博碩士論文 111426016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:54 、訪客IP:18.119.102.108
姓名 王兆玄(Jhao-Syuan Wang)  查詢紙本館藏   畢業系所 工業管理研究所
論文名稱 基於多尺度注意力、可變形卷積與深度可分離卷積的晶圓缺陷辨識模型
(An Integrated Model for Wafer Defect Pattern Recognition Based on Multi-Scale Attention ,Deformable Convolution and Depth-wise Separable Convolution)
相關論文
★ 應用失效模式效應分析於產品研發時程之改善★ 服務品質因子與客戶滿意度關係研究-以汽車保修廠服務為例
★ 家庭購車決策與行銷策略之研究★ 計程車車隊派遣作業之研究
★ 電業服務品質與服務失誤之探討-以台電桃園區營業處為例★ 應用資料探勘探討筆記型電腦異常零件-以A公司為例
★ 車用配件開發及車主購買意願探討(以C公司汽車配件業務為實例)★ 應用田口式實驗法於先進高強度鋼板阻抗熔接條件最佳化研究
★ 以層級分析法探討評選第三方物流服務要素之研究-以日系在台廠商為例★ 變動良率下的最佳化批量研究
★ 供應商庫存管理架構下運用層級分析法探討供應商評選之研究-以某電子代工廠為例★ 台灣地區快速流通消費產品銷售預測模型分析研究–以聯華食品可樂果為例
★ 競爭優勢與顧客滿意度分析以中華汽車為例★ 綠色採購導入對電子代工廠的影響-以A公司為例
★ 以德菲法及層級分析法探討軌道運輸業之供應商評選研究–以T公司為例★ 應用模擬系統改善存貨管理制度與服務水準之研究-以電線電纜製造業為例
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究針對半導體製造中晶圓缺陷檢測這一關鍵問題展開探討。隨著電路積
體密度的增加和晶圓設計複雜性的增加,晶圓缺陷變得更加普遍。每個晶圓缺陷的發生都是源於某些製造流程的特定異常行為,一套識別晶圓缺陷的系統,有助於發現半導體製造中的異常製程並採取相應措施加以解決。在半導體製造流程中,準確檢測並識別晶圓上的各種缺陷至關重要,但傳統基於卷積神經網絡(CNN)的方法存在一些固有的缺陷,例如高計算量、過擬合和對特定型態缺陷的處理不足。因此,本研究旨在提出一種新型的卷積神經網絡,將深度可分離卷積、多尺度注意力和可變形卷積等技術結合,以提升模型效率、改善缺陷處理能力並增強模型泛化能力。透過這些方法的綜合應用,我們期望能夠有效解決晶圓缺陷檢測中的挑戰,提高檢測準確性和效率,從而促進半導體製造流程的持續優化與提升。
摘要(英) This study focuses on the crucial issue of wafer defect detection in semiconductor manufacturing. With the increase in circuit integration density and the complexity of wafer design, wafer defects have become more prevalent. Each wafer defect originates from specific abnormal behaviors in the manufacturing process. Accurate detection and identification of various defects on wafers are essential in semiconductor manufacturing. However, traditional convolutional neural network (CNN)-based methods suffer from inherent drawbacks such as high computational complexity, overfitting, and inadequate handling of specific types of defects. Therefore, this study aims to propose a novel convolutional neural network that integrates techniques such as depth-wise separable convolution, multi-scale attention, and deformable convolution to improve model efficiency, enhance defect processing capabilities, and strengthen model generalization ability. Through the comprehensive application of these methods, we expect to effectively address the challenges in wafer defect detection, enhance detection accuracy and efficiency, and promote continuous optimization and improvement of semiconductor manufacturing processes.
關鍵字(中) ★ 晶圓缺陷辨識
★ 卷積神經網路
★ 注意力機制
關鍵字(英) ★ wafer defect recognition
★ multi-scale attention
★ convolution neural network
論文目次 摘要 i
Abstract ii
目錄 iii
圖目錄 v
表目錄 vi
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究挑戰 3
1.3 研究目的 3
1.4 研究方法 4
第二章 文獻回顧 5
2.1 單一類別缺陷模型辨識 5
2.2 卷積神經網路(Convolution Neural Network) 6
2.3 深度可分離卷積(Depthwise Separable Convolutions) 7
2.4 可變形卷積(Deformable Convolutions) 8
2.5 多尺度注意力機制(Multi-Scale Attention) 10
第三章 方法論 13
3.1 資料增強 14
3.2 新型卷積神經網路架構 14
3..2.1 深度可分離卷積 14
3.2.2 可變形卷積模組 16
3.2.3 融合深度可分離卷積與可變型卷積的架構 16
3.3 多尺度注意力模塊 18
3.3.1 多尺度特徵融合 18
3.3.2 通道注意力 19
3.3.3 空間注意力 21
第四章 實驗結果 23
4.1 數據集 23
4.2 實驗設置 24
4.3 評估指標 24
4.4 模型性能評估 25
4.4.1 平衡和不平衡資料集的效能評估 25
4.4.2 不同分類模型的缺陷分類結果比較 27
4.5 參數量與訓練時間 28
第五章 結論與未來研究方向 29
參考文獻 30
參考文獻 [1] Cheon, S., H. Lee, C. O. Kim, & S. H. Lee "Convolutional neural network for wafer surface defect classification and the detection of unknown defect class." IEEE Transactions on Semiconductor Manufacturing 32.2 ,2019,163-170.
[2] Chollet, F. "Xception: Deep learning with depthwise separable convolutions."Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017, 1251-1258.
[3] Dai, J., H. Qi, Y. Xiong, Y. Li, G. Zhang, H. Hu, & Y. Wei "Deformableconvolutional networks." Proceedings of the IEEE International Conference on Computer Vision. 2017, 764-773.
[4] He, K., X. Zhang, S. Ren, & J. Sun "Deep residual learning for image recognition."Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
2016, 770-778.
[5] Howard, A. G., M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, & H. Adam. "Mobilenets: Efficient convolutional neural networks for mobile vision applications." arXiv preprint arXiv:1704.04861 ,2017.
[6] Hu, J., L. Shen, & G. Sun. "Squeeze-and-excitation networks." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018, 7132-7141.
[7] Jaderberg, M., K. Simonyan & A. Zisserman. "Spatial transformer networks."Advances in Neural Information Processing Systems 28 ,2015.
[8] Jin, C. H., H. J. Na, M. Piao, G. Pok, & K. H. Ryu. "A novel DBSCAN-based defect pattern detection and classification framework for wafer bin map." IEEE
Transactions on Semiconductor Manufacturing 32.3 ,2019,286-292.
[9] Krizhevsky, A., I. Sutskever, & G. E. Hinton. "Imagenet classification with deep convolutional neural networks." Advances in Neural Information Processing Systems 25 ,2012.
[10] Piao, M. C. H. Jin, J. Y. Lee, & J. Y. Byun. "Decision tree ensemble-based wafer map failure pattern recognition based on radon transform-based features." IEEE
Transactions on Semiconductor Manufacturing 31.2 ,2018, 250-257.
[11] Saqlain, M., Q. Abbas, & J. Y. Lee. "A deep convolutional neural network for wafer defect identification on an imbalanced dataset in semiconductor manufacturing
processes." IEEE Transactions on Semiconductor Manufacturing 33.3 ,2020,436-444.
[12] Saqlain, M., B. Jargalsaikhan, & J. Y.Lee. "A voting ensemble classifier for wafermap defect patterns identification in semiconductor manufacturing." IEEE
Transactions on Semiconductor Manufacturing 32.2 ,2019, 171-182.
[13] Simonyan, K., & A. Zisserman. (2014). "Very deep convolutional networks for large-scale image recognition." arXiv preprint arXiv:1409.1556 ,2014.
[14] Wang, J., C. Xu, Z. Yang, J. Zhang, & X. Li. "Deformable convolutional networks for efficient mixed-type wafer defect pattern recognition." IEEE Transactions on
Semiconductor Manufacturing 33.4 ,2020, 587-596.
[15] Wang, J., Z. Yang, J. Zhang, Q. Zhang, & W. T. K. Chien. "AdaBalGAN: An improved generative adversarial network with imbalanced learning for wafer defective pattern recognition." IEEE Transactions on Semiconductor Manufacturing 32.3 ,2019, 310-319.
[16] Wei, Y., & H. Wang. "Mixed-type wafer defect recognition with multi-scale information fusion transformer." IEEE Transactions on Semiconductor
Manufacturing 35.2 ,2022, 341-352.
[17] Woo, S., J. Park, J. Y. Lee, & I. S. Kweon "Cbam: Convolutional block attention module." Proceedings of the European Conference on Computer Vision (ECCV), 2018, 3-19.
[18] Wu, M. J., J. S. R. Jang, & J. L. Chen. "Wafer map failure pattern recognition and similarity ranking for large-scale data sets." IEEE Transactions on Semiconductor
Manufacturing 28.1 ,2014, 1-12.
[19] Zhang, X., & X. Wang. "Marn: multi-scale attention retinex network for low-light image enhancement." IEEE Access 9 ,2021, 50939-50948.
[20] Zhu, X., H. Hu, S. Lin, & J. Dai "Deformable convnets v2: More deformable, better results." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019, 9308-9316.
指導教授 葉英傑(Ying-Chieh Yeh) 審核日期 2024-7-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明