博碩士論文 111426038 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:83 、訪客IP:3.147.63.189
姓名 賴聖鎧(Sheng-Kai Lai)  查詢紙本館藏   畢業系所 工業管理研究所
論文名稱 多視角影像下的工業產品辨識:可增量學習的卷積神經網路模型
(Industrial Product Recognition in Multi-view Images:A Convolutional Neural Network Model with Incremental Learning Capability)
相關論文
★ 應用失效模式效應分析於產品研發時程之改善★ 服務品質因子與客戶滿意度關係研究-以汽車保修廠服務為例
★ 家庭購車決策與行銷策略之研究★ 計程車車隊派遣作業之研究
★ 電業服務品質與服務失誤之探討-以台電桃園區營業處為例★ 應用資料探勘探討筆記型電腦異常零件-以A公司為例
★ 車用配件開發及車主購買意願探討(以C公司汽車配件業務為實例)★ 應用田口式實驗法於先進高強度鋼板阻抗熔接條件最佳化研究
★ 以層級分析法探討評選第三方物流服務要素之研究-以日系在台廠商為例★ 變動良率下的最佳化批量研究
★ 供應商庫存管理架構下運用層級分析法探討供應商評選之研究-以某電子代工廠為例★ 台灣地區快速流通消費產品銷售預測模型分析研究–以聯華食品可樂果為例
★ 競爭優勢與顧客滿意度分析以中華汽車為例★ 綠色採購導入對電子代工廠的影響-以A公司為例
★ 以德菲法及層級分析法探討軌道運輸業之供應商評選研究–以T公司為例★ 應用模擬系統改善存貨管理制度與服務水準之研究-以電線電纜製造業為例
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究針對工業產品識別的需求,提出了一套方法,包含以下三個部分:(1)新型多視角卷積神經網路模型,(2)三維物體的遷移學習,(3)增量學習的演算法。由於工廠環境下取得的資料容易有翻轉、背景雜亂等問題,傳統的二維影像辨識方法效果不佳,本研究提出了一種新的網路架構,稱為自注意力殘差網路,具有優秀的背景分割能力和全局特徵理解,可幫助多視角的二維圖像進行三維物體識別。另一個問題是在現實中取得足以訓練好模型的資料量需要極高的成本,需要對多視角卷積神經網路進行遷移學習以提升辨識效果。此外,本研究針對無法儲存過去資料的情境之類別增量學習,提出局部深度模型融合。實驗表明,使用自注意力殘差卷積神經網路作為特徵擷取層,性能大幅領先目前最先進的卷積神經網路,並透過多視角卷積神經網路之遷移學習,在缺乏訓練資料的情形下進一步提高準確率。本研究提出的局部深度模型融合,對比其他增量學習演算法同樣取得較佳的效果。最後我們使用真實的工業產品拍攝,模擬在實際辨識情況會遇到的困境,並演示模型之效果。
摘要(英) This study addresses the need for industrial product identification by proposing a method that includes the following three components: (1) a novel multi-view convolutional neural network model, (2) transfer learning for three-dimensional objects, and (3) an incremental learning algorithm. Traditional 2D image recognition methods perform poorly due to issues like flipping and cluttered backgrounds commonly found in factory environments. This study introduces a new network architecture, called the “SARNet”, which excels in background segmentation and global feature comprehension, aiding in the recognition of 3D objects from multi-view 2D images. Another challenge is the high cost of obtaining sufficient data to train a model effectively in real-world scenarios, which necessitates the use of transfer learning for the multi-view convolutional neural network to enhance recognition performance. Additionally, this study proposes “Partial Deep Model Consolidation” for class incremental learning scenarios where storing past data is not feasible. Experiments demonstrate that using a “SARNet” as the feature extraction layer significantly outperforms the current state-of-the-art convolutional neural networks. Transfer learning with the multi-view convolutional neural network further improves accuracy in situations with limited training data. The proposed “Partial Deep Model Consolidation” also achieves better results compared to other incremental learning algorithms. Finally, we use real industrial product photographs to simulate the challenges encountered in actual recognition scenarios and demonstrate the effectiveness of the model.
關鍵字(中) ★ 工業產品辨識
★ 三維物體識別
★ 遷移學習
★ 增量學習
★ 卷積神經網路
關鍵字(英) ★ Industrial product recognition
★ Three-dimensional object recognition
★ Transfer learning
★ Incremental learning
★ Convolutional neural networks
論文目次 摘要 i
Abstract ii
目錄 iii
圖目錄 v
表目錄 vi
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究挑戰 3
1.3 研究目的 4
1.4 研究方法 4
第二章 文獻回顧 5
2.1 卷積神經網路 5
2.2 三維物體識別 7
2.3 增量學習 8
第三章 方法論 10
3.1 基本學習 12
3.1.1 自注意力殘差網路 12
3.1.2 多視角卷積神經網路 15
3.2 遷移學習 16
3.3 增量學習 17
3.3.1 局部深度模型融合 18
3.3.2 局部知識蒸餾 19
3.3.3 深度模型融合 20
3.3.4 軟標籤合併 22
3.3.5 局部微調 23
第四章 實驗 24
4.1 資料及前處理 24
4.1.1 真實工業產品資料集 25
4.1.2 工業產品渲染資料集 26
4.1.3 ModelNet10 27
4.2 實驗設置 28
4.3 多視角卷積神經網路實驗 29
4.4 遷移學習實驗 31
4.5 增量學習實驗 32
4.5.1 任務中重疊類別數量的影響 35
4.5.2 任務數量的影響 36
4.6 實際應用演示 37
第五章 結論 41
參考文獻 42
參考文獻 [1] Bengio, Y. "Deep learning of representations for unsupervised and transfer learning." Proceedings of ICML Workshop on Unsupervised and Transfer Learning. JMLR Workshop and Conference Proceedings, 2012, 17-36.
[2] Bengio, Y., F. Bastien, A. Bergeron, N. Boulanger–Lewandowski, T. Breuel, Y. Chherawala, M. Cisse, M. Côté, D. Erhan, J. Eustache, X. Glorot, X. Muller, S. P. Lebeuf, R. Pascanu, S. Rifai, F. Savard, G. Sicard "Deep learners benefit more from out-of-distribution examples." Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics. JMLR Workshop and Conference Proceedings, 2011, 164-172.
[3] De Lange, M., R. Aljundi, M. Masana, S. Parisot, X. Jia, A. Leonardis, G. Slabaugh, T. Tuytelaars "A continual learning survey: Defying forgetting in classification tasks." IEEE Transactions on Pattern Analysis and Machine Intelligence 44.7, 2021, 3366-3385.
[4] Deng, J., W. Dong, R. Socher, L. J. Li, K. Li, & L. Fei-Fei "Imagenet: A large-scale hierarchical image database." 2009 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2009, 248-255.
[5] Goodfellow, I. J., M. Mirza, D. Xiao, A. Courville, Y. Bengio "An empirical investigation of catastrophic forgetting in gradient-based neural networks." arXiv preprint arXiv:1312.6211, 2013.
[6] He, K., X. Zhang, S. Ren, J. Sun "Deep residual learning for image recognition." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016, 770-778.
[7] Hinton, G., O. Vinyals, & J. Dean. "Distilling the knowledge in a neural network." arXiv preprint arXiv:1503.02531, 2015.
[8] Kanezaki, A., Y. Matsushita, & Y. Nishida. "Rotationnet for joint object categorization and unsupervised pose estimation from multi-view images." IEEE Transactions on Pattern Analysis and Machine Intelligence 43.1, 2019, 269-283.
[9] Kim, T., J. Oh, N.Y. Kim, S. Cho, S.Y. Yun "Comparing kullback-leibler divergence and mean squared error loss in knowledge distillation." arXiv preprint arXiv:2105.08919, 2021.
[10] Krizhevsky, A., I. Sutskever, & G. E. Hinton. "Imagenet classification with deep convolutional neural networks." Advances in Neural Information Processing Systems, 2012, 25.
[11] Li, Z., & D. Hoiem. "Learning without forgetting." IEEE Transactions on Pattern Analysis and Machine Intelligence 40.12, 2017, 2935-2947.
[12] Obst, P., W. Nasser, S. Rink, G. Kleinpeter, B. Szost, D. Rietzel, G. Witt "Complexity and economical value of Artificial Intelligence for automated and industrialized recognition of additive manufactured components." Proc. 17th Rapid. Tech 3D Conf, 2021, 141-152.
[13] Phong, B. T. "Illumination for computer generated pictures." Seminal Graphics: Pioneering Efforts that Shaped the Field, 1998, 95-101.
[14] Qi, C. R., H. Su, K. Mo, L. J. Guibas "Pointnet: Deep learning on point sets for 3d classification and segmentation." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, 652-660.
[15] Qi, S., X. Ning, G. Yang, L. Zhang, P. Long, W. Cai, W. Li "Review of multi-view 3D object recognition methods based on deep learning." Displays 69, 2021, 102053.
[16] Ramasesh, V. V., E. Dyer, & M. Raghu. "Anatomy of catastrophic forgetting: Hidden representations and task semantics." arXiv preprint arXiv:2007.07400, 2020.
[17] Schuh, G., G. Lukas, S. Hohenstein, J. M. Schäfer, J. L. Drescher "Part Recognition in Additive Production Systems using a Computer-vision Approach." 2022 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM). IEEE, 2022, 96-101.
[18] Simonyan, K., & A. Zisserman. "Very deep convolutional networks for large-scale image recognition." arXiv preprint arXiv:1409.1556, 2014.
[19] Su, H., S. Maji, E. Kalogerakis, E. Learned-Miller "Multi-view convolutional neural networks for 3d shape recognition." Proceedings of the IEEE International Conference on Computer Vision, 2015, 945-953.
[20] Wu, Z., S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, J. Xiao "3d shapenets: A deep representation for volumetric shapes." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, 1912-1920.
[21] Yosinski, J., J. Clune, Y. Bengio, H. Lipson "How transferable are features in deep neural networks?." Advances in Neural Information Processing Systems, 2014, 27.
[22] Zhang, H., I. Goodfellow, D. Metaxas, A. Odena "Self-attention generative adversarial networks." International Conference on Machine Learning. PMLR, 2019, 7354-7363.
[23] Zhang, J., J. Zhang, S. Ghosh, D. Li, S. Tasci, L. Heck, H. Zhang, C. C. J. Kuo "Class-incremental learning via deep model consolidation." Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2020, 1131-1140.
指導教授 葉英傑(Ying-Chieh Yeh) 審核日期 2024-7-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明