World Information Technology and Engineering Journal,
10(07), 3897-3904.
Susto, G. A., Schirru, A., Pampuri, S., McLoone, S., & Beghi, A. (2015). Machine Learning for Predictive Maintenance: A Multiple Classifier Approach. IEEE Transactions on Industrial Informatics, 11(3), 812–820.
Tinga, T., & Loendersloot, R. (2019). Physical model-based prognostics and health
monitoring to enable predictive maintenance. Predictive maintenance in dynamic
systems: Advanced methods, decision support tools and real-world applications, 313-
353.
Wu, J., Yao, L., Liu, B., Ding, Z., & Zhang, L. (2020). Combining OC-SVMs With LSTM for Detecting Anomalies in Telemetry Data With Irregular Intervals. IEEE Access, 8, 106648–106659.
Wuest, T., Weimer, D., Irgens, C., & Thoben, K.D. (2016). Machine learning in manufacturing: advantages, challenges, and applications. Production & Manufacturing Research, 4(1), 23–45.
Zhang, W., Yang, D., & Wang, H. (2019). Data-Driven Methods for Predictive Maintenance of Industrial Equipment: A Survey. IEEE Systems Journal, 13(3), 2213–2227. |