博碩士論文 111426040 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:51 、訪客IP:18.191.246.191
姓名 鄭博安(Po-An Cheng)  查詢紙本館藏   畢業系所 工業管理研究所
論文名稱 應用LSTM-OCSVM模型於塗佈機異常偵測之研究
(Applying LSTM-OCSVM Model for Anomaly Detection in Coating Machine)
相關論文
★ 應用灰色理論於有機農產品之經營管理— 需求預測及關鍵成功因素探討★ NAND型Flash價格與交運量預測在風險分析下之決策模式
★ 工業電腦用無鉛晶片組最適存貨政策之研究-以A公司為例★ 砷化鎵代工廠磊晶之最適存貨管理-以W公司為例
★ 資訊分享&決策制定下產銷協同關係之研究 -以IC設計業為例★ 應用分析層級法於電子化學品業委外供應商評選準則之研究
★ 應用資料探勘於汽車售服零件庫存滯銷因素分析-以C公司為例★ 多目標規劃最佳六標準差水準: 以薄膜電晶體液晶顯示器C公司製造流程為例
★ 以資料探勘技術進行消費者返廠定期保養之實證研究★ 以價值鏈觀點探討品牌公司關鍵組織流程之取決-以S公司為例
★ 應用產銷協同規劃之流程改善於化纖產業-現況改善與效益分析★ 權力模式與合作關係對於報價策略之影響研究—以半導體產業A公司為例
★ 應用資料探勘於汽車製造業之庫存原因分析★ 以類神經網路預測代工費報價---以中小面板產業C公司為例
★ 電路板產業存貨改善研究-以N公司為例★ 運用六標準差改善機台備用零件(Spare parts)存貨管理
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 隨著現代科技的進步,全世界的各大企業正逐步地往工業4.0前進,伴隨著人工智慧這項技術已逐漸成熟,不論是製造業、金融業、能源業等不同領域,皆為了穩定高效的生產效率、提高產品良率及機台的低故障發生率,紛紛投入大量的研發費為了導入智慧製造相關的技術。
本研究運用A公司提供的塗佈機運轉數據,採納了長短期記憶網路( Long Short-Term Memory, LSTM )和單類支持向量機( One-Class Support Vector Machines, OCSVM )兩種方法的混合模型,以半監督式學習的方式建立,旨在實現預測性維護方法中的預診斷與健康管理( Prognostics and Health Management, PHM )。準確度為85.83%,精確度為46.82%,召回率為98.97%,F2-Score為80.9%,表明LSTM-OCSVM方法在異常偵測上的優越性。且預測模型相較於實際張力異常紀錄能提前約500秒檢測到異常徵兆,以利機台負責人員能於故障前做出決策,確保產線順暢,並降低因機台異常導致產品良率下降及機台壽命減短等問題。
摘要(英) As modern technology advances, major companies worldwide are gradually moving towards Industry 4.0. Along with the gradual maturation of artificial intelligence technology, various sectors such as manufacturing, finance, and energy are all investing heavily in research and development to implement smart manufacturing technologies. This is aimed at achieving stable and efficient production, improving product quality, and reducing machine failure rates.
This study uses operational data from coating machines provided by Company A, adopting a hybrid model of Long Short-Term Memory (LSTM) and One-Class Support Vector Machines (OCSVM) methods, established in a semi-supervised learning manner. The aim is to achieve prognostics and health management (PHM) in predictive maintenance methods. The accuracy is 85.83%, precision is 46.82%, recall is 98.97%, and the F2-Score is 80.9%, indicating the superiority of the LSTM-OCSVM method in anomaly detection. The predictive model can detect abnormal signs about 500 seconds earlier compared to actual tension abnormal records, allowing machine operators to make decisions before a failure occurs, ensuring smooth production lines, and reducing issues such as decreased product yield and shortened machine lifespan caused by machine anomalies.
關鍵字(中) ★ 智慧製造
★ 長短期記憶網路
★ 單類支持向量機
★ 預測性維護
關鍵字(英) ★ Smart Manufacturing
★ Long Short-Term Memory Network
★ One-Class Support Vector Machine
★ Predictive Maintenance
論文目次 目錄
摘要 I
ABSTRACT II
目錄 III
圖目錄 VI
表目錄 IX
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 2
1.3 研究架構 3
第二章 文獻回顧 4
2.1 虛實整合系統 ( CYBER PHYSICAL SYSTEM, CPS ) 4
2.2 機器學習 ( MACHINE LEARNING, ML ) 5
2.3 深度學習( DEEP LEARNING, DL) 8
2.4 預測性維護策略( PREDICTIVE MAINTENANCE, PDM ) 11
2.4.1 預診斷與健康管理架構 12
2.4.2 預測性維護的預測方法 13
第三章 研究方法 16
3.1 研究對象 16
3.2 問題定義 18
3.3 長短期記憶法(LONG SHORT-TERM MEMORY) 20
3.3.1激勵函數 ( Activation Function ) 22
3.3.2 損失函數( Loss Function ) 25
3.3.3 優化器 (Optimizer) 26
3.4 支撐向量機( SUPPORT VECTOR MACHINE, SVM) 27
3.4.1 核函數 ( Kernel Function ) 30
3.4.2 單類支撐向量機( One- Class SVM, OCSVM ) 31
3.5 評價指標 ( EVALUATION METRICS ) 33
第四章 實驗結果與分析 35
4.1 資料說明及預處理 35
4.2實驗設計 37
4.2.1滑動窗口 ( Sliding window) 37
4.2.2神經元數量 39
4.2.3模型建置 42
4.2.4懲罰係數與核函數 43
4.3實驗結果 44
4.4實驗分析與評估 48
4.4.1健康管理機制 49
4.4.2 模型效益比較 52
第五章 結論與未來建議 54
5.1 結論 54
5.2 未來建議 56
參考文獻 58
參考文獻 Ahmad, S., Lavin, A., Purdy, S., & Agha, Z. (2017). Unsupervised real-time anomaly detection for streaming data. Neurocomputing, 262, 134–147.

Biggio, L. and I. Kastanis (2020). "Prognostics and health management of industrial assets: Current progress and road ahead." Frontiers in Artificial Intelligence 3: 578613.

Calabrese, F., Regattieri, A., Botti, L., & Galizia, F. G. (2019). Prognostic Health Management of Production Systems. New Proposed Approach and Experimental Evidences. Procedia Manufacturing, 39, 260–269.

Gharib, H., & György Kovács. (2023). A Review of Prognostic and Health Management (PHM) Methods and Limitations for Marine Diesel Engines: New Research Directions. Machines, 11(7), 695–695.

Hwang, S.Y., & Kim, J.J. (2023). A Universal Activation Function for Deep Learning. Computers, Materials & Continua, 75(2), 3553–3569.

Kanawaday, A. and A. Sane (2017). Machine learning for predictive maintenance of industrial machines using IoT sensor data. 2017 8th IEEE international conference on software engineering and service science (ICSESS), IEEE.

Khan, P., Kader, M. F., Islam, S. M. R., Rahman, A. B., Kamal, M. S., Toha, M. U., & Kwak, K.S. (2021). Machine Learning and Deep Learning Approaches for Brain Disease Diagnosis: Principles and Recent Advances. IEEE Access, 9, 37622–37655.

Kim, S., Choi, J.H., & Kim, N. H. (2021). Challenges and Opportunities of System-Level Prognostics. Sensors, 21(22), 7655.

Lai, C.F., Chien, W.C., Yang, L. T., & Qiang, W. (2019). LSTM and Edge Computing for Big Data Feature Recognition of Industrial Electrical Equipment. IEEE Transactions on Industrial Informatics, 15(4), 2469–2477.
Lasi, H., Fettke, P., Kemper, H.G., Feld, T., & Hoffmann, M. (2014). Industry 4.0. Business & Information Systems Engineering, 6(4), 239–242.

Lee, J., Bagheri, B., & Kao, H.A. (2015). A Cyber-Physical Systems architecture for Industry 4.0-based manufacturing systems. Manufacturing Letters, 3(1), 18–23.

Li, Y., Zhang, T., Ma, Y. Y., & Zhou, C. (2016). Anomaly detection of user behavior
for database security audit based on ocsvm. 2016 3rd International Conference on
Information Science and Control Engineering (ICISCE)

Mckinsey&Company. (2022). Transforming advanced manufacturing through Industry 4.0. Mckinsey&Company.

Mohammed, M., Khan, M. B., & Bashier, E. B. M. (2016). Machine learning:
algorithms and applications. Crc Press.

Navamani, T. (2019). Efficient deep learning approaches for health informatics. In Deep
learning and parallel computing environment for bioengineering systems (pp. 123-137).
Elsevier.

Nguyen, H. D., Tran, K. P., Thomassey, S., & Hamad, M. (2021). Forecasting and Anomaly Detection approaches using LSTM and LSTM Autoencoder techniques with the applications in supply chain management. International Journal of Information Management, 57, 102282.

Rawat, W., & Wang, Z. (2017). Deep Convolutional Neural Networks for Image Classification: A Comprehensive Review. Neural Computation, 29(9), 2352–2449.

Sarker, I. H. (2021). Machine learning: Algorithms, real-world applications and
research directions. SN computer science, 2(3), 160.

Sharifani, K., & Amini, M. (2023). Machine learning and deep learning: A review of
methods and applications. World Information Technology and Engineering Journal,
10(07), 3897-3904.

Susto, G. A., Schirru, A., Pampuri, S., McLoone, S., & Beghi, A. (2015). Machine Learning for Predictive Maintenance: A Multiple Classifier Approach. IEEE Transactions on Industrial Informatics, 11(3), 812–820.

Tinga, T., & Loendersloot, R. (2019). Physical model-based prognostics and health
monitoring to enable predictive maintenance. Predictive maintenance in dynamic
systems: Advanced methods, decision support tools and real-world applications, 313-
353.

Wu, J., Yao, L., Liu, B., Ding, Z., & Zhang, L. (2020). Combining OC-SVMs With LSTM for Detecting Anomalies in Telemetry Data With Irregular Intervals. IEEE Access, 8, 106648–106659.

Wuest, T., Weimer, D., Irgens, C., & Thoben, K.D. (2016). Machine learning in manufacturing: advantages, challenges, and applications. Production & Manufacturing Research, 4(1), 23–45.

Zhang, W., Yang, D., & Wang, H. (2019). Data-Driven Methods for Predictive Maintenance of Industrial Equipment: A Survey. IEEE Systems Journal, 13(3), 2213–2227.
指導教授 陳振明(Jen-Ming Chen) 審核日期 2024-7-1
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明