參考文獻 |
[1] Abdi, H., & L. J. Williams. "Principal component analysis." Wiley Interdisciplinary Reviews: Computational Statistics 2.4, 2010, 433-459.
[2] Aslam, M., A. Saghir, & L. Ahmad. Introduction to Statistical Process Control. John Wiley & Sons, 2020.
[3] Bersimis, S., S. Psarakis, & J. Panaretos. "Multivariate statistical process control charts: an overview." Quality and Reliability Engineering International 23.5, 2007, 517-543.
[4] Chen, L. H., & T. Y. Wang. "Artificial neural networks to classify mean shifts from multivariate χ2 chart signals." Computers & Industrial Engineering 47.2-3, 2004, 195-205.
[5] Cheng, C. S. "A multi-layer neural network model for detecting changes in the process mean." Computers & Industrial Engineering 28.1, 1995, 51-61.
[6] Cheng, C. S., & H. T. Lee. "Diagnosing the variance shifts signal in multivariate process control using ensemble classifiers." Journal of the Chinese Institute of Engineers 39.1, 2016, 64-73.
[7] Diren, D. D., S. Boran, & I. Cil. "Integration of machine learning techniques and control charts in multivariate processes.", 2020.
[8] Doganaksoy, N., F. W. Faltin, & W. T. Tucker. "Identification of out of control quality characteristics in a multivariate manufacturing environment."
Communications in Statistics-Theory and Methods 20.9, 1991, 2775-2790.
[9] Finn, C., P. Abbeel, & S. Levine. "Model-agnostic meta-learning for fast adaptation of deep networks." International Conference on Machine Learning. PMLR, 2017, 1126-1135.
[10] Frontier, S. "Étude de la décroissance des valeurs propres dans une analyse en composantes principales: Comparaison avec le modd́le du bâton brisé." Journal of Experimental Marine Biology and Ecology 25.1, 1976, 67-75.
[11] Guh, R. S., & Y. R. Shiue. "An effective application of decision tree learning for on-line detection of mean shifts in multivariate control charts." Computers & Industrial Engineering 55.2, 2008, 475-493.
[12] Guo, Y., & K. J. Dooley. "Identification of change structure in statistical process control." The International Journal of Production Research 30.7, 1992, 1655-1669.
[13] Hawkins, D. M. "Multivariate quality control based on regression-adiusted variables." Technometrics 33.1, 1991, 61-75.
[14] Hawkins, D. M. "Regression adjustment for variables in multivariate quality control." Journal of Quality Technology 25.3, 1993, 170-182.
[15] Hayter, A. J., & K. L. Tsui. "Identification and quantification in multivariate quality control problems." Journal of Quality Technology 26.3, 1994, 197-208.
[16] Jackson, D. A. "Stopping rules in principal components analysis: a comparison of heuristical and statistical approaches." Ecology 74.8, 1993, 2204-2214.
[17] Jackson, J. E. "Multivariate quality control." Communications in Statistics-Theory and Methods 14.11, 1985, 2657-2688.
[18] Jolliffe, I. T. "Discarding variables in a principal component analysis. I: Artificial data." Journal of the Royal Statistical Society Series C: Applied Statistics 21.2, 1972, 160-173.
[19] King, J. R., & D. A. Jackson. "Variable selection in large environmental data sets using principal components analysis." Environmetrics: The Official Journal of the International Environmetrics Society 10.1, 1999, 67-77.
[20] Krenker, A., J. Bešter, & A. Kos. "Introduction to the artificial neural networks."
Artificial Neural Networks: Methodological Advances and Biomedical Applications. InTech, 2011, 1-18.
[21] Mason, R. L., N. D. Tracy, & J. C. Young. "Decomposition of T 2 for multivariate control chart interpretation." Journal of Quality Technology 27.2, 1995, 99-108.
[22] Montgomery, D. C. Introduction to Statistical Quality Control. John Wiley & Sons, 2019.
[23] Murphy, B. J. "Selecting out of control variables with the T2 multivariate quality control procedure." Journal of the Royal Statistical Society Series D: The Statistician 36.5, 1987, 571-581.
[24] Navamani, T. M. "Efficient deep learning approaches for health informatics."
Deep Learning and Parallel Computing Environment for Bioengineering Systems. Academic Press, 2019, 123-137.
[25] Niaki, S. T. A., & B. Abbasi. "Fault diagnosis in multivariate control charts using artificial neural networks." Quality and Reliability Engineering International
21.8, 2005, 825-840.
[26] Noorossana, R., M. Farrokhi, & A. Saghaei. "Using neural networks to detect and classify out‐of‐control signals in autocorrelated processes." Quality and Reliability Engineering International 19.6, 2003, 493-504.
[27] Psarakis, S. "The use of neural networks in statistical process control charts."
Quality and Reliability Engineering International 27.5, 2011, 641-650.
[28] Song, H., Q. Xu, H. Yang, & J. Fang. "Interpreting out-of-control signals using instance-based Bayesian classifier in multivariate statistical process control."
Communications in Statistics-Simulation and Computation 46.1, 2017, 53-77.
[29] Vanschoren, J. "Meta-learning: A survey." arXiv preprint arXiv:1810.03548, 2018.
[30] Western Electric Company. Statistical Quality Control Handbook. AT & T Technologies, 1958.
[31] Wold, S., K. Esbensen, & P. Geladi. "Principal component analysis."
Chemometrics and Intelligent Laboratory Systems 2.1-3, 1987, 37-52.
[32] Yu, J., L. Xi, & X. Zhou. "Identifying source (s) of out-of-control signals in multivariate manufacturing processes using selective neural network ensemble."
Engineering Applications of Artificial Intelligence 22.1, 2009, 141-152.
[33] Zorriassatine, F., & J. D. T. Tannock. "A review of neural networks for statistical process control." Journal of Intelligent Manufacturing 9, 1998, 209-224. |