參考文獻 |
[1] Bengio, Y. "Deep learning of representations for unsupervised and transfer learning." Proceedings of ICML Workshop on Unsupervised and Transfer Learning. JMLR Workshop and Conference Proceedings, 2012, 17-36.
[2] Bengio, Y., F. Bastien, A. Bergeron, N. Boulanger–Lewandowski, T. Breuel, Y. Chherawala, M. Cisse, M. Côté, D. Erhan, J. Eustache, X. Glorot, X. Muller, S. P. Lebeuf, R. Pascanu, S. Rifai, F. Savard, G. Sicard "Deep learners benefit more from out-of-distribution examples." Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics. JMLR Workshop and Conference Proceedings, 2011, 164-172.
[3] De Lange, M., R. Aljundi, M. Masana, S. Parisot, X. Jia, A. Leonardis, G. Slabaugh, T. Tuytelaars "A continual learning survey: Defying forgetting in classification tasks." IEEE Transactions on Pattern Analysis and Machine Intelligence 44.7, 2021, 3366-3385.
[4] Deng, J., W. Dong, R. Socher, L. J. Li, K. Li, & L. Fei-Fei "Imagenet: A large-scale hierarchical image database." 2009 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2009, 248-255.
[5] Goodfellow, I. J., M. Mirza, D. Xiao, A. Courville, Y. Bengio "An empirical investigation of catastrophic forgetting in gradient-based neural networks." arXiv preprint arXiv:1312.6211, 2013.
[6] He, K., X. Zhang, S. Ren, J. Sun "Deep residual learning for image recognition." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016, 770-778.
[7] Hinton, G., O. Vinyals, & J. Dean. "Distilling the knowledge in a neural network." arXiv preprint arXiv:1503.02531, 2015.
[8] Kanezaki, A., Y. Matsushita, & Y. Nishida. "Rotationnet for joint object categorization and unsupervised pose estimation from multi-view images." IEEE Transactions on Pattern Analysis and Machine Intelligence 43.1, 2019, 269-283.
[9] Kim, T., J. Oh, N.Y. Kim, S. Cho, S.Y. Yun "Comparing kullback-leibler divergence and mean squared error loss in knowledge distillation." arXiv preprint arXiv:2105.08919, 2021.
[10] Krizhevsky, A., I. Sutskever, & G. E. Hinton. "Imagenet classification with deep convolutional neural networks." Advances in Neural Information Processing Systems, 2012, 25.
[11] Li, Z., & D. Hoiem. "Learning without forgetting." IEEE Transactions on Pattern Analysis and Machine Intelligence 40.12, 2017, 2935-2947.
[12] Obst, P., W. Nasser, S. Rink, G. Kleinpeter, B. Szost, D. Rietzel, G. Witt "Complexity and economical value of Artificial Intelligence for automated and industrialized recognition of additive manufactured components." Proc. 17th Rapid. Tech 3D Conf, 2021, 141-152.
[13] Phong, B. T. "Illumination for computer generated pictures." Seminal Graphics: Pioneering Efforts that Shaped the Field, 1998, 95-101.
[14] Qi, C. R., H. Su, K. Mo, L. J. Guibas "Pointnet: Deep learning on point sets for 3d classification and segmentation." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, 652-660.
[15] Qi, S., X. Ning, G. Yang, L. Zhang, P. Long, W. Cai, W. Li "Review of multi-view 3D object recognition methods based on deep learning." Displays 69, 2021, 102053.
[16] Ramasesh, V. V., E. Dyer, & M. Raghu. "Anatomy of catastrophic forgetting: Hidden representations and task semantics." arXiv preprint arXiv:2007.07400, 2020.
[17] Schuh, G., G. Lukas, S. Hohenstein, J. M. Schäfer, J. L. Drescher "Part Recognition in Additive Production Systems using a Computer-vision Approach." 2022 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM). IEEE, 2022, 96-101.
[18] Simonyan, K., & A. Zisserman. "Very deep convolutional networks for large-scale image recognition." arXiv preprint arXiv:1409.1556, 2014.
[19] Su, H., S. Maji, E. Kalogerakis, E. Learned-Miller "Multi-view convolutional neural networks for 3d shape recognition." Proceedings of the IEEE International Conference on Computer Vision, 2015, 945-953.
[20] Wu, Z., S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, J. Xiao "3d shapenets: A deep representation for volumetric shapes." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, 1912-1920.
[21] Yosinski, J., J. Clune, Y. Bengio, H. Lipson "How transferable are features in deep neural networks?." Advances in Neural Information Processing Systems, 2014, 27.
[22] Zhang, H., I. Goodfellow, D. Metaxas, A. Odena "Self-attention generative adversarial networks." International Conference on Machine Learning. PMLR, 2019, 7354-7363.
[23] Zhang, J., J. Zhang, S. Ghosh, D. Li, S. Tasci, L. Heck, H. Zhang, C. C. J. Kuo "Class-incremental learning via deep model consolidation." Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2020, 1131-1140. |